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Abstract

This paper develops a framework for analyzing performance loss of fixed time interval decision algorithms
based on observations of time-inhomogeneous Poisson processes, when some parameters characterizing the
observation process are not known exactly. Key to the development is the formulation of an analytically
computable performance metric which can be used in lieu of the true, but intractable, error probabilities.
The proposed metric is obtained by identifying analytical upper bounds on the error probabilities in terms
of the uncertain parameters. Using these tools, it is shown that performance degrades gracefully as long as
the values of the parameters used in decision making remain within a neighborhood of their true values. The
results find direct application to problems of detecting illicit nuclear materials in transit.
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1. Introduction

Many physical processes of interest are characterized by sequences of discrete events occurring randomly
in time, modeled mathematically as point processes [1, 2]. An important class of point processes is the
collection of Poisson processes, which are used to capture the underlying physical phenomena, for example,
in queueing theory [1], optical communications [3], neuroscience [4], and nuclear detection [5]. Problems of
decision making between two hypotheses on the basis of Poisson (and more general point) process observations
have been studied [1, 2, 6, 7, 8, 9]. For the Poisson case, the optimal Neyman-Pearson rule is known to be
given by a Likelihood Ratio Test (lrt), where the decision is based on comparing a likelihood ratio formed
by the observations against a suitable threshold. The functional form of the likelihood ratio is determined
by the intensities of the Poisson process under the two hypotheses.

In many situations, however, these intensities are subject to uncertainty. For instance, Poisson process
intensities may be specified in terms of a collection of parameters whose exact values may not be known.
Robust techniques [7, 10, 11] ensure acceptable performance over a range of parameter values. To identify the
parameters most crucial for robustness, one needs to understand the relative impact of parameter uncertainty
on decision-making performance. The challenge now is that performance is measured by error probabilities,
the analytical computation of which is extremely difficult, if not impossible. It is therefore of interest to
formulate an alternate analytically tractable performance metric which can shed light on the above problem.
This observation sets the stage for the present research, which aims at establishing such a performance metric
for the case where the parameters that determine the underlying statistical processes are not known exactly.

The mathematical models and techniques described above find natural application in the field of nuclear
detection. A particularly challenging instance of the problem of nuclear detection is that of detecting illicit
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Special Nuclear Material (snm) in transit [5, 12, 13, 14]. Assuming that the moving target is identified, one
is asked to decide whether that target is a carrier of an snm radiation source, using radiation count data
from a spatially dispersed network of inexpensive Geiger counters or scintillators. The critical question is
whether the photons recorded by the counters are solely due to ubiquitous background radiation or whether
they also contain emissions from a moving source. Since both background and source photon arrivals at
a sensor can be modeled by Poisson processes, one is faced with a problem of detecting a Poisson signal
buried inside another signal of similar nature and magnitude, within a small time interval. Furthermore, one
of these processes is actually time-inhomogeneous, since the perceived source intensity incident at a sensor
varies with the inverse square of the distance between source and sensor [5].

This decision problem has been studied in a fixed interval framework [15, 16], i.e., when data is collected
by sensors over a fixed time interval, at the end of which a decision is made. The likelihood ratio has been
identified in terms of the problem parameters, including the motion of the source [15]. Chernoff upper bounds
[17, 18, 19] on the error probabilities for the corresponding lrt have been computed [16], identifying the
analytical dependence of the bounds on the problem parameters. To fully exploit these insights in a field-
deployable nuclear detector network system, however, one needs to recognize and account for the presence
of model uncertainty, a dominant source of which is radiation clutter [13]: the myriad “nuisance sources”
and spatiotemporal environmental variations whose cumulative effect is to create a dynamic and imperfectly
modeled background.

In this paper, we study the effect of imperfectly known intensities on a class of decision problems for
Poisson processes which include, as special cases, several scenarios encountered in nuclear detection. Working
with a parametrized family of models, where each value of the parameter vector corresponds to a specific
choice of intensities, we obtain Chernoff upper bounds on the error probabilities for decision schemes with
mismatch [20, 21]. By the latter, we mean that the decision rule is an lrt based on some nominal model
which may be different from the true model governing the stochastic processes of interest. The Chernoff
bounds, or equivalently, the exponents in the bounds, now furnish a performance measure which can be
analytically characterized in terms of the problem parameters under the true and nominal models. Further,
the exponents are seen to vary smoothly when the true model is a sufficiently small perturbation about the
nominal one, implying that at least locally, performance degrades gracefully as parameters deviate from their
nominal (known) values.

2. Background

We start with a binary hypothesis testing problem. The probabilistic setup consists of a measurable
space (Ω,F ) supporting a k-dimensional counting process Nt , (Nt(1), . . . , Nt(k)), t ∈ [0, T ], together with
probability measures P0 and P1, with P1 absolutely continuous with respect to P0. Here, Pj denotes the
probability measure under hypothesis Hj , j ∈ {0, 1}. We assume that the components Nt(i), i ∈ {1, . . . , k},
of Nt are independent Poisson processes under each Pj , j ∈ {0, 1}, having intensity βi(t) with respect to
P0, and intensity βi(t) + νi(t) with respect to P1. The functions βi(·) and νi(·) are assumed to be positive,
continuous, and bounded away from zero. The problem is to decide, based on the observed sample path of
Nt over t ∈ [0, T ], between hypotheses H0 and H1.

Let µi(t) be the ratio of intensities for Nt(i) under hypothesis H1 versus H0, i.e., µi(t) , 1 + νi(t)/βi(t),
and let {Lt : t ∈ [0, T ]} be the stochastic process

Lt ,
k∏
i=1

Lt(i) , (1)

with

Lt(i) , exp

(
−
∫ t

0

νi(s)ds

)Nt(i)∏
n=1

µi(τn(i)) , (2)
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where (τn(i) : n ≥ 1) denote the jump times of Nt(i). By convention,
∏0
n=1(·) = 1. The optimal Neyman-

Pearson test for deciding between H0 and H1 is an lrt given by comparing LT to a suitably chosen threshold
γ > 0, deciding H1 if LT ≥ γ, and H0 if LT < γ [15]. The performance of the lrt can be measured in
terms of the corresponding error probabilities; that is, the probability of false alarm PF , P0(LT ≥ γ) and
the probability of miss PM , P1(LT < γ). More often than not, computing PF and PM is analytically
intractable, thereby motivating the need for easily computable upper bounds that can be used as proxies
for the corresponding probabilities at the expense of some sharpness. It can be shown [16] that PF and PM
admit the Chernoff bounds

PF ≤ exp

(
inf
p>0

[Λ(p)− p log γ]

)
, PM ≤ exp

(
inf
p<1

[Λ(p) + (1− p) log γ]

)
, (3)

where Λ(p) , logE0[LpT ] can be explicitly computed via

Λ(p) , logE0[LpT ] =

k∑
i=1

∫ T

0

[µi(s)
p − pµi(s) + p− 1]βi(s)ds ,

for p ∈ R. The availability of the bounds (3) in analytical form greatly facilitates the implementation of
the test in many practical situations. For example, these bounds can be used [16] to devise a procedure
for selecting the threshold γ so that the lrt {LT ≥ γ} conforms with desired performance requirements,
typically characterized by the probability of false alarm PF being less than or equal to a desired level α.

Application to a nuclear detection scenario. To motivate the general treatment which follows, we begin with
a concrete example of using the framework described above to detect a moving nuclear source (see Figure 1).
At the initial time t = 0, a moving vehicle (target) which may be a source of snm with minimum activity
a > 0, is identified. The target’s trajectory over a fixed time interval [0, T ] is assumed to be known. This
target is within sensing range of a spatially dispersed network of k radiation sensors, some of which may be
mobile. For i ∈ {1, . . . , k}, Nt(i) represents the number of counts registered at sensor i up to and including
time t ∈ [0, T ], while βi(t) and νi(t) represent the intensities at time t due to background and source,
respectively, at the spatial location of sensor i. In keeping with the inverse square fall-off with distance for
source intensity—as is common in the relevant literature [5]—we take

νi(t) =
χa

2χ+ ri(t)2
, (4)

where χ > 0 is a sensor-specific cross section coefficient, a > 0 is the source activity, and ri(t) is the distance
at time t between the target and sensor i. The goal is to decide, at the fixed time T , whether the counts
recorded at the sensors correspond solely to background radiation (hypothesis H0), or whether they also
contain emissions from snm carried by the target (hypothesis H1). To achieve this goal, each sensor locally
processes its observations to form Lt(i) via (2), which is transmitted once, at t = T , to a fusion center.

1 2 4

moving source of intensity

sensor array
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Figure 1: Setup for a basic networked fixed-interval moving source detection scenario. Sensors are indexed by {1, 2, . . .} and
receive photons that can be attributed either to background (thin dashed arrows) or to source radiation (thick red dashed
arrows). Background intensity at sensor i location is characterized by βi, and the intensity of the source is determined by the
parameter a. The intensity of this source νi, as perceived at a sensor i, depends on the distance between sensor and source, ri.
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The latter combines the transmitted information by computing the product (1) to form LT , which is then
used to optimally decide which of the two hypotheses H0 or H1 is correct based on the lrt {LT ≥ γ}. The
details of the test can be found in [15]; here, we emphasize that the performance of the test depends on the
degree to which the physical parameters that participate in the computations are accurately known. These
parameters include the background intensities βi, the intensity of the source a, the cross-section coefficient
χ, and the parameters that affect the distance ri between the target and the i-sensor—e.g. the velocity of
the target—that participate in νi computed by (4).

3. Problem Formulation

A key consideration in the design and analysis of decision making systems is their performance in the
presence of modeling uncertainties. In such instances, one may have a decision rule based on some nominal
model of the system which is different from the true system model. For situations where the model uncertainty
is caused by imperfect knowledge of problem parameters, it is of interest to assess the effect on performance
of deviations of each parameter from its best known value. In the present paper, we study this question
for a class of decision problems involving Poisson processes which include, as special cases, some scenarios
encountered in nuclear detection.

Consider a family of models parametrized by θ ∈ Θ, where Θ is an open subset of Rd for some d ≥ 1.
Thus, we let (Ω,F ) be a measurable space equipped with two families of probability measures {Pθ0 : θ ∈ Θ}
and {Pθ1 : θ ∈ Θ}. For each θ ∈ Θ, we require that Pθ1 � Pθ0 , i.e., Pθ1 is absolutely continuous with
respect to Pθ0 . We assume further that Nt = (Nt(1), . . . , Nt(k)), t ∈ [0, T ], is a k-dimensional point process
defined on (Ω,F ) such that for θ ∈ Θ fixed, the components Nt(i), 1 ≤ i ≤ k, are independent Poisson
processes with intensities βi(t,θ) respectively under the probability measure Pθ0 , while Nt(i), 1 ≤ i ≤ k, are
independent Poisson processes with intensities βi(t,θ) + νi(t,θ) respectively under the probability measure
Pθ1 . Fixing θ ∈ Θ thus corresponds to fixing a model, with Pθ0 and Pθ1 denoting the probability measures
under hypotheses H0 and H1 for this particular model. The functions βi and νi are required to satisfy
Assumptions 1 and 2 below, whose significance is explained in Remark 1.

Assumption 1. There exist positive numbers 0 < βmin < βmax < ∞ such that βi(t,θ) ∈ [βmin, βmax] for all
t ∈ [0, T ], 1 ≤ i ≤ k, θ ∈ Θ. Further, for each θ ∈ Θ, 1 ≤ i ≤ k, the map t 7→ βi(t,θ) is continuous on [0, T ].
Finally, for t ∈ [0, T ], 1 ≤ i ≤ k, the map θ 7→ βi(t,θ) is C1 with sup1≤i≤k supt∈[0,T ] supθ∈Θ ‖∇θβi(t,θ)‖ <
∞, where ∇θ denotes the gradient with respect to θ.

Assumption 2. There exist positive numbers 0 < νmin < νmax < ∞ such that νi(t,θ) ∈ [νmin, νmax] for all
t ∈ [0, T ], 1 ≤ i ≤ k, θ ∈ Θ. Further, for each θ ∈ Θ, 1 ≤ i ≤ k, the map t 7→ νi(t,θ) is continuous on [0, T ].
Finally, for t ∈ [0, T ], 1 ≤ i ≤ k, the map θ 7→ νi(t,θ) is C1 with sup1≤i≤k supt∈[0,T ] supθ∈Θ ‖∇θνi(t,θ)‖ <
∞, where ∇θ denotes the gradient with respect to θ.

Remark 1. In Assumptions 1 and 2, the smoothness in θ of the functions βi(t,θ) and νi(t,θ), together
with the uniform boundedness of partial derivatives, help control the change in the model parameters in
terms of changes in θ. These differentiability assumptions play a role in the proof of Proposition 3.

We thus have a family of detection problems parametrized by θ. If it is known that θ = θ◦, then we have
the problem of deciding between probability measures Pθ◦

0 and Pθ◦

1 , with respect to which the components
of Nt have intensities given by βi(t,θ

◦) and βi(t,θ
◦) + νi(t,θ

◦) respectively. Since we are interested in
situations where the model may not be completely known, we will assume that our decision scheme is an
lrt (with threshold γ > 0) based on some nominal value θ̂ ∈ Θ, while the true intensities and probability
measures governing the statistics of Nt correspond to the true parameter value θ ∈ Θ, which is in general
different from θ̂. We would like to understand how this mismatch propagates through the detection process,
in terms of the impact on performance.
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Application to nuclear detection. For concreteness, consider again the example of Section 2. We include the
parameters that are relevant to our detection problem in the array θ = (θ1, . . . , θk+2). The first k elements
of this array capture the background intensities at sensors i ∈ {1, . . . , k}, which, without significant loss of
generality, are assumed to be constant; i.e., βi(t,θ) , θi. The component θk+1 corresponds to the value of
the intensity of the source a; namely, a = θk+1. Finally, it is assumed that the distance ri(t) between the
target and sensor i depends on a parameter θk+2, and it can be expressed as fi(t, θk+2); for example, θk+2

may be related to the accuracy of the range measurement. With this notation, the intensity (4) due to the
possible existence of a source can be expressed as

νi(t,θ) ,
χθk+1

2χ+ fi(t, θk+2)2
.

We assume that the vector θ of true values of the aforementioned quantities is not exactly known; instead, an
estimate θ̂ of these parameters is available, which may differ from θ. Then, the nominal model corresponds
to the components of Nt having intensities βi(t, θ̂) and βi(t, θ̂) + νi(t, θ̂) under hypotheses H0 and H1,
respectively. However, the true intensities of the Nt(i), 1 ≤ i ≤ k, are given by βi(t,θ) and βi(t,θ) + νi(t,θ)
under hypotheses H0 and H1, respectively. Thus, if θ 6= θ̂, then using a likelihood ratio based on the vector
θ̂ leads to a problem of detection with mismatch since the true statistics of Nt correspond to the vector θ.
Our goal is to understand the impact of this mismatch on the performance of the lrt.

4. Results

Our contributions are the following. First, for any θ, θ̂ ∈ Θ, we obtain in Theorem 1 the Chernoff upper
bounds on the error probabilities. These exponential bounds provide a performance measure for detection
with the exponents expressible in terms of the problem parameters under the true (θ) and nominal (θ̂)
models. Proposition 2 shows where the tightest bounds are attained and Proposition 3 establishes that for
θ near θ̂, the bounds are C1 in θ. The latter implies a form of robustness in decision making: it assures
us that conservative approximations of decision performance given by the Chernoff bounds vary smoothly
with respect to small perturbations in the underlying model. It is important to note that Theorem 1 and
Proposition 2 are global in that they hold for any θ, θ̂ ∈ Θ, while Proposition 3 is local and holds only for θ
in the vicinity of θ̂. The proofs of these results will be given in Section 5.

For 1 ≤ i ≤ k, t ∈ [0, T ], θ ∈ Θ, let

µi(t,θ) , 1 +
νi(t,θ)

βi(t,θ)

be the ratio of intensities under hypothesis H1 versus H0. Also, for a stochastic process Ct, let
∫ t

0
CsdNs(i) ,∑

n≥1 Cτn(i)1(τn(i)≤t) for t ∈ [0, T ], with τn(i) for n ≥ 1 denoting the jump times of Nt(i), and 1(τn(i)≤t)

being the indicator function on interval (τn(i) ≤ t). For θ ∈ Θ, let {Lθt : t ∈ [0, T ]} be the stochastic process

Lθt , exp

{
−

k∑
i=1

∫ t

0

νi(s,θ)ds+

k∑
i=1

∫ t

0

logµi(s,θ)dNs(i)

}
. (5)

Note that Lθt =
∏k
i=1

{
exp

(
−
∫ t

0
νi(s,θ)ds

)∏Nt(i)
n=1 µi(τn(i),θ)

}
, where

∏0
n=1(·) = 1 by convention. Equa-

tion (5) is thus in accordance with (1) and (2). As indicated earlier, we will decide between H0 and H1 using

the lrt {Lθ̂T ≥ γ} which compares the likelihood ratio based on the nominal value θ̂ against a threshold

γ > 0, deciding H1 if Lθ̂T ≥ γ, and H0 if Lθ̂T < γ. Since the true probability measures correspond to the

(true) parameter value θ 6= θ̂, the probabilities of false alarm and miss are now given by

P
(θ,θ̂)
F (γ) , Pθ0

(
Lθ̂T ≥ γ

)
, P

(θ,θ̂)
M (γ) , Pθ1

(
Lθ̂T < γ

)
, (6)
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respectively. Finally, for p, q ∈ R and θ, θ̂ ∈ Θ, define the quantities Λ
(θ,θ̂)
0 (p) and Λ

(θ,θ̂)
1 (q) by

Λ
(θ,θ̂)
0 (p) , logEθ0

[
(Lθ̂T )p

]
, Λ

(θ,θ̂)
1 (q) , logEθ1

[
(Lθ̂T )q

]
.

Theorem 1. For θ, θ̂ ∈ Θ and γ > 0, the Chernoff bounds on P
(θ,θ̂)
F (γ) and P

(θ,θ̂)
M (γ) are given by

P
(θ,θ̂)
F (γ) ≤ exp

[
inf
p>0

(
Λ

(θ,θ̂)
0 (p)− p log γ

)]
, P

(θ,θ̂)
M (γ) ≤ exp

[
inf
q<0

(
Λ

(θ,θ̂)
1 (q)− q log γ

)]
, (7)

where Λ
(θ,θ̂)
0 (p) and Λ

(θ,θ̂)
1 (q) are explicitly computable via

Λ
(θ,θ̂)
0 (p) =

k∑
i=1

∫ T

0

{[
µi(s, θ̂)p − 1

]
βi(s,θ) + p

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds ,

Λ
(θ,θ̂)
1 (q) =

k∑
i=1

∫ T

0

{[
µi(s, θ̂)q − 1

]
· [βi(s,θ) + νi(s,θ)] + q

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds .

(8)

Remark 2. For the case θ = θ̂, we have dPθ̂1/dPθ̂0 = Lθ̂T on the σ-algebra FN
T , σ(Ns : 0 ≤ s ≤ T ),

implying [15] that the lrt {Lθ̂T ≥ γ} is optimal (in the Neyman-Pearson sense) for deciding between H0 and

H1. Further, in this case, we have Eθ̂1
[
(Lθ̂T )q

]
= Eθ̂0

[
(Lθ̂T )q+1

]
for all q ∈ R. Hence, Λ

(θ̂,θ̂)
1 (q) = Λ

(θ̂,θ̂)
0 (q+ 1),

and both bounds in (7) can be expressed in terms of Λ
(θ̂,θ̂)
0 . Taking p = q + 1, the bound on P

(θ̂,θ̂)
M (γ) can

be expressed as an infimum over p < 1, as in (3). The resulting bounds are seen to match those in [16].

Since Λ
(θ,θ̂)
0 (0) = Λ

(θ,θ̂)
1 (0) = 0, we have infp>0(Λ

(θ,θ̂)
0 (p)−p log γ) ≤ 0 and infq<0(Λ

(θ,θ̂)
1 (q)−q log γ) ≤ 0

for any choice of γ > 0. Thus, in order for the bounds in Theorem 1 to be non-trivial, we need these infima
to be strictly negative. Proposition 2 below describes how γ should be chosen to ensure non-triviality of the
bounds, and also identifies where the infima are attained. To this end, let θ, θ̂ ∈ Θ, pick γ > 0, and let

R
(θ,θ̂)
F (γ) , inf

p>0

(
Λ

(θ,θ̂)
0 (p)− p log γ

)
, R

(θ,θ̂)
M (γ) , inf

q<0

(
Λ

(θ,θ̂)
1 (q)− q log γ

)
(9)

denote the exponents in the Chernoff bounds. We now have

Proposition 2. For log γ ∈
(∂Λ

(θ,θ̂)
0

∂p (0),
∂Λ

(θ,θ̂)
1

∂q (0)
)
, there exist unique p∗ = p∗(θ, θ̂) > 0 and q∗ = q∗(θ, θ̂) <

0 such that

∂Λ
(θ,θ̂)
0

∂p
(p∗) = log γ =

∂Λ
(θ,θ̂)
1

∂q
(q∗) . (10)

Moreover,

R
(θ,θ̂)
F (γ) = Λ

(θ,θ̂)
0 (p∗)− p∗ ∂Λ

(θ,θ̂)
0

∂p
(p∗) < 0 , R

(θ,θ̂)
M (γ) = Λ

(θ,θ̂)
1 (q∗)− q∗ ∂Λ

(θ,θ̂)
1

∂q
(q∗) < 0 . (11)

Hence, the tightest bounds on P
(θ,θ̂)
F (γ) and P

(θ,θ̂)
M (γ) are given by

P
(θ,θ̂)
F (γ) ≤ eR

(θ,θ̂)
F (γ) , P

(θ,θ̂)
M (γ) ≤ eR

(θ,θ̂)
M (γ) , (12)

and these bounds are non-trivial.
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To summarize, for any θ, θ̂ ∈ Θ and γ > 0, Theorem 1 provides us with the performance metrics eR
(θ,θ̂)
F (γ)

and eR
(θ,θ̂)
M (γ), while Proposition 2 describes how the exponents R

(θ,θ̂)
F (γ) and R

(θ,θ̂)
M (γ) can be evaluated

for γ properly chosen to tighten those bounds. The following result in Proposition 3 establishes that for θ

near θ̂, the exponents R
(θ,θ̂)
F (γ) and R

(θ,θ̂)
M (γ) vary smoothly in θ, thereby ensuring the smoothness in θ of

their exponentials eR
(θ,θ̂)
F (γ) and eR

(θ,θ̂)
M (γ). In order to avail of Proposition 2, we will restrict θ to a small

enough ball B(θ̂, δ) of radius δ > 0 centered at θ̂, and require that log γ be chosen from an interval (l, r)

small enough that (l, r) ⊂
(∂Λ

(θ,θ̂)
0

∂p (0),
∂Λ

(θ,θ̂)
1

∂q (0)
)

for all θ ∈ B(θ̂, δ).

Proposition 3. Fix θ̂ ∈ Θ. There exists δ > 0 and an interval (l, r) ⊂ R such that for all log γ ∈ (l, r), the

maps θ 7→ R
(θ,θ̂)
F (γ) and θ 7→ R

(θ,θ̂)
M (γ) are C1 on the open ball B(θ̂, δ).

5. Proofs

5.1. Proof of Theorem 1

The proof of Theorem 1 proceeds through the following steps. We start with Lemma 4 which collects
some useful facts from the martingale theory of point processes [1]. Next, Lemma 5 establishes the integral
equation (13) which plays a pivotal role in the proofs of the ensuing Lemmas 6 and 7. Finally, we use the
last two lemmas to prove Theorem 1.

To exploit various martingales associated with Nt, we let {FN
t : t ∈ [0, T ]} be the filtration generated

by the process Nt. Thus, for t ∈ [0, T ], FN
t , σ(Ns : 0 ≤ s ≤ t) is the smallest σ-algebra on (Ω,F ) with

respect to which all the k-dimensional random variables Ns, 0 ≤ s ≤ t, are measurable.

Lemma 4. Let θ ∈ Θ, i ∈ {1, . . . , k}. Then,

1. Mθ
t (i) , Nt(i)−

∫ t
0
βi(s,θ)ds is a (Pθ0 ,FN

t )-martingale for t ∈ [0, T ]. Further, for any FN
t -predictable1

process Xt satisfying Eθ0
[ ∫ T

0
|Xs|βi(s,θ)ds

]
<∞, the process

∫ t
0
XsdM

θ
s (i) is a zero-mean (Pθ0 ,FN

t )-
martingale for t ∈ [0, T ].

2. M̃θ
t (i) , Nt(i) −

∫ t
0

[βi(s,θ) + νi(s,θ)] ds is a (Pθ1 ,FN
t )-martingale for t ∈ [0, T ]. Further, for any

FN
t -predictable process Xt satisfying Eθ1

[ ∫ T
0
|Xs| [βi(s,θ)+νi(s,θ)]ds

]
<∞, the process

∫ t
0
XsdM̃

θ
s (i)

is a zero-mean (Pθ1 ,FN
t )-martingale for t ∈ [0, T ].

Proof. Direct application of [1, Theorem II.3.T8].

Lemma 5. For any p ∈ R, t ∈ [0, T ], θ ∈ Θ,

(Lθt )p = 1 +

k∑
i=1

∫ t

0

(Lθs−)p [µi(s,θ)p − 1] dNs(i) + p

k∑
i=1

∫ t

0

(Lθs−)p [1− µi(s,θ)]βi(s,θ)ds . (13)

Proof. Since the calculations are similar to those of [16, Lemma 2], we simply provide a brief sketch. Fix

p ∈ R, θ ∈ Θ. For t ∈ [0, T ], we write (Lθt )p = x(t) y(t), where x(t) , exp
(
p
∑k
i=1

∫ t
0

logµi(s,θ)dNs(i)
)

and

y(t) , exp
(
−p∑k

i=1

∫ t
0
νi(s,θ)ds

)
. Using the Product Formula [1, Theorem A4.T2], we write x(t)y(t) =

x(0)y(0) +
∫ t

0
x(s−)dy(s) +

∫ t
0
y(s)dx(s), and we now reason as in the proof of [16, Lemma 2] to get (13).

1See [1, Section I.3]. For our purposes, it will be enough to note that if a process Xt is FN
t -adapted and left-continuous,

then Xt is FN
t -predictable.

7



Lemmas 6 and 7, stated next, will be used in the proof of Theorem 1 to establish (8). In the proofs of both

lemmas, we start with (13) for (Lθ̂t )p, use Lemma 4 to express the right hand side in terms of martingales
with respect to the appropriate probability measure, take expectations, and solve the resulting deterministic
integral equation.

Lemma 6. For p ∈ R, θ, θ̂ ∈ Θ, t ∈ [0, T ], we have

Eθ0
[
(Lθ̂t )p

]
= exp

(
k∑
i=1

∫ t

0

{[
µi(s, θ̂)p − 1

]
βi(s,θ) + p

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds

)
.

Proof. Fix p ∈ R, θ, θ̂ ∈ Θ. By (13), we have

(Lθ̂t )p = 1 +

k∑
i=1

∫ t

0

(Lθ̂s−)p
[
µi(s, θ̂)p − 1

]
dNs(i) + p

k∑
i=1

∫ t

0

(Lθ̂s−)p
[
1− µi(s, θ̂)

]
βi(s, θ̂)ds

= 1 +

k∑
i=1

∫ t

0

(Lθ̂s−)p
[
µi(s, θ̂)p − 1

]
dMθ

s (i) + p

k∑
i=1

∫ t

0

(Lθ̂s−)p
[
1− µi(s, θ̂)

]
βi(s, θ̂)ds

+

k∑
i=1

∫ t

0

(Lθ̂s−)p
[
µi(s, θ̂)p − 1

]
βi(s,θ)ds .

Hence,

(Lθ̂t )p = 1 +

k∑
i=1

∫ t

0

(Lθ̂s−)p
[
µi(s, θ̂)p − 1

]
dMθ

s (i)

+

k∑
i=1

∫ t

0

(Lθ̂s−)p
{[
µi(s, θ̂)p − 1

]
βi(s,θ) + p

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds .

Note that (Lθ̂t−)p is FN
t -predictable, being as it is left-continuous and FN

t -adapted. Taking expectations
with respect to Pθ0 , and using Lemma 4, we get

Eθ0
[
(Lθ̂t )p

]
= 1 +

k∑
i=1

∫ t

0

Eθ0
[
(Lθ̂s−)p

]{[
µi(s, θ̂)p − 1

]
βi(s,θ) + p

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds .

The equation above can be solved as in [1, Theorem A4.T4] to get the stated claim.

Lemma 7. For q ∈ R, θ, θ̂ ∈ Θ, t ∈ [0, T ], we have

Eθ1
[
(Lθ̂t )q

]
= exp

(
k∑
i=1

∫ t

0

{[
µi(s, θ̂)q − 1

]
· [βi(s,θ) + νi(s,θ)] + q

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds

)
.

Proof. The proof is very similar to that of Lemma 6. We use (13) to get

(Lθ̂t )q = 1 +

k∑
i=1

∫ t

0

(Lθ̂s−)q
[
µi(s, θ̂)q − 1

]
dM̃θ

s (i)

+

k∑
i=1

∫ t

0

(Lθ̂s−)q
{[
µi(s, θ̂)q − 1

]
· [βi(s,θ) + νi(s,θ)] + q

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds

for q ∈ R, θ, θ̂ ∈ Θ. Now, using Lemma 4, we take expectations with respect to Pθ1 , and solve the resulting
deterministic integral equation to get the stated claim.
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Proof of Theorem 1. Write η = log γ. By the Markov inequality, we have for p > 0, q < 0,

P
(θ,θ̂)
F (γ) = Pθ0

(
(Lθ̂T )p ≥ epη

)
≤ e−pηEθ0

[
(Lθ̂T )p

]
= exp

(
Λ

(θ,θ̂)
0 (p)− pη

)
,

P
(θ,θ̂)
M (γ) = Pθ1

(
(Lθ̂T )q > eqη

)
≤ e−qηEθ1

[
(Lθ̂T )q

]
= exp

(
Λ

(θ,θ̂)
1 (q)− qη

)
.

Taking infima over p > 0, q < 0, and noting that x 7→ ex is strictly increasing, we get (7). An application of
Lemmas 6 and 7 at t = T , followed by taking logarithms, yields (8).

5.2. Proof of Propositions 2 and 3

The next two lemmas record properties of Λ
(θ,θ̂)
0 and Λ

(θ,θ̂)
1 which are used in the proof of Proposition 2.

Lemma 8. For θ, θ̂ ∈ Θ, we have that p 7→ Λ
(θ,θ̂)
0 (p) is C2 with Λ

(θ,θ̂)
0 (0) = 0 and

∂Λ
(θ,θ̂)
0

∂p
(p) =

k∑
i=1

∫ T

0

{
µi(s, θ̂)p

(
logµi(s, θ̂)

)
βi(s,θ) +

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds ,

∂2Λ
(θ,θ̂)
0

∂p2
(p) =

k∑
i=1

∫ T

0

µi(s, θ̂)p
(

logµi(s, θ̂)
)2

βi(s,θ) ds .

(14)

Further, ∂2Λ
(θ,θ̂)
0 /∂p2 > 0, implying that p 7→ Λ

(θ,θ̂)
0 (p) is strictly convex. Finally, for any p ∈ R, p 6= 0, we

have

Λ
(θ,θ̂)
0 (p)− p∂Λ

(θ,θ̂)
0

∂p
(p) < 0 . (15)

Proof. Since the integrand in the expression for Λ
(θ,θ̂)
0 (p) given by (8) is smooth in p for each fixed s ∈ [0, T ],

it is easily shown using Assumptions 1 and 2 that one can take arbitrarily many derivatives of Λ
(θ,θ̂)
0 (p) with

respect to p by simply differentiating under the integral sign; this yields (14). It is also easily seen that

∂2Λ
(θ,θ̂)
0 /∂p2 > 0. By the ensuing strict convexity of p 7→ Λ

(θ,θ̂)
0 (p), we have that for any p, p̃ in R with

p 6= p̃,

Λ
(θ,θ̂)
0 (p̃) > Λ

(θ,θ̂)
0 (p) + (p̃− p)∂Λ

(θ,θ̂)
0

∂p
(p) .

Setting p̃ = 0, we get (15).

Lemma 9. For θ, θ̂ ∈ Θ, we have that Λ
(θ,θ̂)
1 (q) is C2 with Λ

(θ,θ̂)
1 (0) = 0 and

∂Λ
(θ,θ̂)
1

∂q
(q) =

k∑
i=1

∫ T

0

{
µi(s, θ̂)q

(
logµi(s, θ̂)

)
· [βi(s,θ) + νi(s,θ)] +

[
1− µi(s, θ̂)

]
βi(s, θ̂)

}
ds ,

∂2Λ
(θ,θ̂)
1

∂q2
(q) =

k∑
i=1

∫ T

0

µi(s, θ̂)q
(

logµi(s, θ̂)
)2

· [βi(s,θ) + νi(s,θ)] ds .

(16)

Further, ∂2Λ
(θ,θ̂)
1 /∂q2 > 0, implying that q 7→ Λ

(θ,θ̂)
1 (q) is strictly convex. Finally, for any q ∈ R, q 6= 0, we

have

Λ
(θ,θ̂)
1 (q)− q ∂Λ

(θ,θ̂)
1

∂q
(q) < 0 . (17)

Proof. The proof is very similar to that of Lemma 8.
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Proof of Proposition 2. We make use here of Lemmas 8 and 9 above. Note that by (14), (16), we

have ∂Λ
(θ,θ̂)
0 /∂p(0) < ∂Λ

(θ,θ̂)
1 /∂q(0). Fix log γ ∈

(∂Λ
(θ,θ̂)
0

∂p (0),
∂Λ

(θ,θ̂)
1

∂q (0)
)
. Since p 7→ ∂Λ

(θ,θ̂)
0 /∂p and q 7→

∂Λ
(θ,θ̂)
1 /∂q are strictly increasing and continuous, there exist unique p∗ = p∗(θ, θ̂) > 0 and q∗ = q∗(θ, θ̂) < 0

such that (10) holds. By (strict) convexity of p 7→ Λ
(θ,θ̂)
0 (p)− p log γ, and q 7→ Λ

(θ,θ̂)
1 (q)− q log γ, it follows

that the infima in (9) are in fact attained at p∗ and q∗. Now using (15), (17), we get (11). Then, application
of Theorem 1 yields (12).

Proof of Proposition 3. We will make repeated use of the fact that, on account of Assumptions 1, 2,

and equations (8), (14), (16), the functions Λ
(θ,θ̂)
0 (p), Λ

(θ,θ̂)
1 (q)

∂Λ
(θ,θ̂)
0

∂p (p),
∂Λ

(θ,θ̂)
1

∂q (q) are C1 in θ. Since Θ is

an open subset of Rd, there now exists δ0 > 0 small enough that B(θ̂, δ0) ⊂ Θ and

l , sup
θ∈B(θ̂,δ0)

∂Λ
(θ,θ̂)
0

∂p
(0) < inf

θ∈B(θ̂,δ0)

∂Λ
(θ,θ̂)
1

∂q
(0) , r .

Let log γ ∈ (l, r). Then, for θ ∈ B(θ̂, δ0), Proposition 2 applies with R
(θ,θ̂)
F (γ) and R

(θ,θ̂)
M (γ) given by (11),

where the corresponding p∗ = p∗(θ, θ̂) > 0 and q∗ = q∗(θ, θ̂) < 0 satisfy (10).
We next show that θ 7→ p∗(θ, θ̂) and θ 7→ q∗(θ, θ̂) are C1 in a neighborhood of θ̂. Let F (θ, p) ,

∂Λ
(θ,θ̂)
0

∂p (p) − log γ. Note that by (10), p∗(θ, θ̂) is defined implicitly through F (θ, p∗(θ, θ̂)) = 0. Clearly,

F (θ̂, p(θ̂, θ̂)) = 0. It now follows from the implicit function theorem that there exist δ1 > 0, ε1 > 0 and
a unique C1 function f : B(θ̂, δ1) → (p∗(θ̂, θ̂) − ε1, p

∗(θ̂, θ̂) + ε1) such that F (θ, f(θ)) = 0. Of course,

p∗(θ, θ̂) = f(θ). Similarly, letting G(θ, q) , ∂Λ
(θ,θ̂)
1

∂q (q)− log γ, one can show that there exist δ2 > 0, ε2 > 0

and a unique C1 function g : B(θ̂, δ2) → (q∗(θ̂, θ̂) − ε2, q
∗(θ̂, θ̂) + ε2) such that G(θ, g(θ)) = 0. Letting

δ , min{δ0, δ1, δ2}, we see that θ 7→ p∗(θ, θ̂) and θ 7→ q∗(θ, θ̂) are C1 on B(θ̂, δ).

Let’s now show that the maps θ 7→ R
(θ,θ̂)
F (γ) and θ 7→ R

(θ,θ̂)
M (γ) are C1 on the open ball B(θ̂, δ). Let

EF (θ, p) , Λ
(θ,θ̂)
0 (p)−p∂Λ

(θ,θ̂)
0

∂p (p) and let EM (θ, q) , Λ
(θ,θ̂)
1 (q)−q ∂Λ

(θ,θ̂)
1

∂q (q). Note that EF and EM are C1. If

we let ϕ(θ) , (θ, p∗(θ, θ̂)) and ψ(θ) , (θ, q∗(θ, θ̂)), then R
(θ,θ̂)
F (γ) = EF (ϕ(θ)) and R

(θ,θ̂)
M (γ) = EM (ψ(θ)).

The result now follows by noting that the composition of C1 functions is also C1.

6. Conclusions

This paper brings into focus the impact of parameter mismatch on the performance of a fixed interval
binary detection scheme based on time-inhomogeneous Poisson process observations. A framework is pro-
posed, within which deciding between the two hypotheses is achieved through a likelihood ratio test (lrt).
However, the test is based on a nominal model regarding the statistics of the underlying Poisson processes,
which may differ from the true one due to imperfectly known parameters. At the core of our approach is the
derivation of analytically tractable upper bounds on the error probabilities associated with the performance
of the mismatched lrt. Under the assumption that the (nominal) parameter values used in computing the
corresponding likelihood ratio are in a neighborhood of the true values, it is shown that the bounds that
capture the performance of the test vary smoothly, implying a degree of robustness to parameter variations.
These results are directly applicable to problems associated with the detection of radioactive material in
transit, and are relevant to a number of other applications that involve distinguishing between two (possibly
time-inhomogeneous) Poisson processes with parameters that are not accurately known. The framework
proposed in this paper provides analytically tractable performance metrics that can inform about the effect
of parameter uncertainty on decision-making performance.
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