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Abstract— This paper presents a motion planning approach
to track a moving target for the purpose of classifying its
radioactivity properties, using a team of micro aerial vehicles
(MAV). The team falls into an optimal, from a sensing per-
spective, formation around the target and collectively decide,
within seconds, if the target is even weakly radioactive. The
MAV formation is optimal in the sense that the vehicles minimize
the detection error in their collective decision-making. Intuition
from the analytical solution of the basic problem formulation,
coupled with numerical simulations, guides the technical ap-
proach in which an intractable nonlinear optimization problem
is converted into a quadratic program (QP). The QP solution
then informs a motion planner based on navigation functions,
to command the MAV into the desired formation. The complete
motion planning and control architecture is tested in simulation.

I. INTRODUCTION

Consider a vehicle moving in a cluttered, GPS-denied en-
vironment. This vehicle may be carrying sources of radioac-
tivity, the emissions of which are weak enough to blend into
background. With the right algorithmic and signal processing
infrastructure, however, a small swarm of drones equipped
with commercial off the shelf (COTS) lightweight gamma-
ray or thermal neutron counters can unambiguously and
confidently distinguish whether the vehicle is even slightly
“hotter” than background in a matter of seconds.

Such a decision-making problem (hot vs. cold) can be
formulated as a binary hypothesis testing problem: the
mobile sensor in the vicinity of the target records counts
(i.e., events where radioactivity particles are captured by the
detector’s surface), and then conducts a likelihood ratio test
(LRT) to decide whether the target is indeed radioactive.
The LRT will indicate whether the data collected up to
that time instance is sufficient to determine radioactivity
above a certain threshold [14]. The key to making this
decision-making problem tractable and directly recasting it
analytically as an optimal control problem is to replace the
actual probability of missed detection (PMD) and probability
of false alarm (PFA) associated with the detection problem,
with analytically derived Chernoff bounds, and use the latter
as proxies for the intractable true probabilities [14].

The inverse square law dependency of incident-to-detector
radiation relative to the distance between sensor and
source [12] dictates MAV as the platform of choice: an
aerial platform can quickly close the distance with the
target to spend more time in close proximity, resulting
into more information-rich data and therefore more accurate
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decision-making. If, in addition, multiple aerial detectors
can be simultaneously deployed, and share the informa-
tion they collect, then the accuracy of decision-making can
be significantly boosted, especially in the low-radioactivity
regime [19]. This paper takes a step in this direction, focusing
on the final phases of the target interception scenario, where
the mobile sensors have to coalesce around the moving target.
The paper develops a methodology to generate an optimal
formation around the target that would result into the best
possible decision-making accuracy while satisfying a number
of safety constraints.

Selected recent literature on aerial formations navigating
in cluttered environments features multi-MAV formation tra-
jectory planning and control [17], vision-based control [11],
and distributed formation control with obstacle avoidance [1].
Along similar lines, one also sees distributed planning and
control approaches where multiple MAV navigate a cluttered
environment to similarly arrange themselves in a specified
formation [2]. The MAV start from an initial configuration,
collectively identify the largest obstacle-free convex region,
and move in a way that the convex-hull of MAV positions
always remain inside the safe region. The MAV desired
configurations are obtained as a solution to a non-linear opti-
mization problem that minimizes the error with the specified
formation configuration. In all aforementioned cases, each
MAV plans its motion in order to converge to a specified
position in a given static formation. On the other hand, most
of the target tracking literature treats a single MAV chasing
the specified target [4], [16]. There is a dearth of work where
formations of vehicles are coordinated to converge and track
a moving target (cf. [18]) and there is even less reported
work where tracking formations are optimized for a sensing
task. Aerial radiation measurement has been considered in
the context of mapping [5]; however, tracking radioactive
targets in cluttered environments has not.

The methodology presented in this paper relies on no pre-
specified or fixed desired formation. Based on knowledge
of the moving target’s position, it generates the desired
formation configuration online and dynamically, maximizing
an analytical metric of radiation detection decision-making
accuracy. The solution approach first simplifies and reduces
the initial complex nonlinear optimization problem associ-
ated with detection-optimal formation design into a convex
problem, the solution of which may be sacrificing some
optimality for very substantial gains in computational effi-
ciency. A motion planner then generates a set of waypoints
for the MAV to implement the solution, and assigns each
MAV to a waypoint using a version of the Hungarian algo-
rithm [8]. Then with knowledge of the workspace topology,



and assuming that the target does not come too close to the
free workspace boundaries, a specialized dynamic navigation
function on each MAV [10], combined with a low-level MAV
thrust and moment controller [9], guides the mobile sensors
to their desired formation while enabling them to avoid static
obstacles in their workspace.

The key contributions of this paper are: a) a computa-
tionally efficient solution to the problem of determining the
optimal for detection sensor placement around a moving
radiation source, and b) analytic integration of differential-
geometric quadrotor controllers [9] with 3D time-varying
navigation function [10] for target tracking and interception
in cluttered environments.

II. RADIATION DETECTION PRELIMINARIES

A COTS gamma-ray (neutron) detector essentially records
a count every time a gamma-ray (neutron) hits its effective
area. The main problem associated with typical counter-
based radiation detection is the absence of information to
distinguish upon reception a count due to the presence of
a radiation source from a naturally occurring one due to
background. Instead, what is done is that over time, statistics
can indicate whether the total count can be confidently at-
tributed to just background, or background plus an additional
source. This question is mathematically codified as a binary
hypothesis test: choosing between two conflicting hypothesis
H1 and H0, corresponding to the source being present or not,
respectively. A probability distribution is assigned to each
hypothesis and the data is collected for a fixed time-interval
T .1 At the end of T the data are combined to a statistic,
which is analyzed to determine, within some error margins,
which of the two distributions is more likely to agree with the
observations. For such a test, two types of errors can occur.
A false alarm occurs if the source is erroneously considered
present while a missed detection occurs when the outcome
is the absence of the source while it is present. Probabilities
for making any of these errors serve as metrics to assess the
performance (accuracy) of the hypothesis test.

In a mobile detector and source scenario, the binary hy-
pothesis testing can be formulated as a time-inhomogeneous
Neyman-Pearson test [13]. Let vectors x(t), xt(t) ∈ R3

denote the location of detector and source, respectively. Let
also χ denote detector’s radiation-sensitive cross-section, a
the intensity of the source. Then the rate of counts (perceived
intensity) observed at the detector varies inversely with its
distance to the source (cf. [12])

ν(t) =
χa

2χ+ ‖x(t)− xt(t)‖2
(1)

The perceived (incident to detector) source intensity being a
function of time, as the relative distance between detector
and source changes, the detector’s counting statistics are
now expressed by a time-inhomogeneous Poisson process.
The precise computation of the true error probabilities for

1This distinguishes our approach from an sequential probability ratio test
(SPRT), where one waits until the statistic computed builds to a point where
a confident decision can be made. Here there is a decision-making deadline
at which a decision is forced.

such observation processes is mathematically intractable;
however, it is possible to obtain reasonable Chernoff bounds
on these error probabilities, and use them as surrogates
for the unknonw true probabilities [13], [14]. Expressed
explicitly in terms of relative distance between the detector
and the source, these bounds have been incorporated in an
optimal control formulation that prescribes a motion planning
strategy that in a Neyman-Pearson sense optimizes the bound
on the PMD while keeping the bound on PFA within an
acceptable limit [15].

For a count rate generated due to background radiation
(background intensity) β(t); a non-dimensional number µ(t)
indicating the Signal-to-Noise-Ratio (SNR) of the detector;
a given upper value for the bound on PFA α < 1; and a
constant p ∈ (0, 1), the optimal motion control problem for
a single detector is mathematically expressed2 as [15]

min
∫ T

0

[µp logµ− µ+ 1]β ds (2a)

s.t.
∫ T

0

[pµp logµ− µp + 1]β ds = − logα (2b)

µ , 1 + ν
β = 1 + χa

β[2χ+‖x−xt‖2] (2c)

The time dependency of quantities has been suppressed
for presentation clarity. The expression in (2c) essentially
expresses the increase in the number of counts from the
source compared to background as a function of distance.

Intuitively, the solution to this problem calls for closing the
gap between the source and the detector quickly as possible,
and then keeping the sensor at the source for as long as
the deadline T allows. The analytic determination of the
error bounds also facilitates the analysis of the effects of
information sharing among multiple detectors on the col-
lective decision-making accuracy: it distinctly illustrates the
advantages of utilizing multiple MAV for detection task [19].
The following lemmas describe important properties of the
SNR and error probability bounds for a single detector case,
which are at the center of the optimization problem.

Lemma 1. Variable µ monotonically increases as the dis-
tance of the detector with the source reduces.

Proof: Straightforward from (1) and (2c).

Lemma 2. With T and β fixed, a higher µ results in a lower
value for the bound on PMD (2a).

Proof: For a given bound α on PFA, the value of p
decreases with µ [15, Lemma 3], while PMD is a strictly
increasing function of p [14, Lemma 19]. Since (2b) is used
to calculate p, a higher µ results into a lower p, which in
tern result into a lower value of objective function (2a) as it
is proportional to PMD.

Thus a detector tracking a moving target at as close
of a distance as practically possible, would provide the

2Note the equality in (2b). In general, minimizing the bound on PFA
subjected to an inequality (≤) condition in (2b) is a hard problem. A
workaround is to use a equality constraint in (2b), to calculate the value
of p in the cost functional that proportional to the bound on PMD and
solve an unconstrained optimization [15]. (2a) represents unconstrained cost
proportional to the exponent of bound on PMD.



best observation data for detection. The specific question
addressed in this paper, however, is how does this principle
generalize to the case of multiple MAV, when there are
practical limitations on how close they can get to the target
and to each other? What type of shape or formation do
they have to fall into to achieve optimal decision-making
accuracy? The next section seek answers to this question
and presents a methodology to realize the desired formation.

III. FORMATION DESIGN

Low-cost COTS detectors generally have a low extrinsic
and intrinsic efficiency; i.e., due to their small size, the solid
angle they subtend to the source is small, preventing particles
from reaching the detector and being registered. The effi-
ciency of converting incident radiation into current through
a photodetector also drops: for a miniature COTS thermal
neutron counter this can be in the order of 0.04 − 0.1%
for high-energy incident neutrons. For these type of sensors,
therefore, it can safely be assumed that the approach-the-
target phase of their motion does not significantly contribute
to the statistic computed for the LRT. On the other hand, once
the MAV have fallen into formation around their moving tar-
get, we can assume that the distance between them and their
target are not changing dramatically any more, suggesting
that for each detector, µ̇ ≈ 0. One can thus expect that the
optimal formation would be the one in which MAV arrange
themselves to get the best possible value for their µ.

With µ, β, χ, a, x and xt defined as before, let different
MAV be indexed by i and time interval [0, T ] be partitioned
into K intervals of equal length ∆k. A discrete-time version
of (2) can be formulated as a nonlinear optimization problem
for N detectors as follows. Using standard combinatorial
notation [N ] , {1, 2, . . . , N}, [K] , {0, 1, 2, · · ·K},

min
xi

N∑
i=0

K∑
k=0

[µpik logµik − µik + 1]β∆k (3a)

N∑
i=0

K∑
k=0

[pµpik logµik − µpik + 1]β∆k = − logα (3b)

µik = 1 + χa
β[2χ+‖xik−xtk‖2] ∀i ∈ [N ], ∀k ∈ [K] (3c)

‖xik − xjk‖ ≥ d1 ∀i, j ∈ [N ], ∀k ∈ [K] (3d)
‖xik − xtk‖ ≥ d2 ∀i ∈ [N ], ∀k ∈ [K] (3e)

The value of parameter p is obtained through (3b). If (3b) is
not satisfied, then the detection problem is not well-posed;
there is not enough data to make any meaningful decision.
Statements (3c), (3d) and (3e) serve to formally define µ, and
place inter-MAV collision avoidance, and MAV-target safety
distance constraints, respectively. Solution to (3) results in a
minimum for the upper bound on PMD, should the detectors
spend time T arranged in this configuration.

Figure 1 shows the results of a 2D numerical simulation
in which (3) is solved for 3 detectors, constrained to stay
at a radius of radius 3 m around their target. The values
selected for the parameters, χ = 2.77 × 10−6 m2 and
β = 0.00583 counts per second (CPS), are experimentally

Fig. 1. Results of (3) for T = 50 (black) and 150 (yellow) seconds.

determined for the Domino Neutron detector,3 while a =
1.7×104 approximates a 5µCi source4 available. The upper
bound on PFA is set at α = 10−3, and distances d1 and d2

are set at 1.5 m and 0.5 m, respectively. The standard solver
NLOPT had been used to solve the nonlinear optimization.5

Decision deadline T was picked at 50 and 100 seconds
in two different solutions that are compared against each
other in Figure 1. Interestingly, the optimal solution does not
distribute all the detectors symmetrically around the target;
rather, it places one very close to the target while keeping
the other two trailing while satisfying all constraints. That
behavior is observed consistently for different decision dead-
lines and source intensities. The nonlinear dependence of
SNR to the distance between sensor and source dictates that
having at least one sensor as close as possible is preferable
to uniformly minimizing all sensor-source distances.

We hypothesize that one of the reasons this solution arises
as optimal is the need to satisfy the constraint (3b) on
PFA; without it, the decision problem is infeasible. Thus at
least one sensor should obtain the absolute best information
possible about the target. The insight on the nature of the
optimal solution motivates a relaxation of the formation
optimization problem that allows efficient and fast, real-time
solutions. We can weigh the different sensors according to
their sensitivity, and then recast the problem as a convex
weighted minimum-distance problem, where the most sensi-
tive sensor is weighted higher.

The convex restriction of the non-convex minimum dis-
tance constraints, is now a QP of the form

min
xi

N∑
i=0

wi‖xi − xt‖2 (4a)

s.t. aTij · (xi − xj) ≥ d1 ∀i, j ∈ [N ] (4b)

bTit · (xi − xt) ≥ d2 ∀i ∈ [N ] (4c)

3Radiation Detection Technologies Inc http://radectech.com/products/rdt-
domino-v5-4

4The value of source activity is calculated assuming 4.4 × 109

neutrons per Curie per second emitted by Cf-252 source. (See
http://www.logwell.com/tech/nuclear/Californium-252.html).

5Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-
initio.mit.edu/nlopt



Fig. 2. Results of (4) for similar target motion and d1, d2 values.

xiz − xtz ≥ hi (4d)

Constraints (4b) and (4c) now form the convex relaxation
of the hard non-convex minimum distance constraints [3].
The direction vectors aij ∈ R3 and bit ∈ R3 for i, j ∈ [N ]
are unitary. Problem (4) can now be solved at each time
step and provides the direction vectors for the following time
step [3] in the form aij =

(x̂i−x̂j)
‖(x̂i−x̂j)‖ and bit = (x̂i−xt)

‖(x̂i−xt)‖ .
The extra constraint (4d) forces each MAV to hold a vertical
distance h above the target at all times during tracking.

Figure 2 shows the solution of (4) obtained using the
GUROBI optimizer [7], under the same settings for target
motion and parameters d1, d2. The results are similar to the
original nonlinear optimization, except for the (cyan) triangle
formation at the beginning of the motion, when there is no
previous solution available to inform on aij and bit. The
QP formulation is more computationally efficient, allows the
possible incorporation of additional constraints, and is not
sensitive to the choice for the initial point in the nonlinear
optimization process.

Let gi(t) ∈ R3, ∀i ∈ [N ] be the set of goal positions for
each MAV, obtained by (4). Each MAV is assigned a specific
goal through the Hungarian algorithm [8] (with cost defined
as square of the distance) that finds a permutation matrix
ξ : I → I such that∑

i∈I

∑
j∈I

ξij‖xi(t)− gj(t)‖2 (5)

is minimized with respect to ξij .

IV. UAV MOTION PLANNING AND CONTROL

With knowledge of the workspace each MAV uses its
own motion planner that employs a time-varying, at least
C2 navigation function [10] ϕ → R+, constructed on the
MAV’s free configuration space F , which can be tuned
appropriately to have a unique minimum at the desired
formation configuration and be uniformly maximal over the
boundary of F . Assuming both x(t) and g(t) remain in the
interior of F ,6 the navigation goal becomes the minimum of

J(x, g) = ‖x(t)− g(t)‖2 (6)

6In fact, there are topological constraints [10] that constraint this invariant
to a subset of the interior of F .

It has been shown [15] that for a suitably selected obstacle
function β(x) and a suitably large parameter λ ∈ R+, there
exists a positive number N such that ∀κ ≥ N ,

ϕ̃(x, g) =
J(x, g)[

J(x, g)κ + λβ(x)
]1/κ (7)

is a navigation function when the free configuration space of
the robot is a sphere world S. This result has been extended
to star worlds [10]. Then a diffeomorphism hλsq

: F →
S parameterized by a suitably chosen positive parameter
λsq ∈ R+ can give ϕ = ϕ̃ ◦ hλsq

(x, g) navigation function
properties on F , in the sense that for any position of the
target satisfying some reasonable topological conditions, all
(unstable) critical points outside the destination manifold are
nondegenerate with attraction region of measure zero.

The desired velocity for each MAV in the formation is thus
determined using ϕ. Specifically, if vmax denotes the vehicle’s
maximum speed given the capabilities of its actuators or
safety specifications, and kϕ is a positive control gain, then
the desired velocity relative to an inertial frame would be

ẋd , − erf
(
kϕ(‖x− g‖)

)
· ∇xϕ
‖∇xϕ‖

· vmax (8)

with ∇x denoting the gradient with respect to variable x.
The desired position xd and desired acceleration ẍd can
be obtained by integrating and differentiating the desired
velocity, respectively. A suitable value of kϕ in erf regulates
the rate at which the MAV slows down to to match the
velocity of the target in its vicinity.

A. UAV Control

Let m denote the mass of a MAV and J ∈ R3×3 its
moment of inertia about principal axes attached at the center
of mass (hereafter referred to as body fixed frame). The
relative orientation between the inertial frame and the body
fixed frame is encoded in the rotation matrix R ∈ SO(3). Let
x ∈ R3 denote the position of the MAV in the inertial frame,
and Ω its angular velocity in body fixed frame. The operator
·̂ denotes the (wedge) operation that maps a vector in R3

to a member of the Lie algebra so(3); f and M denote the
magnitude of the total actuator-generated thrust and moment
acting on body fixed frame. The dynamics of the MAV is

mẍ = −mge3 + fR e3 (9a)

Ṙ = R Ω̂ (9b)

M = J Ω̇ + Ω× J Ω (9c)

Given the MAV desired velocity and acceleration derived
from ϕ, we define position, velocity, orientation and angular
velocity errors, and determine the MAV control inputs (for
suitably selected gain vectors kx, kv, kR and kΩ) as

f =
(
− kx ex − kv ev +mge3 +m ẍd

)
· Re3 (10a)

M = −kR eR − kΩ eΩ + Ω× J Ω (10b)

which have been shown [9] to establish almost global expo-
nential convergence of the error dynamics to the origin for



all initial conditions —and exponential convergence under
some restriction on the initial conditions.

The structure of the overall architecture for planning,
control and formation generation is shown in Fig. 3.

Navigation
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Fig. 3. Current position of the MAVs and the target is utilized in (4) to
generate the formation and the assigned goal points are fed into the planner
running on each MAV. The navigation function also takes the states of the
MAV and the target from from GAZEBO and feeds the smooth position,
velocity and acceleration trajectories to the force controller that generates
the required force and feeds the stabilizing direction b3d [9] to the attitude
controller. Given a suitable heading direction (assume constant here) b1d [9]
and utilizing current angular velocity and orientation, the attitude controller
generates required moments. The workspace map is assumed known. Red
and Green boxes and lines indicate similar methodology for other MAVs.

V. SIMULATIONS

The 15 × 15 m simulated workspace along with three
Asctec Firefly quadrotors and a Turtlebot in the role of the
target is shown in Fig. 4. State estimation for each MAV and
the target is taken from the simulated odometry sensors in
GAZEBO. The motion of the target and the MAVs is shown
in Fig. 5. The target movement (black curve) has multiple
phases with different linear and angular velocity depicted
in different shades of black. Three MAVs, each running
its own planner and low-level controller chase the target
taking goal point from the centralized algorithm that generate
the formation. All the algorithms run at 100 Hz while the
optimization is solved using GUROBI optimizer [7].

Figures 6(a), 6(b) and 6(c) show the time history of inter-
MAV distances, the distance of each MAV to the target, and
the value of navigation function for each MAV, respectively.
Note that the distance between MAV1 and MAV3 falls below
the safety distance for few seconds when they approach the
target; this is technically permitted since during the approach
phase the navigation functions on each MAV do not enforce
collision avoidance between the vehicles.7 We stress that
the focus of this paper (see Section I) is the integration of
the differential geometric controller [9] with methodologies

7The introduction of this additional feature is part of ongoing work.

Fig. 4. Simulated workspace. Three Firefly quadrotors start from different
locations and intercept the moving Turtlebot.

for motion planning based on navigation functions, and the
determination of the optimal for radiation detection mobile
sensor configuration around a moving source. The distances
to the target, however, being enforced in the optimal forma-
tion configuration, always remain above the safety distances
(Fig. 6(b)). The decreasing values of navigation function for
each MAV indicates that a MAV does not collide with any
obstacle during the target interception phase.

The video submission visualizes the scenario described:
experiment 1 presents GAZEBO simulations using quadro-
tor models and state estimation from ROTORS simulation
package [6].8 Experiment 2 depicts a more obstacle-dense
environment (with more than double the number of obstacles)
run with the same MAV motion parameters, suggesting that
the method’s can be robust to variations in the structure of the
environment; the tuning of the navigation function, however,
can still present some challenges as the density of obstacles
increases. As expected, the tuning of the navigation function
influences the nature of the MAV paths generated, with those
produced by a well-tuned function resembling geodecics. A
detailed probabilistic analysis can help in determining the
threshold in the density of obstacles at which solutions suffer,
but it is beyond the scope of the current work.

Our formation design methodology (Section III) works
adequately up to six agents and have been tested and vali-
dated with five agents (Experiment 3). That latter case study
is performed in the same workspace as Experiment 1 only
with more MAVs. Although an upper limit on the number
of deployable MAVs could only be established through a de-
tailed parametric analysis —beyond the scope of the present
work— our belief is that cluttered environments are better
served by relatively small radiation sensor MAV teams. When
flight safety constraints are considered, a trade-off emerges
between formation size (information quantity) and individual
MAV SNR (information quality), which has an impact on the
accuracy of cooperative radiation detection [19].

8The ROS implementation of the navigation function planner with
the low-level controller and formation generation scripts can be
found at https://github.com/indsy123/Navigation-function-based-planning-
and-control.



Fig. 5. Black and grey curve depicts the motion of the target. Initial
light grey period corresponds to a linear and angular velocity of 1.1ms−1

and −0.08rads−1. This is followed by two different phases (solid black
and dark grey) of target motion in which the linear and angular velocities
were (1.8ms−1,−0.43rads−1) and (1.5ms−1, 0.65rads−1) respectively.
Towards the end velocity remains the same but angular velocity reduces to
0.5rads−1. Dashed red, blue and green curves shows the movement of the
three MAVs chasing the target at 3ms−1.

VI. CONCLUSIONS

The strong dependence on the quality of collected
data [19] of the detection accuracy of a swarm of mobile
radiation sensors, and the nonlinear dependence of the radi-
ation measurement SNR on the distance between the source
and the detector, dictates that the collective decision-making
is optimal not when individual detector selfishly improves
its own chance to decide in a greedy fashion, but when the
swarm allows one of its members to obtain the best possible
placement while the rest share the next-best views. This
strategy gives priority to satisfying the constraint on PFA,
ensuring first that the decision-making problem becomes
feasible as soon as possible. This insight is utilized to relax
the formation design problem into a relatively simple QP.

The paper demonstrates that navigation functions can be
coupled with differential-geometric quadrotor controllers to
provide a truly feedback-based strategy for MAV navigation
and target tracking in (known) cluttered environments. It is
noteworthy, however, that the two key paper contributions,
namely the optimal formation design for radiation detection,
and the integration of navigation functions in geometric MAV
control, are each useful and applicable in their own right.
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