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Abstract—Models capable of capturing and reproducing the
variability observed in experimental trials can be valuable for
planning and control in the presence of uncertainty. This paper
reports on a new data-driven methodology that extends deter-
ministic models to a stochastic regime and offers probabilistic
guarantees. From an acceptable deterministic model, a stochastic
one is generated, capable of capturing and reproducing uncertain
system-environment interactions at given levels of fidelity. The
reported approach combines methodological elements of proba-
bilistic model validation and randomized algorithms, to simulta-
neously quantify the fidelity of a model and tune the distribution
of random parameters in the augmented stochastic extension,
in order to reproduce the variability observed experimentally in
a physical process of interest. The approach can apply to an
array of physical processes, the models of which may come in
different forms, including differential equations; we demonstrate
this point by considering examples from the areas of miniature
legged robots and aerial vehicles.

Index terms— Stochastic Extensions, Probabilistic Valida-
tion, Model Fidelity, Uncertain Systems, Miniature Legged
Robots, Aerial Robots

I. INTRODUCTION

Robot control algorithms are predominantly model-based,
and often a large part of the effort prior to deployment is
devoted to deriving and validating models that can faithfully
represent robot behavior. By their very nature, robots interact
physically with their environment, and in field deployment
these interactions become increasingly uncertain. Examples
include vehicles operating in partially-known, dynamic en-
vironments (Aoude et al, 2013); legged robots moving on
rough terrain (Shkolnik et al, 2011) or fluidizing ground (Qian
et al, 2012); quadrotors flying under the influence of uncer-
tain aerodynamic effects (Powers et al, 2012; Zarovy et al,
2010); underwater robots affected by uncertain ocean cur-
rents (Pereira et al, 2013); and steerable needles interacting
with soft tissue (Alterovitz et al, 2008).

In many of these examples, deterministic models have
limited ability to predict the behavior of the robot as it
operates in its environment (Chirikjian, 2012; Thrun et al,
2005; Timcenko and Allen, 1993). Still, there is benefit
in quantifying the degree of uncertainty in these models.
In this paper, we describe a new framework that takes an
underlying deterministic model and extends it into a stochastic
regime. The augmented stochastic model can then be used to
characterize—in a probabilistic sense—the capability of the
model to capture the behavior of a system in the presence
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of uncertainty. Our approach relies on experimental measure-
ments from the physical system, and quantifies the extent
to which the stochastic extension captures and reproduces—
within a user-mandated confidence level—the range of the
behaviors observed in experiments.

The main idea is to parameterize appropriately an oth-
erwise adequate deterministic model of the system, to pro-
duce an augmented stochastic model. Then, randomized algo-
rithms (Tempo et al, 2012; Vidyasagar, 2001, 2003) can be
used to quantify the extent to which the resulting stochastic
model captures the uncertain system-environment interactions.
In particular, our method hinges on the concept of checking
parameterized distributions of models against available ex-
perimental data. The probabilistic validation part involves a
Monte Carlo simulation for estimating the probability that a
random model instantiation is statistically consistent with the
measurements. Randomized optimization (Vidyasagar, 2001)
can then provide approximate near optima for valid model
parameters. In this way, data variability is integrated within,
and can be reproduced by the model. Essentially, data statistics
are used to quantify the amount of the uncertainty that the
model parameters need to have to capture the variability
observed in the experimental data.

This methodology is general enough to accommodate dif-
ferent robot platforms and types of models. For the shake
of concreteness, we demonstrate here its application on two
classes of systems that are representative examples of robotic
systems in which uncertainty can be an important determinant
of behavior: miniature (palm-sized) legged robots, and small-
scale quadrotor aerial vehicles. Our motivation for using
miniature legged robots is based on the stringent size and
weight specifications which impose constraints on the power
density of the actuators, thereby prohibiting extensive reliance
on feedback control to minimize the effect of noise (Hoover
et al, 2010). The second class of systems we consider in this
work involves small-scale quadrotors. These robots are very
versatile platforms, and their potential in real-world appli-
cations has been demonstrated in many recent publications
(Gillula et al, 2011; Kumar and Michael, 2012; Lupashin
et al, 2010; Mellinger et al, 2012). One source of uncertainty
that affects the motion of such systems is due to aerodynam-
ics (Powers et al, 2012; Zarovy et al, 2010), which are difficult
to model and capture in low-dimensional models, such as those
typically used in feedback control (Kumar and Michael, 2012)
and motion planning (Pivtoraiko et al, 2013).

With the method reported here, one can systematically ex-
tend an underlying deterministic model to a stochastic regime,
and validate the outcome of this procedure against experimen-
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tal data. In particular, given a model and experimental data,
the method provides a way to estimate the magnitude of the
uncertainty that needs to be infused in the model in order
to capture the range of behaviors observed in experiments,
while providing probabilistic guarantees on the validity of the
reported model output.

Such probabilistic guarantees of model performance are im-
portant for making informed choices on the type of appropriate
planners and controllers (Censi et al, 2008). In addition, once
the data variability is captured within the model, analytic tools
can be brought to bear for propagating the uncertainty as the
physical process evolves (Chirikjian, 2012). This can be useful
in application such as motion planning in the presence of
uncertainty (van den Berg et al, 2011; Blackmore et al, 2011;
Kewani et al, 2009; Lupashin et al, 2010; Pivtoraiko et al,
2013; Thrun et al, 2005), and filtering and estimation (Abbeel
et al, 2005; Long et al, 2012; Thrun et al, 2005).

Furthermore, the approach described here can support ap-
plications in which data variability plays a significant role,
but is either assumed or provided without any probabilistic
guarantees. In essence, the method provides a constructive
way to tune the variability of the model’s output, based on
experimental data, at given probabilistic guarantees on model
fidelity. Robotics applications in this realm that can bene-
fit from probabilistically validated models include stochastic
control design (Anderson and Milutinović, 2014; Shah et al,
2012); Linear Temporal Logic (LTL) control of uncertain ve-
hicles (Cizelj and Belta, 2014); model verification (Steinhardt
and Tedrake, 2012) and calibration (Seegmiller et al, 2013);
and needle steering (Alterovitz et al, 2008). Moreover, the
method here can supplement stochastic trajectory optimiza-
tion techniques like STOMP (Kalakrishnan et al, 2011), by
identifying—based on data—uncertain terms in the optimiza-
tion function used therein.

The rest of the paper is organized as follows. Section II
reports on related work, and Section III presents the proposed
framework for simultaneous stochastic extension and proba-
bilistic validation. Then, the applicability of the methodology
is demonstrated in two profoundly different case studies:
Section IV deals with a miniature legged robot modeled by a
stride-to-stride stochastic kinematic map, whereas Section V
analyzes flight stability aspects in relation to a small-scale
quadrotor, modeled by a stochastically perturbed differential
equation. Section VI concludes.

II. RELATED WORK

System identification techniques focus on learning models
and fitting parameters to available data, and offer bounds on
the fitting and out-of-sample generalization errors. For in-
stance, linear system identification approaches assign weights
to available data and identify their optimal values for linear
classification, and linear and logistic regression (Abu-Mostafa
et al, 2012). If state-space models are required, Linear Time
Invariant (LTI) system models can be also obtained (Ljung,
1999). The use of linear models as building blocks sup-
ports more powerful nonlinear formulations. For example,
cascade products of linear models can generate neural net-
works (Haykin, 1999), and suitable nonlinear transformations

give rise to kernel methods (Hofmann et al, 2008), such
as Volterra models (Ogunfunmi, 2007; Schetzen, 2006). Ge-
netic algorithms can distill physical laws by selecting nonlin-
ear terms in ODE models (Schmidt and Lipson, 2009); see
also Murphy (2012) for a general overview. However, the
models produced typically treat uncertainty as noise, which
is either filtered out completely or is used to construct worst-
case error bounds.

Model validation, for example (Prajna, 2006), uses ex-
perimental data, a model of the uncertainty, and a nominal
model with its associated error bounds generated by system
identification, to report on whether the proposed model can be
trusted. These techniques result in hard model (in)validation,
in the sense that they provide a yes or no answer to the
question of whether a model captures the available data.
However, these methods do not provide sufficient insight
on the frequency of the events that result in model inval-
idation; having this information can be useful for refining
the model. Hard model (in)validation can be relaxed in a
probabilistic sense by employing tools from statistical learn-
ing theory (Mendelson, 2003; Vapnik, 1998). Some applica-
tions involve correlation analysis of residuals (Ljung, 1999),
prediction error within a robust control framework (Gevers
et al, 2003), and computation of relative weighted volumes
of convex sets for parametric uncertainty models (Lee and
Poolla, 1996). A different approach employs a probabilistic
model validation methodology to compare a model-generated
output probability density function (PDF) with one observed
through experiments (Halder and Bhattacharya, 2014). The
approach relies on the availability of analytic expressions
for propagating the uncertainty through the model at hand,
and provides sample-complexity bounds for robust validation
inference based on randomized algorithms.

Randomized algorithms offer computationally tractable
means to tackle problems in control synthesis (Calafiore et al,
2011; Koltchinskii et al, 2000; Vidyasagar, 2001, 2003), neural
networks (Vidyasagar, 2003), and robustness analysis (Alamo
et al, 2009; Ray and Stengel, 1993). Typically, deriving worst-
case (robust) bounds usually requires a large body of exper-
imental data for theoretical guarantees to hold (Vidyasagar,
2001). However, it has been found that these bounds can
be relaxed at the expense of introducing a probabilistic risk,
captured by the notion of the probability of violation (Alamo
et al, 2009; Calafiore et al, 2011; Tempo et al, 2012). This
concept can be used to allow some design specifications to be
violated, albeit with a relatively small probability. In this way,
the sample complexity significantly decreases, at the cost of
accepting a risk of violation. This idea has been used in system
identification to optimally discard sets of small measure from
the set of deterministic estimates of design parameters in
Dabbene et al (2012a,b).

In our work, we employ the notion of probability of
violation to turn deterministic models into augmented stochas-
tic models, validating that the latter capture the variability
observed in experimental data. The approach developed here
involves a set-membership characterization of the output PDFs,
and it applies directly to a wide range of target models,
irrespectively of whether they are phenomenological or derived
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based on first principles. We demonstrate this by applying
the framework on two distinct problems: (i) to estimate
the parameters of an abstract stochastic kinematic model for
a miniature legged robot, and (ii) to capture the ground
aerodynamic effects in quadrotor ODE models.

The work in this paper is conceptually related to that of
Hall et al (2012), where an underlying model is used to
provide prior information when training a target Gaussian
Process model (Rasmussen and Williams, 2006) based on
the efficient PILCO algorithm (Deisenroth and Rasmussen,
2011). However, the predictive ability of that target model
deteriorates significantly when the operating point is shifted
even slightly and enters to an area where no data are available.
As we show in Section V, this paper’s method is more
robust in the sense that the resulting stochastic extension
can make accurate predictions in different operating points,
provided that the induced operating conditions do not change
the nature of the mechanisms by which uncertainty affects the
system; this is attributed to that our approach makes direct
use of a deterministic model that relates to the physics of the
underlying process.

III. JOINT STOCHASTIC MODEL EXTENSION AND
PROBABILISTIC VALIDATION

The main ingredients of the proposed framework are de-
scribed in this section. A general account of the method is
first presented in Sections III-A through III-D. A tractable
algorithm is then formulated, and made concrete once some
assumptions on the underlying statistical distributions are
made, in Section III-E. Interspersed between the stages of
the conceptual development, are a number of comments that
connect the discussion to the examples of Sections IV and V.

A. Overview

Consider a sample space W that includes all possible
outcomes generated by experiments, where observations are
collected from a dynamical process of interest. Each element
w ∈ W consists of state observations obtained during a single
experiment. For example, in Section IV w ∈ W will be a
motion path for the geometric center of the miniature legged
robot OctoRoACH (Pullin et al, 2012), when it is implementing
a specific open-loop controller.

Suppose that a model M is available for the dynamical
process of interest. The model is parameterized by p ∈ N
parameters, which are collected in a vector ξ taking values
in Ξ ⊂ Rp. For example, in Section IV again, M takes the
form of a stride-to-stride map, while in Section V it is a set
of differential equations modeling vertical quadrotor flight. As
ξ ∈ Ξ varies, a family of models {M(ξ), ξ ∈ Ξ} is generated;
we will refer to each member M(ξ) obtained for a specific
ξ ∈ Ξ as a model instantiation and we will denote out(M(ξ))
its output.

Typically, given a collection of I ∈ N samples {w1, ..., wI}
obtained experimentally, where each wi ∈ W , one can
compute the value ξ̄ ∈ Ξ of the model parameters that results
in a model instantiationM(ξ̄), the output out(M(ξ̄)) of which
best reproduces the average of the experimentally observed

system behavior. One way to find ξ̄ is by solving a least-
squares problem

ξ̄ = arg min
ξ∈Ξ

T∑
t=1

‖out(M(ξ))t − wave(t)‖2 , (1)

where || · || denotes the Euclidean norm, wave is the average
of the set of samples wi, for i ∈ {1, .., I}, and t ∈ 1, . . . , T
is used here to emphasize that both the output of the model
instantiation, and the experimental data, are expressed in time
series form of length T . Later in Section III-D, this time
dependence is made even more explicit.

In many applications, knowing merely the value ξ̄ of the
parameter vector that results in a best-fit model instantiation
M(ξ̄), may not be sufficient. For example, when using a
model to plan the motion of a robot in the presence of
uncertainty—as is done for instance by van den Berg et al
(2011) and Pivtoraiko et al (2013)—one needs to know not
only the average path behavior, but also the paths’ distribution
around this average. Only then can one quantify the probability
that the robot collides with obstacles.

The purpose of this work is to provide a new tool that
extends deterministic models to a stochastic regime based on
experimental data, and provides probabilistic guarantees of
validity in doing so. The resulting stochastic model is consid-
ered valid when (i) it has low probabilistic risk of producing
a response that is not consistent with the experimental data
(model fidelity), and (ii) the resulting paths cover as much as
possible of the area marked by the experimental data (model
expressiveness). Consequently, this procedure inform us about
the range of nominal model parameters, and the uncertainty
that needs to be infused in the model, so that it can jointly
reproduce the experimental data on average and capture the
observed variability. The method proposed in this work can
be applied to a wide range of models of physical processes,
not necessarily expressed in the form of differential equations.

B. Quantifying Model Fidelity: The Probability of Violation

Associated with the sample space W is a probability mea-
sure PW , which reflects one’s belief regarding how the data
of the physical system are distributed in W . For example,
in the case of the OctoRoACH implementing an open-loop
straight-line motion controller, one expects the majority of
the experimentally produced paths to be clustered around
a straight line, and hence PW should “peak” on this line.
It should be emphasized though, that the proposed method
does not depend on the specific form of PW—which is
dictated by the physics of the problem—and it can be applied
irrespectively of how PW is approximated.

Given W and PW , a multisample w is defined as a collec-
tion of K ∈ N independent and identically distributed (i.i.d.)
samples wk, k ∈ {1, ...,K}, drawn from W according to PW ,
and is denoted w = {w1, ..., wK}. Thus, the multisample w
is drawn from the Cartesian product WK = W × · · · × W
(K-times) according to the probability measure PWK . In our
setting, we generate multisamples by repeating an experiment
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K times, assuming that each experiment is independent1 of
others and that all experiments are performed under identical
conditions. To provide some intuition, Fig. 1(a) highlights a
multisample of K = 8 sample paths obtained by implement-
ing a straight-line controller on the miniature legged robot
OctoRoACH; see Section IV.
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Figure 1. (a) A multisample of length K = 8. The sample paths of
interest are marked with dashed curves, and are superimposed on top of
the whole experimental set of paths. The thick solid curve in the center
denotes the average of the eight sample paths, while the thick outline denotes
the corresponding cone of data, explained below in Section III-D1. (b) A
schematic representation for computing the cone of data and the decision
function. For each t ∈ {1, . . . , 60}, the data variability ellipses Et are
centered at the sample mean (marked with disks), while their axes are
constructed based on sample variances of the multisample; see Sections III-D1
and III-E. Taking the union of all the ellipses yields the cone of data for a
particular multisample. Then, the decision function g reports 0 if a model
instantiation never crosses the boundary of the cone of data, as shown with
the thick curve, and 1 (“violation”) otherwise (as shown with the dashed curve
crossing the boundary at t = 24).

Given a value ξ ∈ Ξ for the model parameters, we are in-
terested in making a decision as to whether the corresponding
model instantiation M(ξ) will be in agreement, at any time,
with the experimentally obtained data. To achieve this, we
define a binary-valued decision function g :WK×Ξ→ {0, 1}
that effectively measures the extent to which the output
out(M(ξ)) of the model instantiation M(ξ) computed for
particular ξ ∈ Ξ is representative of the data that form the
multisample w ∈ WK . To make this statement more precise,
we say that the model’s output out(M(ξ)) for ξ ∈ Ξ is
representative of the data forming a multisample w ∈ WK ,
when this output falls within a prespecified confidence region
at level γ ∈ (0, 1). The confidence region is evaluated based
on the data in w and is centered around the multisample’s
mean. The area covered by the confidence region is called
the cone of data and is denoted coneγ(w). Section III-D1
below provides details on computing coneγ(w) in a general
setting, while Section III-E shows how these computations can
become tractable by particularizing on the measure PWK (see
Figure 1(b)).

1As is often the case, the assumption of independence is difficult to justify in
practice. Note though that certain properties that are relevant to our discussion
can be extended when the sequence of samples is not i.i.d. but satisfies a
“mixing” condition (Vidyasagar, 2003, Section 2.5, p. 33). We will not discuss
this issue further, for it requires the introduction of a number of technical
results that would shift the focus of this work; the interested reader is referred
to Vidyasagar (2003, Chapter 3).

The decision function g can now be defined as

g(w, ξ) :=

{
0, if out(M(ξ)) ⊂ coneγ(w)

1, otherwise
. (2)

Intuitively, the function g is interpreted as a penalty on a model
instantiation M(ξ) for ξ ∈ Ξ whenever M(ξ) produces a
behavior that is statistically different from experimental data
w. For a given ξ ∈ Ξ, consider the set

Aξ :=
{
w ∈ WK | g(w, ξ) = 1

}
(3)

which contains all the multisamples that violate the condition
out(M(ξ)) ⊂ coneγ(w). As ξ ∈ Ξ varies, a collection of sets

A := {Aξ, ξ ∈ Ξ}
in WK is generated, each of which contains the “bad”
multisamples for the corresponding parameter values ξ. The
probability of violation can then be defined by the function
P : Ξ→ [0, 1] given by the rule

P (ξ) := PWK (Aξ) , (4)

which provides a measure of the subset Aξ ⊂ WK of
multisamples that are statistically inconsistent with the par-
ticular model instantiation M(ξ). More precisely, for a given
value ξ ∈ Ξ of the model’s parameters, P (ξ) expresses the
likelihood of generating a multisample w by sampling WK

according to PWK , which—for a desired confidence level
γ ∈ (0, 1)—results in a coneγ(w) that does not include the
output out(M(ξ)) of the model instantiation M(ξ).

The probability of violation (4) provides a means of de-
ciding whether a specific model instantiation M(ξ) is proba-
bilistically consistent with experimental data. For a given ξ, a
large value for P (ξ) implies that the chance of generating
multisamples that are not in agreement with the particular
model instantiation M(ξ) is high, suggesting that the fidelity
of M(ξ) is low.

In addition to quantifying model fidelity, we also want to
express multisample variability; we cannot do this with a
single model instantiation—we need to look at distributions
of model instantiations over model parameters.

C. Distributions of Models and Model Expressiveness

One way in which a model can capture the dispersion
of the experimentally generated data is through stochasticity
in the model’s parameters: their value is the outcome of a
random experiment. In particular, consider a sample space
ΩΞ containing all the possible outcomes of such random
experiment and a probability measure PΞ belonging in a family
of measures PΞ. Then, the parameters of the model form a
random vector ξ̃ : ΩΞ → Ξ, the realization of which results in
the values ξ ∈ Ξ that determine the model instantiationM(ξ).
With this construction, for each PΞ ∈ PΞ a distribution of
model instantiations DPΞ

= {M,Ξ,PΞ} is defined.
Note that each measure PΞ ∈ PΞ is assumed here to “peak”

around the parameter value ξ̄ obtained by the solution of
the least-squares optimization problem (1). This reflects our
intuition that the output of M(ξ̄) is a good representation
of the average of the experimental measurements. One can
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choose the family of measures PΞ in a way that reflects their
own beliefs on how the stochasticity enters the nominal model
parameters. Also, the dispersion of the values ξ obtained by
sampling the random vector ξ̃ according to different measures
in PΞ can be different. As a result, the variability of the
outputs produced by the model instantiationsM(ξ) generated
by sampling a distribution DPΞ

varies across the collection
{DPΞ , PΞ ∈ PΞ}. The problem now reduces to identifying
the distribution D̄PΞ ∈ {DPΞ , PΞ ∈ PΞ} which captures
best the variability in the experimental data without violating
a desired specification on the probability of violation of the
model instantiations contained in D̄PΞ

. The purpose of this
section is to make this statement precise.

We begin by providing a way to evaluate the capacity of
a distribution of models DPΞ

for capturing the experimental
data, given PΞ ∈ PΞ. Consider the set

S := {ξ ∈ Ξ | P (ξ) ≥ P0} , (5)

which includes the parameter values ξ that result in model
instantiations M(ξ), each corresponding to a probability of
violation exceeding P0 ∈ (0, 1). Note that the size of the set
S depends on the measure PΞ, implying that the likelihood of
model instantiations that satisfy (5) is different for different
distributions DPΞ

. Given a desired level α ∈ [0, 1) we require

PΞ(S) ≤ α . (6)

Clearly, a lower value of the parameter α corresponds to
stricter fidelity standards for the model instantiations M(ξ)
generated by sampling DPΞ . In fact, selecting α = 0 im-
plies P0 = supξ∈Ξ P (ξ), since the probability that a model
instantiation M(ξ) ∈ DPΞ

results in a probability of violation
that exceeds P0 is required to be zero. Hence, α = 0 corre-
sponds to the most conservative way of tuning the behavior
expressiveness of a distribution of models DPΞ ; that is, DPΞ

is characterized by the model instantiation with the worst
performance, in the sense that the corresponding parameters
maximize the probability of violation.

In view of (5), relaxing α in (6) means that we allow a set
S ⊂ Ξ of parameter values to be exceptions to the fidelity
rule. The size of S can be explicitly controlled through (6) by
selecting α so that (Vidyasagar, 2001, Section 3)

sup
ξ∈Ξ\S

P (ξ) ≤ P0 ≤ sup
ξ∈Ξ

P (ξ) ; (7)

i.e., P0 is bounded from above by the supremum of the prob-
ability of violation over all parameter values (most stringent
characterization) and from below by the supremum of the
probability of violation over “nearly” all parameter values
(turning a blind eye to parameters in S). The implication of (7)
is that P0 is a probable near maximum (Type 2 near maximum)
over the set Ξ of the probability of violation P (·) to the level
α (Vidyasagar, 2003, Definition 11.2, p. 433); (Vidyasagar,
2001, Section 3). Note that P0 depends both on the measure
PΞ and on the level α; writing P0(PΞ, α) emphasizes this
dependence.

Remark 1: While the value of the probability of violation
(4) defined in Section III-B for a given ξ ∈ Ξ quantifies the
behavior of a single model instantiation M(ξ), the probable

near maximum P0 to the level α of P (·) over a distribution
of models DPΞ

provides a measure of how faithfully DPΞ

captures the experimental data. Indeed, for a given level α,
the smaller P0 is for a distribution DPΞ

, the more faithful this
distribution is in capturing the data.

We are now ready to provide a precise formulation of the
problem described at the beginning of the section: Given
(i) a family of model distributions {DPΞ

, PΞ ∈ PΞ}, (ii) a
level α ∈ [0, 1), and (iii) a desired fidelity specification
ρ ∈ [0, 1), determine the distribution D̄PΞ

—or, equivalently,
the corresponding measure PΞ ∈ PΞ—that maximizes the
dispersion of a random vector ξ̃ of model parameters, provided
that the probable near maximum to level α of the probability
of violation does not exceed ρ. Mathematically, this translates
to finding the measure PΞ ∈ PΞ that realizes

sup
PΞ∈PΞ

Tr
(

Cov(ξ̃, ξ̃)
)

(8)

subject to the constraint

P0(PΞ, α) ≤ ρ , (9)

where Cov(ξ̃, ξ̃) is the covariance matrix associated with the
random vector ξ̃ and Tr(·) denotes trace.

Implicit here is the assumption that as the measure PΞ

changes to make the variance on ξ̃ grow, the model instanti-
ations generated by sampling ξ̃ produce outputs out(M(ξ))
that are more and more dispersed. Hence, the solution of
(8)–(9) is expected to result in a distribution over the model
parameters ξ that allows the corresponding distribution of
model instantiations DPΞ

to reproduce, at a given confidence
level, as many experimental behaviors observed as possible—
not only the average.

D. A Randomized Approach for Stochastic Model Extension
and Probabilistic Validation

This section provides details on computing the decision
function g defined by (2) in a general context, and proposes a
randomized approach for estimating the quantities involved in
the implementation of the method via explicit computations.

1) Cone of Data and Decision Function: Consider a mul-
tisample w = {w1, ...wK} ∈ WK generated experimentally
by executing an experiment K times. Each wk ∈ w has the
form of a time series

wk = {(xk,1(t), xk,2(t), ..., xk,L(t))}t∈{1,...,T} ,

where xk,`(t) is a measurement at time t ∈ {1, ..., T}, of the
system state indexed ` ∈ {1, .., L}, during the experiment
k ∈ {1, ...,K}. Time instants t ∈ {1, ..., T} are determined
based on the sampling frequency of data collection.

We can associate to each multisample, w, a confidence
interval I`,t(w) to which an experimental trial belongs ac-
cording to a given probability. A typical way to construct
such intervals is to use information about the underlying
distribution; for example, in Section III-E below we assume
a normal distribution and use the sample mean and variance
to construct confidence intervals. Another way is based on
bootstrap (Efron and Tibshirani, 1994). This class of methods
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relies on resampling of the original data, and can be used to
estimate sample distributions of various statistics.

Then, the intervals I`,t(w) provide the basis for construct-
ing the L-dimensional data variability ellipsoid Et(w). At
each time instant t ∈ {1, ..., T}, the ellipsoid Et(w) is
centered at the point (x̄1(t), x̄2(t), ..., x̄L(t)), and I`,t(w)
for ` ∈ {1, . . . , L} are its principal axes (see Fig. 1(b)).
Note that the dependence of Et on w appears explicitly to
highlight the fact that these constructions are specific to a given
multisample. The cone of data corresponding to a multisample
w ∈ WK at level γ ∈ (0, 1) is then the union of all L-
dimensional ellipsoids

coneγ(w) =

T⋃
t=1

Et(w) . (10)

Figure 1(b) provides a schematic representation of the cone of
data associated with a multisample, for T = 60, for the case
of the OctoRoACH robot studied in Section IV.

To evaluate the decision function g defined by (2) for a
ξ ∈ Ξ given w, we need to specify how we check the condition
out(M(ξ)) ⊂ coneγ(w) for the associated model instantiation
M(ξ). We work element-wise through {1, . . . , T}, first by
setting

out(M(ξ)) = {out(M(ξ))t}t∈{1,...,T} ,
where for any t ∈ {1, . . . , T}

out(M(ξ))t := (xM,1(t), . . . , xM,L(t)) ,

and then by defining the indicator function

1Et(w)(out(M(ξ))t) :=

{
1, if out(M(ξ))t ∈ Et(w)

0, otherwise
(11)

that checks the inclusion condition at every t ∈ {1, . . . , T}.
In this way the decision function is found as

g(w, ξ) = 1−
T∏
t=1

1Et(w)(out(M(ξ))t) . (12)

Note that (12) requires the inclusion to hold for all time
instants t ∈ {1, ..., T}; if at any single t out(M(ξ))t /∈ Et(w),
the decision function is triggered and the model is considered
to have violated the fidelity specification.

2) Approximating the Probability of Violation: The proba-
bility of violation (4) is difficult to compute explicitly, even if
the probability measure PWK is analytically available. How-
ever, this probability can be effectively approximated empiri-
cally (Alamo et al, 2009). If WM = {w1, ...,wM} ∈ (WK)M

is a collection of M multisamples of length K, each drawn
from WK , the empirical probability of violation is

P̂ (ξ;WM ) =
1

M

M∑
m=1

g(ξ,wm) , (13)

where the dependence of P̂ on both the specific collection
of multisamples WM = {w1, ...,wM} ∈ (WK)M and on
the parameter values ξ ∈ Ξ that determine the violation set
Aξ ∈ A in (3) appears explicitly. Note that P̂ (ξ;WM ) is

a random variable. For ε > 0, consider (Vidyasagar, 2001,
Section 4)

q(M, ε,PWK ) := P(WK)M
{
WM ∈ (WK)M :

sup
ξ∈Ξ
|P̂ (ξ;WM )− P (ξ)| > ε

}
. (14)

Then, 1 − q(M, ε,PWK ) is the confidence with which we
can say that P̂ (ξ,WM ) is within ε > 0 of the true P (ξ).
If q(M, ε,PWK ) → 0 as M → ∞ for any fixed ε, then
the empirical probabilities converge uniformly to their true
values, implying that the collection of sets A has the property
of uniform convergence of empirical probabilities (UCEP);
see (Vidyasagar, 2003, Section 3.1, p. 45). Establishing the
UCEP property for the collection of sets A can be difficult
if A is infinite; but if this is a finite collection, Hoeffding’s
inequality (Vidyasagar, 2003, Lemma 2.7, p. 26) yields

q(M, ε,PWK ) ≤ 2|A| exp (−2Mε2) , (15)

where |A| is the cardinality of A. In fact, since
{2|A| exp (−2Mε2)}M∈N is summable (Vidyasagar, 2003,
Lemma 2.10, p. 31), P̂ (ξ;WM ) not only converges uniformly
to P (ξ) with M , but also almost surely. The inequality (15)
can be used to provide bounds for the sample size M that
achieves the desired accuracy and confidence specifications.

3) Approximating the Maximum of the Probability of Vi-
olation over a Distribution of Models: We have seen in
Section III-C that the expressiveness of a distribution of model
instantiations DPΞ

= {M,Ξ,PΞ} for a given probability
measure PΞ ∈ PΞ can be characterized by evaluating a
probable near maximum P0 at level α, of the probability of
violation P (·) over DPΞ .

With the probabilistic setting of Section III-C, a collection
of N ∈ N samples ξn, n ∈ {1, ..., N} is drawn according to
PΞ, thereby resulting in a parameter multisample denoted by
ξN = {ξ1, ..., ξN}. Note that the parameter multisample ξN is
drawn from the Cartesian product ΞN = Ξ×· · ·×Ξ (N -times)
according to the measure PΞN . Then, for a given (fixed) data
multisample w ∈ WK , the probability of violation is a random
variable due to its dependence on ξ̃, and {P (ξ1), ..., P (ξN )}
are the corresponding samples of the probability of violation.
Now define

P̄0(ξN ) := max
n∈{1,..,N}

P (ξn) , (16)

and consider the set

S̄ξN
:=
{
ξ ∈ Ξ | P (ξ) > P̄0(ξN )

}
, (17)

which is defined similarly to S in (5), only now we have
used P0 instead of P̄0(ξN ), computed on the basis of the
parameter multisample ξN . Then, Vidyasagar (2003, Lemma
11.1, p. 427) asserts that

PΞN

{
ξN ∈ ΞN | PΞ(S̄ξN

) > α
}
≤ (1− α)N . (18)

The inequality implies that P̄0(ξN ) is an “empirical estimate”
of the supremum of the probability of violation P (·) over DPΞ

.
However, P̄0(ξN ) is a different type of estimate compared to
P̂ (ξ;WM ) in (13), because (18) does not require P̄0(ξN ) to
converge uniformly to the true supremum of P (·). Rather, the
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claim is that the probability that the violation set S̄ξN
has

small measure, is high. Inequality (18) is used to specify the
size N of the parameter multisample ξN .

E. Algorithm and Implementation

The results described in the previous sections did not
assume any particular type of probability distribution. To facil-
itate computations, however, in what follows, we will assume
that PWK corresponds to a (joint) Gaussian distribution.2 This
assumption greatly simplifies the computation of the cone of
data associated with a specific multisample w ∈ WK .

Under a Gaussian assumption, each multisample of size
K can be used to estimate the average of the population of
data within a given confidence level γ ∈ (0, 1). For each
` ∈ {1, ..., L}, let

x̄`(t) =
1

K

K∑
k=1

xk,`(t) ,

be the sample average at a given time instant t ∈ {1, ..., T},
and denote

s`(t) =

√√√√ 1

K − 1

K∑
k=1

(xk,`(t)− x̄`(t))2

the corresponding sample standard deviation. Then, the confi-
dence interval I`,t(w) at level γ for the `-th variable associated
with the multisample w at the time instant t ∈ {1, ..., T} is

I`,t(w) = [x̄`(t)− τγ
s`(t)√
K
, x̄`(t) + τγ

s`(t)√
K

] , (19)

where the percentile τγ at level γ is a constant that can be
found in tables for different distributions (Dixon and Massey,
1957).

Table I
NOMENCLATURE

Description Symbol Equation

Confidence interval for the cone of data γ ∈ (0, 1) (19)
Level of probable near maximum α ∈ [0, 1) (6)
Model fidelity specification ρ ∈ (0, 1) (9)
Accuracy level ε ∈ (0, 1) (14)
Confidence level δ ∈ (0, 1) (20)-(21)
Number of parameter multisamples N (20)
Number of data multisamples M (21)
Length of each data multisample K –
Total number of experimental paths I = M ·K –
Number of state variables L –
Number of model parameters p –

To find the appropriate cardinality N of the parameter
multisample set ξN , we first need to set parameters γ, α, ρ > 0

2We emphasize here that the Gaussianity assumption may not always
be the most appropriate choice. In the case of ground mobile robots, for
instance, a more appropriate choice for PWK may be the “banana” distri-
bution (Chirikjian, 2012; Long et al, 2012; Thrun et al, 2005)—essentially
a Gaussian distribution in exponential coordinates. The Gaussian assumption
is imposed here merely for computational expediency; exploring the different
options for constructing the cone data is out of the focus of this present paper.

and ε, δ > 0, which we collect in Table I. For computa-
tional expediency, each measure PΞ ∈ PΞ is assumed to
be associated with a Gaussian random vector ξ̃ with mean
E[ξ̃] = ξ̄ computed by (1), and covariance matrix Cov(ξ̃, ξ̃) =
diag(σ2

1 , . . . , σ
2
p), where p is the number of the parameters.

Hence, the family of parameter distributions PΞ = {Pσ
Ξ , σ ∈

Rp} is parameterized by the array σ = {σ2
1 , . . . , σ

2
p} that will

be determined by solving the optimization problem (8).
Based on (18), and for δ ∈ (0, 1), N needs to satisfy

(1− α)N ≤ δ

2
⇐⇒ N ≥ log 2

δ

log 1
1−α

, (20)

so that with confidence 1 − δ
2 , P̄0(ξN ) defined by (16) is a

probable near maximum of the probability of violation P (·) to
a level α. This sampling process results in the finite collection
of sets A := {Aξn , ξn ∈ ξN} with |A| = N . Then,
Hoeffding’s inequality (15) links the two sample sizes

2N exp (−2Mε2) <
δ

2
⇐⇒ M ≥ 1

2ε2
ln

(
4N

δ

)
, (21)

suggesting that if N parameter multisamples are drawn, then
M data multisamples need to be obtained experimentally in
order for P̂ (ξ;WM ) to be an empirical estimate of P (ξ) with
confidence 1− δ

2 . Then, we select a measure Pσ
Ξ (through σ)

and generate the parameter multisample ξN = {ξ1, ..., ξN},
sampling ξ̃ according to Pσ

Ξ .
With M data multisamples wm ∈ WM , and N param-

eter multisamples ξn ∈ ξN available, the decision function
(2) is computed explicitly based on (11)-(12). For each ξn,
n ∈ {1, . . . , N}, (13) results in an empirical probability of
violation

P̂ (ξn;WM ) =
1

M

M∑
m=1

g(ξn,wm) . (22)

Owing to the choice of N and M according to (20) and
(21), we can say with confidence 1− δ that

P̂0 = max
n∈{1,..,N}

P̂ (ξn;WM ) (23)

is a probably approximate near maximum (Type 3 near max-
imum) to accuracy ε and level α (Koltchinskii et al, 2000;
Vidyasagar, 2001, 2003) of the probability of violation in (4)
over the distribution DPΞ

.
Albeit approximate, the procedure described above relaxes

in a probabilistic sense the problem of maximizing the func-
tion P (·), through an explicitly computable quantity P̂0 that
characterizes the expressiveness of a given model distribu-
tion DPΞ

. The optimization problem defined by (8)–(9) is
thus relaxed into the problem of maximizing the variances
σ = {σ2

1 , . . . , σ
2
p} in the model parameters within a family of

Gaussian distributions, which all “peak” at the solution ξ̄ of
(1) while satisfying the constraint

P̂0 ≤ ρ . (24)

The output of the algorithm, summarized in Table II, is
the largest σ̄ = {σ̄2

1 , . . . , σ̄
2
p} that M(ξ) can afford be-

fore violating (24). Equivalently, the procedure determines
the measure Pσ̄

Ξ in the form of a Gaussian distribution
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N (ξ̄,diag{σ̄2
1 , . . . , σ̄

2
p}), which in turn produces a distribution

of models DPσ̄
Ξ

with outputs that cover densely the distribution
of experimental data remaining statistically within that cone
with confidence γ.

Table II
PROBABILISTICALLY VALID STOCHASTIC MODEL EXTENSIONS

ALGORITHM

1. Require γ, α, ρ > 0, ε, δ > 0, and K ∈ N.
2. Calculate N and M from (20) and (21), respectively.
3. Collect M data multisamples of size K.
4. Identify ξ̄ from (1) using all available I = M ·K data.
5. Select σ.
6. Generate ξN = {ξ1, ξ2, . . . , ξN} by sampling ξ̃ ∼ Pσ

Ξ .
7. Calculate out(M(ξ))t for each ξn, n ∈ {1, . . . , N}.

8.
Construct coneγ(wm) for each wm,m ∈ {1, . . . ,M}
according to (10)

9.
Calculate the empirical probability of violation P̂ (ξn;WM )

for each n ∈ {1, . . . , N} according to (22).

10.
Select the probably approximate near maximum P̂0

according to (23).

11.
If P̂0 ≤ ρ, increase σ and go to step 6,
else return σ̄ and exit.

Remark 2: In the remaining of the paper, we select γ at
95%; this value is a very common choice for the construction
of confidence intervals. We also set ρ at 35% in order to
produce less conservative results. The values of α, ε, and
δ directly determine the amount of experimental trials that
should be performed, and different combinations yield the
same number of trials; we select α, ε so that the experimental
trials are kept at a reasonable number (about 250), and out of
all possible combinations, we choose the one that maximizes
the confidence 1− δ.

IV. APPLICATION TO MINIATURE LEGGED ROBOTS

As a first example of how the proposed method can be
applied, we consider the horizontal-plane stochastic behavior
of the miniature legged robot OctoRoACH (Pullin et al, 2012)
(Fig. 2), when executing motion plans at low crawling speeds.

Several reduced-order deterministic models—a.k.a.
templates—have been studied in the context of robotic
legged locomotion, and have been found capable of capturing
salient features of the horizontal-plane behavior of miniature
legged robots. For instance, the dynamic Lateral Leg
Spring (LLS) model (Holmes et al, 2006) has been used
to derive turning strategies (Proctor and Holmes, 2008) for
the minimally-actuated robot DynaRoACH (Hoover et al,
2010). On another vein, the kinematic Switching Four-bar
Mechanism (SFM) model (Karydis et al, 2012, 2015) has
been successful in capturing the behavior of the eight-legged
robot OctoRoACH (Pullin et al, 2012) when crawling at low
speeds, and the Dubins model (Dubins, 1957) has been
found capable of predicting the motion of the wheel-legged
miniature robot STAR (Zarrouk et al, 2013) at low-sprawled
configurations (Karydis et al, 2014).

Unfortunately, these deterministic templates do not capture
sufficiently the stochastic nature of the in-plane motion of

Figure 2. The OctoRoACH, a bio-inspired, eight-legged robot, designed at
the University of California, Berkeley. Its length and weight are 130 mm,
and 35 g, respectively, and it can reach a maximum speed of 0.5 m/s. The
robot features a differential-drive steering method, and employs an alternating
tetrapod gait for navigating through its environment.

miniature legged robots. Furthermore, size and weight specifi-
cations hinder the ability of the actuators to minimize the effect
of noise through feedback control (Hoover et al, 2010). This
reduced control authority, combined with the small size and
weight of these systems, exacerbate the effect of the inherently
stochastic leg-ground interaction, and limit the practical utility
of an otherwise satisfactory deterministic model. The reported
method provides a way to extend such deterministic templates
to a stochastic setting, allowing to capture the inherently
stochastic nature of robotic legged locomotion at small scales.

In this particular example, we focus on the low-speed
crawling motion of the OctoRoACH robot (Pullin et al, 2012)
(Fig. 2), and apply the proposed framework to stochastically
extend the (deterministic) SFM model (Karydis et al, 2012,
2015) by infusing stochasticity in its parameters. Preliminary
work focusing only in straight-line motion has been reported
in Karydis et al (2013).

A. The Nominal Model

The OctoRoACH is designed to follow an alternating tetra-
pod gait, as shown in Fig. 3(a). Legs {1, 2, 3, 4} form the
“right” tetrapod, and legs {5, 6, 7, 8} form the “left” tetrapod.
The ipsilateral3 legs of each tetrapod touch the ground at
the same instant, and rotate in phase with the same angular
velocity, as indicated in the abstract eight-legged model of
Fig. 3(b). Collapsing the ipsilateral legs of each tetrapod into
a single “virtual” leg, yields the SFM model (Fig. 3(c)) in
which the contralateral virtual legs (e.g., {O1, O2}) repre-
sent the collective effect of the tetrapod they replace (e.g.
{1, 2, 3, 4}) (Karydis et al, 2012). The SFM model consists
of a rigid torso and four rigid legs organized in two pairs,
{AO1, BO2}, and {AO3, BO4} (Fig. 3(c)) called right and
left pair, respectively. Assuming no slipping between the legs
and the ground, the model follows the footfall pattern of
Fig. 4(a), in a gait that couples the torso and the legs into
two alternating four-bar linkages.

The model’s configuration is (xG, yG, θ) ∈ R2 × S, where
(xG, yG) is the position of the geometric center G in some
inertial coordinate frame, and θ is the angle the longitudinal
body-fixed axis forms with the y-inertial axis. By convention,

3Ipsilateral means on the same side and contralateral means on the other
side.
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Figure 3. Relating the SFM template to the OctoRoACH. (a) The foot-fall
pattern of the robot, is an alternating tetrapod gait. Legs {1, 2, 3, 4} form
the right tetrapod, and legs {5, 6, 7, 8} form the left tetrapod. (b) An eight-
legged kinematic simplification of the gait mechanism used by the robot.
The ipsilateral legs of each tetrapod are coupled, forming the angles α and
β shown here for the right tetrapod. (c) The SFM template is obtained by
grouping coupled legs within a tetrapod into a single virtual leg inducing the
same displacement. Legs {1, 2, 3, 4} reduce to the pair {AO1, BO2}, while
legs {5, 6, 7, 8} reduce to the pair {AO3, AO4}. The two pairs of legs are
activated in turns, thus forming two fourbar linkages, {O1A,AB,BO2} and
{O3A,AB,BO4}.

positive changes in the orientation correspond to counter-
clockwise angles θ. During each step, the evolution of this
configuration is determined by the kinematics of the respective
active pair: angle φ1 for the right pair, and angle φ3 for the
left pair.

Owing to the symmetries of the SFM model, it suffices to
analyze the motion of only one pair; the other is its mirror
image. Figure 4(b) illustrates the kinematic analysis of the
right pair. The constant d denotes the distance between the two
hip joints A and B, while l is the virtual leg length. With the
notation of Fig. 4(b), the (position) equation (Norton, 2008)

RAO1
+RO1O2

−RAB −RBO2
= 0 ,

can be expressed as (Karydis et al, 2012)

lej(π−φ1) + aRe
j(q1−φ1) − dej(π/2) − lej(φ2) = 0 , (25)

fully determined by a single degree of freedom, the angle φ1.
Each leg motion is parameterized by the leg touchdown and

liftoff angles φtd
i , and φlo

i , respectively (where i = 1, . . . , 4),
and the leg angular velocity φ̇RL, taken to be the same for
all legs. The range of motion between the touchdown and
liftoff angles is captured in the sweep angle ψi, i = 1, . . . , 4,
and must be the same for both legs within a pair (that is,
ψ1 = ψ2 = ψR, and ψ3 = ψ4 = ψL). This condition forces
both legs within a pair to lift off the ground simultaneously. In
order to reduce the model complexity, all touchdown angles
are set at the same value φtd. With respect to Fig. 5(a), notice
that data corresponding to turning motions demonstrate a sharp
change in the orientation at the beginning of each path. To
capture this, we treat the initial orientation θinit of the model
as an additional parameter.

With these assumptions in place, the model then takes the
form of a stride-to-stride map M(ξ) : Ξ → R2 × S which
satisfies (25) at each step, and where the parameter space is
the quintuple

ξ = (ψR, ψL, φ̇RL, φ
td, θinit) ∈ Ξ .
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Figure 4. (a) The footfall pattern followed by SFM. (b) Analysis of the model.
Due to symmetry, it suffices to analyze only one pair, taken here to be the
right. d denotes the distance between the two hip-point joints A and B, and
is chosen the same as the length of the robot, that is d = 13 cm, l is the
leg length, set at 3 cm, G is the model’s geometric center, and θ denotes the
orientation of the model with respect to some global reference frame.

The output of the model is taken here to be the planar position
of its geometric center (xG, yG), that is

out(M(ξ)) = (xG, yG) .

B. Stochastic Extension

To capture the effect of uncertainty in the leg-ground
interaction, we extend the SFM model to a stochastic setting by
randomizing its parameters. In particular, the parameter vector
ξ needs to become a random vector ξ̃, drawn according to the
multivariate normal distribution

ξ̃ ∼ N (ξ̄, diag(σ2
1 , σ

2
2 , σ

2
3 , σ

2
4 , σ

2
5)) , (26)

where ξ̄ is found by solving (1), and σi, i = 1, . . . , 5 regulate
the amount of noise in the model.

Selecting the model parameters over which stochasticity is
introduced depends on the nature of the model, and its relation
to the physical system it describes. In this particular legged ex-
ample, one source of uncertainty is random leg placement, and
is associated with randomizing touchdown angles (captured in
σ4). Similarly, randomization of angular velocities (captured
in σ3) is associated with speed irregularities caused by random
leg-ground contact, while randomizing sweep angles (captured
in σ1, and σ2) practically means that legs lift off the ground
randomly—a phenomenon which is attributed to random leg-
ground contact, and possible surface irregularities.

C. Application of the Method

We are now ready to apply the Algorithm of Table II, to
estimate the model parameters for the OctoRoACH in three dis-
tinct modes of motion: (a) straight line (SL), (b) 90o clockwise
turn (CW), and (c) 90o counter-clockwise turn (CCW).

With respect to Remark 2, we first select γ = 0.95, α =
0.29, ρ = 0.35, ε = 0.29, and δ = 0.16. Based on these selec-
tions, N = 8, and M = 31. Then, we set the length of every
multisample equal to K = 8, which makes the total number
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of experimental paths required equal to I = M · K = 248,
for each mode. Using motion capture, we collect experimental
measurements of the planar position of the geometric center
of the robot (xG, yG), and its orientation θ. The collection of
K such paths generates a multisample w. The experiments are
conducted on a rubber floor mat surface, for a total time of
3 sec at a sampling rate of 20 Hz, yielding T = 60. The robot
is set into a designated start area with an initial state set at
(xG, yG, θ) = (0, 0, 0) [cm, cm, deg]. Initial pose errors are
shown in Table III, and include measurement noise.

Figure 5(a) presents the experimental data. Let WSL, WCW,
and WCCW denote the collections of all planar trajectories of
the robot for the SL, CW, and CCW control modes, respectively.
The average for each set is marked wave

SL , wave
CW , and wave

CCW,
respectively (shown with dashed curves). Dashed outlines
represent the cone of data, coneγ(W) for each case at level
γ = 95%, calculated based on τγ = 1.98.4

Table III
INITIAL POSE ERROR STATISTICS

Type Mean Standard Deviation
[cm cm deg] [cm cm deg]

CW (−0.156, −0.041, 1.23] [0.177, 0.141, 1.37)

SL (−0.007, 0.027, 0.06] [0.234, 0.054, 1.81)

CCW (−0.322, −0.012, 2.50] [0.156, 0.130, 1.23)

We first determine the deterministic component of the SFM
model by solving (1) for each mode of motion, and summarize
the results in Table IV. With these parameter values, the
model produces paths that fit best to the experimental averages
(dashed thick curves in Fig. 5(a)).

Table IV
NOMINAL SFM MODEL PARAMETERS

Type ψR ψL φ̇RL φtd θinit

[deg] [deg] [deg/sec] [deg] [deg]

CW 0 24.76 4.64 38.54 -16.19

SL 60.65 48.09 6.87 0.90 0

CCW 24.74 0 6.07 39.59 11.86

We investigate here the case where σ1 = σ2 = σ5 = 0,
assuming that only the leg placement and angular velocity are
responsible for the uncertainty observed in the data—in the
following Section IV-D we consider a different model param-
eter randomization, and compare with the results obtained in
this section. Then, we follow the steps 5–11 of the Algorithm
in Table II to estimate σ̄3 and σ̄4. The result of the procedure
is reported in Table V.

The estimated normal distribution for the random parameter
vector ξ̃est for each robot behavior follows from (26), with
ξ̄ shown in Table IV, (xinit

G , yinit
G ) = (0, 0) [cm,cm], and

4This percentile is found according to a two-sided Student’s t-distribution
with 247 degrees of freedom. The 95% percentile for each multisample (with
7 degrees of freedom) is τγ = 2.365.

σ̄i, i = 1, . . . , 5 found in Table V. The associated family
of model instantiationsM(ξ̃est) produces paths that distribute
themselves over the area within the marked cone-like bound-
aries in Fig. 5(b) to the maximum possible degree, while
allowing for a 1 − ρ = 0.65 probability of leaving the γ-
confidence region at any time t.

Table V
PROBABLY APPROXIMATE NEAR MAXIMUM SFM MODEL UNCERTAINTY

Type CW SL CCW

σ̄1 [deg] 0.00 0.00 0.00

σ̄2 [deg] 0.00 0.00 0.00

σ̄3 [deg/sec] 0.39 0.62 0.13

σ̄4 [deg] 17.19 4.30 18.91

σ̄5 [deg] 0.00 0.00 0.00

D. Discussion
In this section we demonstrate the applicability of the pro-

posed framework when a different subset of model parameters
is randomized. In particular, we consider the case where
σ3 = σ5 = 0, assuming this time that the leg placement in
both the touchdown and liftoff configurations is responsible
for the uncertainty observed in the data. The parameters of
the analysis remain the same as before, and we follow the
steps 5–11 of the Algorithm in Table II to estimate σ̄1 = σ̄2

and σ̄4. The output of the procedure is reported in Table VI.
Similarly to the previous case, the random parameter

vector ξ̃est follows from (26), with ξ̄ shown in Table IV,
(xinit
G , yinit

G ) = (0, 0) [cm,cm], and σ̄i, i = 1, . . . , 5 tabulated
in Table VI. The associated family of model instantiations
M(ξ̃est) produces paths that distribute themselves over the
area within the marked cone-like boundaries in Fig. 6 to the
maximum possible degree, while allowing for a 1− ρ = 0.65
probability of leaving the γ-confidence region at any time t.

Table VI
PROBABLY APPROXIMATE NEAR MAXIMUM SFM MODEL UNCERTAINTY

FOR THE SECOND PARAMETRIC RANDOMIZATION OF SECTION IV-D

Type CW SL CCW

σ̄1 [deg] 8.88 4.58 8.60

σ̄2 [deg] 8.88 4.58 8.60

σ̄3 [deg/sec] 0.00 0.00 0.00

σ̄4 [deg] 0.43 4.58 0.51

σ̄5 [deg] 0.00 0.00 0.00

Comparing Fig. 6 to Fig. 5, we see that the new random-
ization produces paths that match the experimentally observed
variability as well, albeit the predicted variability in final
position for the straight line mode is more conservative. In
essence, the method reports that both parameter randomization
cases are acceptable solutions. Choosing one over the other
ultimately relies on the designer, based on their own beliefs
or assumptions on the sources of uncertainty, and which model
parameters can best reflect these sources.
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Figure 5. (a) Experimental data for the three control models considered. Dashed outlines indicate the 95% confidence interval and define the cone of data for
each case, while experimental averages are shown with dashed thick curves in the interior of each cone. (b) Output of the stochastic model, tuned according
to the values in Tables IV and V. A set of 248 random model instantiations are plotted over the experimental averages and cones of data. For all cases, the
average behavior of the model, marked with a solid curve, remains very close to the experimental average (marked with a dashed curve). The 95% confidence
interval at the final position (compare solid to dashed ellipses) are also matching closely.
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Figure 6. Output of the stochastic model, tuned according to the values
in Tables IV and VI. 248 random model instantiations are plotted over
the experimental averages and cones of data. Similarly to Fig. 5(b), model-
predicted statistics remain very close to the experimental statistics.

V. APPLICATION TO AERIAL VEHICLES

In the previous section we dealt with a model that is
represented by a map advancing the position and orientation
of the model based on a closed-form kinematic relation.
The purpose of this section is to provide an example of
applying the reported method to a system represented by a
set of differential equations. In particular, we will use the
example of a hovering task of a small-scale quadrotor and
focus on its steady-state response. The performance of small-
scale rotorcraft vehicles while operating in close proximity to
rigid surfaces (e.g., ground, ceiling etc.) can be considerably
affected by uncertain aerodynamic effects that are difficult to
incorporate in low-dimensional models such as those typically
used for control (Powers et al, 2012).

For clarity, here only a very small fraction of the dynamics
of the physical system is excited, and thus the associated anal-

ysis allows no direct generalizations to other flying regimes;
yet the case still provides an adequate example of how our
method can be applied to nominal deterministic models of
dynamical systems that come in the form of differential
equations. Further, this example shows that the method can
also work if the stochasticity is injected through an exogenous
stochastic disturbance input, rather than through the model’s
parameters. Merely calculating a sample variance and using
it directly to estimate the stochastic disturbance does not
provide probabilistic guarantees of fidelity. The latter is useful
for estimating what are the chances to avoid collisions. The
reported method can be used to provide such guarantees.

A. The Nominal Model

In applying the method to the altitude control of small scale
quadrotor, we isolate the vertical dynamics component and
characterize the observed data variability at steady state. Con-
straining the motion along the vertical direction is achieved by
the support structure of Fig. 7. A simplified quadrotor model
for motion on the vertical plane and ignoring the actuator
dynamics, can be expressed as (Lupashin et al, 2010)

mÿ = −f sinφ

m z̈ = f cosφ−mg

I φ̈ = τ

(27)

where f and τ are the thrust and pitch moments, respectively,
m and I are the mass and moment of inertia of the vehicle, and
g is the acceleration of gravity. The support structure forces
φ = 0, and with the addition of a gravity compensation term

f = mg +mu ,

the model (27) reduces to a double integrator

z̈ = u . (28)
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Figure 7. The experimental setup. Our support structure aids in restraining
the motion along the vertical direction only. The driving strings are composed
of nylon cords; they provide strong support and minimal friction, while
minimizing the fluctuations on the normal to the motion plane. We also added
a wooden floor to artificially generate the ground effect.

The input u is then determined by a proportional-integral-
derivative (PID) controller

u = KP e+KI

∫
e dt +KD ė , (29)

where e = (r − z) is the position error, and r is the desired
hovering height. For the purposes of this work, we consider
four distinct altitudes shown in Table VII. The PID gains
(KP ,KI ,KD) are selected empirically and their values are
given in Table VIII. In order to avoid unrealistic control efforts,
the PID output is saturated within the region −2 ≤ u ≤ 7; the
same saturation interval is used in our experiments as well.

Table VII
QUADROTOR HOVERING ALTITUDES

Case I II III IV
(Low) (Mid-low) (Mid-high) (High)

r [m] 0.02 0.11 0.20 0.50

Figure 8(a) depicts the model-predicted closed-loop trajec-
tories plotted against collected experimental data. It can be
verified that the deterministic closed-loop control model is
able to predict quite accurately on average the experimentally-
observed steady-state response of the system in all four cases.

Table VIII
PID GAINS

KP KI KD

4.00 4.50 5.00

In the following sections we will employ the Algorithm of
Table II to show how the deterministic closed-loop system
can be extended to a stochastic setting to capture the data
variability in steady state.

B. Stochastic Extension

Contrary to the case study of Section IV, here we introduce
stochasticity through an exogenous random excitation term
that acts as stochastic perturbations on the nominal closed-
loop dynamics (28). This shows that the method is also
applicable when a system is perturbed by noise, and can be
used to identify such noise terms in practice, while providing
probabilistic guarantees on the reported outcome.

The closed-loop stochastic model of the system is now

z̈ + ξ̃ = u ,

where u is calculated by the same PID controller as in (29) and
then saturated in the region −2 ≤ u ≤ 7, with ξ̃ ∼ N (0, σ2

ξ ),
and the variance σ2

ξ to be determined by the Algorithm of
Table II. In essence, ξ̃ here corresponds to a zero-mean
Gaussian process corrupting the control effort, and the task
of the method is to find the variance σ2

ξ that captures the
data variability in steady state under prespecified fidelity
specifications. Figure 9 summarizes schematically the closed-
loop control stochastic model we consider here.

C. Application of the Method

In this section we apply the proposed methodology to
determine σ2

ξ at steady state for each of the four cases shown
in Table VII. We select the same problem parameters as in the
previous case study: γ = 0.95, α = 0.29, ρ = 0.35, ε = 0.29,
and δ = 0.16, giving N = 8, M = 31 with K = 8. We
collect closed-loop altitude measurement data from a total of
248 experimental trajectories, for each height. Trials for the
first three cases last 15 sec; for the fourth, 20 sec, because the
system enters its steady state at the end of the 15th second.
The feedback loop refreshes at 30 Hz, at the same frequency
as our motion capture system. The initial pose errors are not
significant since the support structure ensures that the start
position remains unchanged in all trials.

Figure 8(a) presents the experimentally observed trajecto-
ries. Let Wl, Wml, Wmh, Wh indicate the collections of the
trajectories for the low, mid-low, mid-high, and high hovering
altitude, respectively. Let w denote an element in these sets.
The average for each case is denoted by wave

l , wave
ml , wave

mh ,
wave

h , respectively, shown in solid thick curves. Dashed curves
mark the cone of data for each case, which is calculated based
on a two-sided Student’s t-distribution with 247 degrees of
freedom, the 95th percentile of which is τγ = 1.98. The
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Figure 8. (a) Experimentally collected paths for a quadrotor aerial vehicle tasked to hover at four distinct altitudes (0.02 m, 0.11 m, 0.20 m, and 0.50 m,
respectively). Individual paths are enclosed within the respective cone-of-data areas (marked with the dashed curves), while the experimental averages are
shown in solid thick curves. For the fourth case, the steady state is achieved at t = 20 sec. For clarity purposes, we show the last 5 sec in the add-on window
on the top right corner of the figure. The superimposed solid thick curves correspond to the model-predicted outputs according to (29). (b) The output of the
stochastically perturbed control architecture depicted in Fig. 9, where the values of σξ for each case have been estimated by the proposed framework, and are
shown in Table IX. A set of 248 random model instantiations are plotted on top of the experimental averages and cones of data. We are now able to capture
the data variability during the steady-state response.

additional 5 sec for the highest altitude case are shown as an
add-on figure on top of Fig. 8(a).

The results of the application of the proposed method are
summarized in Table IX. Figure 8(b) depicts 248 randomly
generated model paths for each case, parameterized according
to the values in Tables VIII and IX. Focusing on the steady-
state response of the system only, we can verify that the
stochastically extended control scheme of Fig. 9 is capable
of capturing the data variability, and that the resulting paths
match closely their experimental counterparts. We highlight in
Fig. 8(b) the steady-state part of system responses to empha-
size that our focus is in this particular regime. The induced
ground effect is evident in the behavior of the quadrotor closest
to the ground, where it appears as if the generated airflow
creates an aerodynamic “cushion” below the platform. This
has a stabilizing effect on the platform, as indicated by the
reduction in the amplitude of the vehicle’s residual oscillations
at steady state.

Table IX
PROBABLY APPROXIMATE NEAR MAXIMUM QUADROTOR MODEL

UNCERTAINTY

Case I II III IV
(Low) (Mid-low) (Mid-high) (High)

σ̄ξ 0.08 0.13 0.17 0.30

Note that the control architecture of Fig 9 does not capture
the ripples during the transient phases. These ripples could be
attributed, at least in part, to the nonlinear coupling between
the pitch angle φ and the actuator input f (cf. (27)) which are
currently ignored by assuming that φ ≡ 0. Thus the simplified
deterministic model is incapable of reproducing this transient,

PID
er u

+
-

z
+ 1

s2

ξ̃

-

Figure 9. Schematic representation of the closed-loop control stochastic model
for the steady-state vertical dynamics component during quadrotor hovering.
The input r denotes the desired hovering height, while the gains of the PID
controller have been tuned a-priori, and remain the same with those used in
our data collections. In ξ̃ ∼ N (0, σ2

ξ ), the variance σ2
ξ is estimated using the

proposed algorithm.

irrespectively of how stochasticity is infused. Using a full
nonlinear model such as (27) may enable one to capture this
transient behavior, however doing so falls outside the scope of
the present paper.

D. Discussion

This section discusses an alternative way to perturb the nom-
inal closed-loop dynamics (28), and provides some insight on
the predictive ability of the augmented stochastic architecture
shown in Fig. 9.

We first perturb the output of the model with an exoge-
nous random term—modeled again as a zero-mean Gaussian
process process—shown in Fig. 10.5 Then, we apply the
proposed method with all parameters retaining the same values

5Infusing stochasticity in this way may also have practical significance in
the case of uncertain or noisy state measurements.
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as in Section V-C. The results are summarized in Table X,
and Fig. 11 depicts 248 randomly generated model paths
for each case, parameterized according to the values found
in Tables VIII, and X. The modified stochastic extension
also captures the data variability once the steady state has
been reached, but system responses are somewhat different
(qualitatively) from the experimental data due to “chattering”
(see Fig. 11). Overall, however, the methodology does not
promote any one option over another; instead, it reports
that both are possible solutions. The designer has then to
select which solution to keep, based on their own beliefs or
assumptions on the possible sources of uncertainty.

PID
er u

+
-

z1
s2

+

ξ̃

+

Figure 10. Schematic representation of the modified closed-loop control
architecture. As before, the input r denotes the desired hovering height, and
the PID gains have been tuned a-priori.

Table X
PROBABLY APPROXIMATE NEAR MAXIMUM QUADROTOR MODEL

UNCERTAINTY WHEN THE EXCITATION TERM AFFECTS THE MODEL
OUTPUT

Case I II III IV
(Low) (Mid-low) (Mid-high) (High)

σ̄ξ 0.002 0.004 0.005 0.007

Next, we examine how the stochastic architecture of Fig. 9,
with variance parameter σ2

ξ specified by data corresponding
to a single desired hovering altitude, can be used to predict
the steady-state response of the vehicle both temporally, and
across different operating points. In detail, we use as training
data those corresponding to case II (i.e., ztrain = 0.11 m), with
σ̄ξ,train = 0.13 (from Table IX). Then, we use the same model,
with the same statistics for randomized exogenous forces, but
with different inputs (desired hovering altitudes) to predict the
steady-state responses in the remaining cases of Table VII.

Figure 12 presents the results. As expected, the data vari-
ability observed in steady state is captured faithfully when
the desired reference point does not change too much (i.e.,
zpred = 0.2 m). However, when the desired reference point
induces different operating conditions in which the nature
of the environmental interaction with the physical system
changes, the resulting stochastic model may offer a rough
prediction, albeit collecting more experimental data for these
set points is recommended. For example, when the set point
is zpred = 0.02 m, we get a more conservative picture of
what is happening since the ground effect becomes evident,
manifesting itself as a form of a stabilizing aerodynamic
cushion under the vehicle (compare with Fig. 8).
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Figure 11. The output of the stochastically perturbed control architecture
depicted in Fig. 9, where the values of σξ for each case have been estimated
by the proposed framework, and are shown in Table IX. A set of 248 random
model instantiations are plotted against the experimental averages and cones
of data.
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Figure 12. Training data and exogenous excitation statistics correspond
to the second case only (ztrain = 0.11 m, and σ̄ξ,train = 0.13). The
stochastically extended control architecture (Fig. 9) is then used to predict
the steady-state response of the system under different inputs, as well as
extend these predictions temporally. Provided that the operating conditions
do not vary significantly, the stochastic extension is able to make accurate
predictions, both temporal, and for different reference points.

The same setup is also used to make temporal predictions
that extend for additional 15 s for cases I – III, and 10 s
for case IV. As before, provided that the induced operating
conditions do not vary significantly, the stochastically extended
architecture is able to make accurate temporal predictions, with
the caveat that these predictions come with no probabilistic
guarantees.
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VI. CONCLUSIONS AND DISCUSSION

The paper reports on a data-driven framework for extending
existing deterministic models into a stochastic regime, while
providing probabilistic guarantees on the reported outcome.
This can be useful in cases where an otherwise adequate
model of a system is available, but may fail to capture pos-
sible uncertain system-environment interactions. The reported
approach combines methodological elements of probabilistic
model validation and randomized algorithms to simultaneously
quantify the fidelity of a model, and tune the distribution of
random parameters in the augmented stochastic extension to
enable it to reproduce the variability observed experimentally
in a physical process of interest. The approach is independent
of the type and structure of the model considered, and can
be applied to a variety of deterministic and stochastic models,
including ones based on differential equations.

We demonstrate the applicability of the method in two
examples involving very different base models. The first
system expresses the stochastic kinematics of the horizontal-
plane motion of the miniature legged robot OctoRoACH in the
form of a single-parameter stride-to-stride map; the second
system is a second order stochastically perturbed differential
equation modeling the vertical flight of a quadrotor close to
the ground during its steady state. The applicability of the
approach to such a wide range of system representations offers
promise in terms of being potentially useful across domains.

Due to the existence of the underlying deterministic model
on which the stochastic extension is based, the latter can be
used to make predictions under different circumstances for
which no training data are available. However, the predictive
ability of the stochastic model should be judged within the
resolution constraints of the underlying deterministic model.
As Fig. 12 indicates, the stochastically extended model will
succeed in predicting new system behaviors accurately when
new circumstances do not alter significantly the nature of
the operating conditions, at the expense that the provided
probabilistic guarantees will no longer hold. In a different
regime of operating conditions, part of the predictive ability of
the (combined) stochastic extension can be carried over to the
new parameter regime, with the caveat, however, that accurate
characterization really requires additional experimental data.

There are multiple ways to infuse stochasticity into the
underlying deterministic model. In this paper, for example, we
have chosen to capture the leg-ground uncertain interaction
of the legged vehicle case by infusing stochasticity in its
model parameters, while in the aerial vehicle case, uncertain
aerodynamic effects corrupt the control input signal, and noisy
measurements can be captured by randomizing the output
signal. The methodology described does not promote any
one option over another, but rather offers the mechanism for
generating the different options. Ultimately, the designer needs
to choose the way to infuse stochasticity, and decide which
resulting model output is preferable; their insight into the
possible sources of uncertainty affecting the system and the
mechanisms through which the uncertainty affects the system
at hand, provides the basis for such choices.
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