
Decision-Making Accuracy for Sensor Networks
with Inhomogeneous Poisson Observations

Chetan D. Pahlajani, Indrajeet Yadav, Herbert G. Tanner, and
Ioannis Poulakakis

Abstract The paper considers a network of sensors which observes a time-inhomo-
geneous Poisson signal and has to decide, within a fixed time interval, between two
hypotheses concerning the intensity of the observed signal. The focus is on the im-
pact of information sharing among individual sensors on the accuracy of a decision.
Each sensor computes locally a likelihood ratio based on its own observations, and,
at the end of the decision interval, shares this information with its neighbors accord-
ing to a communication graph, transforming each sensor to a decision-making unit.
Using analytically derived upper bounds on the decision error probabilities, the ca-
pacity of each sensor as a decision maker is evaluated, and consequences of ranking
are explored. Example communication topologies are studied to highlight the inter-
play between a sensor’s location in the underlying communication graph (quantity
of information) and the strength of the signal it observes (quality of information).
The results are illustrated through application to the problem of deciding whether or
not a moving target carries a radioactive source.

1 Introduction

We currently rely on networks of distributed sensors for triggering a timely response
to emergency situations, including natural disasters such as hurricanes [8], earth-
quakes [10] and tsunamis [6]. Existing work on decision-making over networks of
observers that monitor a physical process and have to decide on its state, suggests
that the performance of decision-making is affected by the structure of the network.
For example, in the context of a network of stochastic evidence accumulators, each
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represented by a drift-diffusion process accruing evidence in continuous time by ob-
serving a noisy signal, information exchange among individual nodes affects the cer-
tainty of each node in a way that is governed by information centrality [14, 15]. In-
formation centrality is a structural property of the underlying interconnection graph
that depends on the totality of paths connecting that node with the rest of the net-
work [17]. Heterogeneity in the network has been introduced in [5] by allowing only
a limited number of units—termed leaders—to observe the external signal directly.
Although these results refer to continuous-time implementations of sequential prob-
ability ratio tests inspired by human decision-making models [2], they still highlight
the effect of general network topologies on decision-making performance.

Only specific communication topologies for the network have been explored, due
to the explosive combinatorial complexity of decision making in distributed sen-
sor systems [20]. There is emphasis on particular directed rooted trees [19, 21–23],
where the root is a designated fusion center node that makes the final decision. In
this context, and for this limited range of topologies where information from all ob-
servers eventually trickles down in some compressed form to the designated fusion
center, results show that decision performance is affected by the structure of the
network. In addition, to avoid the complexity associated with distributed decision
making, the results for more general tree topologies are restricted to an asymptotic
analysis, where the order of the graph grows unbounded. For some applications,
however—such as nuclear detection—practical and economic considerations pre-
clude the deployment of large-scale networks [18]. In that smaller-scale regime, and
particularly for the case where decision makers do not have access to (compressed)
information from all other observers, there is not enough knowledge and insight
to determine the specific effect of general network topologies on decision-making
performance.

The present paper focuses on the case of a sensor network which observes a time-
inhomogeneous Poisson process, and has to decide, within a fixed time interval, be-
tween two hypotheses concerning the intensity of the observed process. Armed with
analytical expressions for bounds on error probabilities for this test in the classical
networking case where all sensors, after observing this inhomogeneous process for
a time period, submit a statistic to a central decision maker (fusion center) [11], this
paper explores alternative cases where the topology of the network can vary, and any
sensor can potentially become the decision maker. The goal here is to explore the
effect of information sharing on the capacity of individual sensors in the network to
make accurate decisions.

The topology of the sensor network is modeled by a directed graph; each sensor
is represented by a node, and a directed edge from node i to node j signifies that
there is directed flow of information from sensor i to sensor j. Sensors do not need
to communicate until time instant T , at which a decision needs to be made by the
network. At that time instant each sensor sends its local likelihood ratio LT (i) along
outgoing edges in the communication graph. Next, each sensor—now referred to
as a Decision Maker (DM)—implements a Likelihood Ratio Test (LRT) where the
product of the available LT (i)’s is compared against a threshold to make a (local)
decision. The problem is now to assess the relative accuracy of the DMs.
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Intuitively, the factors improving decision accuracy are large numbers of incom-
ing edges in the information-sharing graph, and availability of LT (i)’s collected from
sensors which observe strong signals. The principal challenge now lies in formal-
izing exactly how these factors mathematically influence the decision error prob-
abilities, given that these probabilities are, in all but perhaps the simplest cases,
intractable to analytic computation. The paper circumvents this difficulty by work-
ing with Chernoff upper bounds on the error probabilities for each DM, borrowing
the analytic expressions of which from existing work [12]. Treating these explicitly
computable bounds as proxies for the true (unknown) error probabilities, an index
for decision-making accuracy can be formulated and subsequently used to rank the
DMs. The advantage of this approach is that it recasts the problem of ranking incom-
putable probabilities for each of the DMs in terms of ranking natural computable
surrogates, at the expense of some sharpness.

These results find natural application in the problem of detecting, using a dis-
tributed network of radiation sensors, illicit nuclear material in transit. The severity
of the threat associated with radioactive materials falling into the hands of potential
terrorists has been recognized [4]. Possible mitigation strategies include networks of
detectors deployed along roads and highways, tasked with detecting illicit material
that has slipped through border checks or portal alarms [4].

There are at least two reasons that make nuclear detection—irrespective of
whether the sensors are static or mobile—extremely challenging. The first is that
radiation detectors pick up signals emitted not just by the illicit radioactive material
to be detected, but also from ubiquitous, naturally occurring, background radiation.
From a counter’s perspective, the two signals are of identical nature and indistin-
guishable once superimposed. The second reason relates to attenuation: although a
kilogram of Highly Enriched Uranium (HEU) can emit as many as 4× 107 gamma
rays per second [4], shielding and attenuation can limit the effective detection range
to a few feet, and require detection times that can range from several minutes to
hours. To put these in perspective, the gamma-ray emission of nuclear missiles con-
taining HEU becomes comparable to background just 25 cm away from the war-
head [16]. The problem is exacerbated by the motion of the signal source. Not only
does the mathematical model of the physical phenomenon change (becoming time-
inhomogeneous), but now detectors have limited time to decide before the target
disappears from sight: the sensors are faced with a problem of detecting in a matter
of seconds, a weak time-varying signal, buried inside another signal of same nature.

It is important to note that while the technical approach in this paper is particu-
larized in the context of nuclear detection, the impact of the methods proposed here
can also reach other application domains which involve networked decision-making
with Poisson process observations.

2 Background
As noted above, our analysis focuses on the effect of information sharing on
decision-making by a network of sensors observing a time-inhomogeneous Pois-
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son process, and as such, is applicable in a variety of domains. That said, it will be
convenient from this point on to frame the discussion largely in terms of applica-
tions to nuclear detection. It goes without saying that the treatment can be carried
over to other applied problems after suitably reinterpreting various mathematical
quantities.

With the aforementioned application domain in mind, consider a network of k
radiation sensors that is deployed over a spatial region of interest for the purpose
of detecting illicit nuclear materials in transit; see Figure 1. The typical detection
scenario involves a vehicle (target) suspected of being a carrier of nuclear material
(source) moving through the sensing field of this network. The objective is to de-
cide, at the end of a fixed time interval [0,T ], whether the counts recorded at the
sensors can be attributed solely to ubiquitous background radiation (hypothesis H0)
or whether they contain, in addition, radiation from a source carried by the moving
target (hypothesis H1). Local decision making can be enhanced through allowing, at
the terminal time T , limited communication among sensors according to a suitable
communication topology, following which each sensor is enabled to act as a DM op-
erating on the information available to it. The primary goal of the present work is to
formulate a metric for ranking the decision-making accuracy of the individual DMs.
To wit, it is desirable to develop an index that mathematically captures the interplay
between centrality of a DM in the network (quantity of information) and proximity
to the suspected source (quality of information) in a way that naturally mimics the
true, but incomputable, error probabilities.

(a) (b)

Fig. 1 A source moving (red line) in the sensing field of a network of sensors. Different infor-
mation sharing scenarios are depicted. (a): All sensors send their LT ’s to a fusion center. (b): The
sensors share their LT ’s according to a directed graph. Communication is allowed only at time T .

A review of some existing notation and results [11] helps set the stage for the
decision-making rules considered in this paper. The probabilistic setup is as fol-
lows. On the measurable space (Ω ,F ), there is a k-dimensional vector of counting
processes NNNt , (Nt(1), . . . ,Nt(k)), t ∈ [0,T ]. Here, Nt(i) represents the number of
counts recorded at sensor i ∈ {1,2, . . . ,k} up to (and including) time t ∈ [0,T ]. The
two hypotheses, H0 and H1, regarding the state of the environment correspond, re-
spectively, to two distinct probability measures P0 and P1 on (Ω ,F ). With respect
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to P0, the Nt(i)’s, 1≤ i≤ k, are assumed to be independent Poisson processes with
Nt(i) possessing intensity βi(t), while with respect to P1, the Nt(i)’s, 1≤ i≤ k, are
assumed to be independent Poisson processes with intensities βi(t)+νi(t), respec-
tively. The functions βi(t), νi(t), 1 ≤ i ≤ k, defined for t ∈ [0,T ] are assumed to
be bounded, continuous and strictly positive as in [11]. Here, βi(t) is the (possibly
time-varying) intensity at time t due to background radiation at the spatial loca-
tion of sensor i, while νi(t) represents the intensity due to the source (if present) as
perceived by sensor i at time t. Note that the time-dependence of νi(t) arises from
relative motion between the source and the sensor; indeed, in the context of radi-
ation measurement it is generally accepted that νi(t) is proportional to the inverse
square of the distance ri(t) between the source and sensor i [9].

A test for deciding between H0 and H1 can be thought of as an event B1, whose
occurrence or non-occurrence can be ascertained on the basis of sensor observations
over [0,T ], and has the following significance: If the outcome ω ∈ B1, decide H1;
if the outcome ω ∈ B0 , Ω \B1, decide H0. For such a test, two types of errors
can occur. A false alarm occurs if ω ∈ B1 with H0 being the correct hypothesis; this
occurs with probability P0(B1). A miss occurs if the outcome ω ∈ B0 while H1 is
the true hypothesis; this occurs with probability P1(Ω \B1).

In this setting, the optimal test for deciding between H0 and H1 is an LRT obtained
as follows [3,11]. For i ∈ {1,2, . . . ,k}, let τn(i) for n≥ 1 denote the n-th jump time,
i.e., time at which the sensor generates a count, of Nt(i), and let

LT (i), exp
(
−
∫ T

0
νi(s)ds

)NT (i)

∏
n=1

(
1+

νi(τn(i))
βi(τn(i))

)
(1)

with the convention that ∏
0
n=1(. . .) = 1. Assuming that P1 is absolutely continuous

with respect to P0, the test

{LT ≥ γ} where LT ,
k

∏
i=1

LT (i) and γ ∈ R (2)

is optimal in the (Neyman-Pearson) sense that if B is any test whose probability of
false alarm P0(B) ≤ P0(LT ≥ γ), then the probability of miss for the test (2) is at
least as low as that for B, i.e., we have P1(LT < γ)≤ P1(Ω \B).

In the context of the test (2), the decision is made at a single network node that
receives all sensory information from the network, and processes it by computing
the product LT to issue the decision. This node is called the fusion center; see Fig-
ure 1(a). Before proceeding further, note that the only information needed from
sensor i ∈ {1,2, . . . ,k} includes the functions βi(·) and νi(·) together with the single
real number LT (i). Put another way, once the problem parameters βi(·), νi(·) and
the local likelihood ratios LT (i) are known, there is no increase in accuracy that can
be obtained through knowledge of the sample path t 7→ Nt(i).
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3 Deciding without a Fusion Center
One of the drawbacks of the setup of Figure1(a) described above is the vulnerabil-
ity of the system to targeted attacks or failures: if the fusion center is lost, the entire
detection system collapses. This motivates one to study the following problem: Sup-
pose that at the terminal time T (or just after), there is some sharing of the LT (i)’s
(and the problem parameters βi(·), νi(·)) among the sensors according to a directed
graph, as depicted in Figure 1(b). Assume that no single sensor has access to all lo-
cal likelihood ratios, i.e., there is no obvious choice of fusion center. If each sensor
is now enabled to act as a DM operating on the information available to it, one can
ask which DM is the most reliable in terms of decision-making accuracy.

To formulate this problem precisely, a directed graph is first specified. This graph
encodes the allowed communication among the sensors. Recall that a directed graph
is an ordered pair G = (V,A) where V is a set of vertices or nodes, and A is a set
of ordered pairs of nodes, referred to as arcs or directed edges. For the problem
at hand, the vertex set V = {1,2, . . . ,k} indexes the set of observers (sensors). The
arcs in A correspond to inter-sensor communication in the sense that (i, j) ∈ A if,
and only if, there is directional flow of information from sensor i to sensor j. Thus,
if there is two-way communication between sensors i and j, both (i, j) and ( j, i) are
included in A. Self-loops are meaningless in this context and therefore excluded.
Finally, it will be convenient to assume that information travels exactly one directed
edge, and no further. In other words, if there are directed edges (i, j) and ( j, `) in A,
it is assumed that LT (i) is sent from sensor i to sensor j and no further, while LT ( j)
is sent from sensor j to sensor ` and no further.1

The probabilistic setup and notation are exactly as in Section 2. The quantities
LT (i) and LT are defined as in (1), (2); and each sensor i ∈ {1,2, . . . ,k} observes
Nt(i) over time interval t ∈ [0,T ] and computes the quantity LT (i) at time T . Now
that each sensor is armed with its own LT (·), inter-sensor communication takes
place. For each sensor i, let Si comprise the set of sensors whose information is
made available to sensor i just after time T . Thus, for 1≤ i≤ k,

Si , { j ∈ {1,2, . . . ,k} : Sensor i knows LT ( j) and β j(·), ν j(·) just after time T} .

Since a sensor always has access to its own information, we have i ∈ Si for all
1≤ i≤ k. Thus, Si consists of the index i, together with the indices corresponding
to incoming edges. Once inter-sensor communication has taken place, each sensor
can be considered a DM. Thus, for 1 ≤ i ≤ k, DM(i) refers to sensor i once it has
access to the quantities {LT ( j),β j(·),ν j(·) : j ∈Si}. Letting DM(i) use the test{

LT (i)≥ γi
}

where LT (i), ∏
j∈Si

LT ( j) and γi > 0

the probabilities of false alarm and miss for DM(i) are given by

1 This entails no loss of generality; indeed, if information is to be sent from sensor i to sensor `,
this can be accommodated at the expense of introducing the additional directed edge (i, `).
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PF,i , P0
{
LT (i)≥ γi

}
, PM,i , P1

{
LT (i)< γi

}
,

respectively. If function Λi : R→ R is defined by Λi(p) , logE0

[(
LT (i)

)p
]

for
p ∈ R, then it follows [12, Theorem 8] that

PF,i ≤ exp
(

inf
p>0

[Λi(p)− pηi]

)
, PM,i ≤ exp

(
inf
p<1

[Λi(p)+(1− p)ηi]

)
, (3)

where ηi , logγi ∈ R, and Λi(p) is explicitly computable via

Λi(p) = ∑
j∈Si

∫ T

0
[µ j(s)p− pµ j(s)+ p−1]β j(s)ds . (4)

Note that the bounds (3), (4) hold for any ηi = logγi ∈ R. The reader is referred
to [12] for a detailed proof of the bounds in (3).

In order to effectively use these bounds, one would need to know where, if at
all, the infima in (3) are realized, and further, whether the infima are negative—to
ensure that the bounds are non-trivial. One proceeds here by making repeated use
of convexity of the functions p 7→ Λi(p). Indeed, it follows [12, Lemmas 16–19]
that the function p 7→ Λi(p) is C2 with derivatives given by differentiating under
the integral sign; further, Λ ′′i (p) > 0 for all p ∈ R, implying that the function p 7→
Λi(p) is strictly convex; and finally that Λ ′i (0) < 0, Λ ′i (1) > 0. It now follows [12,
Proposition 13] that if ηi is chosen to lie in (Λ ′i (0),Λ

′
i (1)), then the infima in (3) are

attained at a unique p∗i ∈ (0,1) and the infima are negative. More precisely, there
exists a unique p∗i ∈ (0,1) given by Λ ′i (p∗i ) = ηi such that

inf
p>0

[Λi(p)− pηi] = EF,i(p∗i )< 0 , inf
p<1

[Λi(p)+(1− p)ηi] = EM,i(p∗i )< 0 ,

where the error exponents EF,i(p), EM,i(p) mapping (0,1) to R are

EF,i(p), Λi(p)− pΛ
′
i (p) and EM,i(p), Λi(p)+(1− p)Λ

′
i (p) . (5)

Thus, if ηi ∈ (Λ ′i (0),Λ ′i (1)), then the tightest error probability bounds for DM(i) are
given by

PF,i ≤ exp[EF,i(p∗i )]< 1 , PM,i ≤ exp[EM,i(p∗i )]< 1 . (6)

To rank the DMs in terms of their capacity to make accurate decisions, one ide-
ally solves the following problem: Let α ∈ (0,1) (acceptable upper bound on the
probability of false alarm) be given. Allowing each DM to choose its own threshold
to comply with the constraints that PF,i ≤ α and PM,i is minimized, rank the nodes
in increasing order of PM,i. The node with the smallest PM,i is the best DM, at least
for the particular α . The challenge, as noted earlier, is that the error probabilities
PF,i and PM,i are not amenable to analytic computation. We therefore work with the
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corresponding Chernoff bounds (6) and study the problem stated above with PF,i and
PM,i replaced by the corresponding tightest upper bounds.

To solve this problem, the threshold selection algorithm [12, Proposition 14]
is employed. The algorithm implies that if, for some 1 ≤ i ≤ k, we have logα >
−Λ ′i (1), then there exists a unique p†

i ∈ (0,1) which solves the equation

EF,i(p†
i ) = logα . (7)

Moreover, p†
i minimizes EM,i(p) over all p ∈ (0,1) which satisfy EF,i(p) ≤ logα .

This minimum value of EM,i(p) is given by

EM,i(p†
i ) = logα +Λ

′
i (p†

i ) .

Thus, choosing ηi =Λ ′i (p†
i ), i.e. letting DM(i) select the threshold γi = exp(Λ ′i (p†

i )),
yields

PF,i ≤ α , PM,i ≤ α exp(Λ
′
i (p†

i )) = α γi .

To provide some insight on the foregoing expressions—see [12] for details—one
can use convexity to show that on (0,1), the functions EF,i, EM,i are differentiable
and negative, with EF,i being strictly decreasing while EM,i is strictly increasing.
The threshold selection algorithm can be summarized as follows: Take the threshold
γi = exp(Λ ′i (p)) and select p ∈ (0,1) as small as possible to make EM,i as small as
possible, while ensuring that the false alarm constraint is met, i.e., EF,i(p) ≤ logα .
The latter is possible only if logα is strictly greater than the infimum of EF,i on
(0,1), which is easily computed to be −Λ ′i (1). Of course, one should now find p†

i
by solving (7).

One can now rank the DMs from most reliable to least reliable by ranking the
quantities EM,i(p†

i ), 1≤ i≤ k (or, equivalently, exp(EM,i(p†
i )) = αγi) from smallest

to largest. These findings are summarized as follows.

Theorem 1. For α ∈ (0,1) with logα > max1≤i≤k(−Λ ′i (1)), define the functions
Mi(α), 1≤ i≤ k, by

Mi(α), exp(Λ
′
i (p†

i )) , (8)

where p†
i ∈ (0,1) solves EF,i(p†

i ) = logα; thus, Mi(α) is the threshold at DM(i).
Then, Mi(α) can be used as an index for decision-making accuracy in the following
sense: If (i1, i2, . . . , ik) is an ordering of {1,2, . . . ,k} such that

Mi1(α)≤Mi2(α)≤ ·· · ≤Mik(α) ,

then (i1, i2, . . . , ik) provides a ranking of the DM’s from most accurate to least accu-
rate, as measured by the Chernoff bounds.

Remark 1. Note that the accuracy index Mi(α) is tied to the specific α ∈ (0,1). This
naturally prompts the question: for a given network and set of problem parameters,
does the sensor which has the smallest Mi(α) vary with α . It is also natural to ask,
for a given network and set of problem parameters, whether the ranking based on
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Mi(α) coincides with the ranking based on minimizing PM,i subject to PF,i ≤ α , i.e.,
do the Chernoff bounds faithfully capture the relative decision-making accuracies of
various sensors. These questions are the subject of ongoing work.

4 Examples
This section presents two examples of networks of nuclear detectors deciding about
the observed process. In the first case, it is assumed that the process at each sensor
has identical characteristics, and heterogeneity is introduced only through the net-
work topology. In the second example, in addition to the differences among sensors
due to their location in the underlying interconnection graph, heterogeneity is intro-
duced in the quality of each sensor’s observations. The objective is to highlight the
interplay between the network topology and the quality of individual observations,
and its impact on the ability of individual sensors to make decisions.

4.1 Example 1: Identical measurement characteristics

This example addresses the following question. If the measurement quality charac-
teristics at all sensors are the same, is it true that the DM with the most LT (·)’s is the
most accurate? The answer, as will be seen below, is affirmative, implying that the
node with the largest in-degree is better equipped to make a decision.

Indeed, suppose that βi ≡ β , νi ≡ ν , µi ≡ µ = 1+ν/β . We will use |Si| to de-
note the cardinality of Si, 1≤ i≤ k, that is, the in-degree of node i that corresponds
to the number of incoming edges to i. It is easily seen from (4), (5), that EF,i(p) =
−g(p) · |Si| where g(p) , −βT [µ p− pµ p log µ − 1] and EM,i(p) = −h(p) · |Si|
where h(p) , −βT [µ p +(1− p)µ p log µ − µ]. Since EF,i(p), EM,i(p) are negative
for p∈ (0,1) with the former being strictly decreasing and the latter strictly increas-
ing (see [12, Lemma 19]), it follows that g(p) is positive and strictly increasing for
p ∈ (0,1), while h(p) is positive and strictly decreasing for p ∈ (0,1).

Fix α as in Theorem 1. Let i, j ∈ {1,2, . . . ,k} with i 6= j. The claim is that

1. If |Si|> |S j|, then Mi(α)<M j(α),
2. If |Si|= |S j|, then Mi(α) =M j(α),
3. If |Si|< |S j|, then Mi(α)>M j(α).

The first of these three claims will only be proven here; the arguments can be easily
modified to prove the other two. Suppose |Si| > |S j|. By (7), one has EF,i(p†

i ) =

logα and EF, j(p†
j) = logα . Recalling the notation above,

g(p†
i ) =−

logα

|Si|
and g(p†

j) =−
logα

|S j|
.

Noting that− logα > 0 and |Si|> |S j|, one writes g(p†
i )< g(p†

j). Since g is strictly

increasing, it now follows that p†
i < p†

j . If it can be shown that EM,i(p†
i )< EM, j(p†

j),
then it follows (see Theorem 1) that Mi(α)<M j(α). The argument for establishing
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the former statement is follows. Since the function h is strictly decreasing, it must be
h(p†

i ) > h(p†
j). Since h is positive and |Si| > |S j| (by assumption), |Si| ·h(p†

i ) >

|S j| ·h(p†
j). Taking negatives, yields EM,i(p†

i )< EM, j(p†
j) as required.

This example shows that, under the assumption that the measurement process has
identical statistical characteristics at each node, the nodes with the largest in-degree
are the most accurate DMs. It is interesting to note that this observation is in contrast
to the diffusive models studied in [14, 15], in which local centrality measures such
as those based on nodal degrees cannot capture the certainty of each unit in terms of
the collected evidence.

4.2 Example 2: Non-identical measurement characteristics

Particular examples of directed graphs in the setting of Figure 1(b) help examine the
effect of heterogeneity not only in the underlying communication topology, but also
in the characteristics of the measurements process at each sensor. Similarly to [9],
five sensors are arranged along a straight line at fixed locations with 0.5 m distance
from each other and with the first sensor positioned at 0.5 m. A radioactive source
moves parallel to this array of sensors with a constant speed of 0.03 m/s. As a result
of the source’s motion, the measurement characteristics among different sensors are
not the same, since certain sensors may spend longer intervals in close proximity
to the source than others. The source’s straight line path is at a distance of 0.5 m
above the array of the sensors, and the initial source position is 0.5 m behind the
sensor array. The activity of the source and background radiation are measured in
gamma rays emitted per second, i.e., counts per second (cps). For the source, it is
taken at a = 3 cps, while for the background we assume 0.167 cps. The numerical
simulation of the corresponding arrival process with the aforementioned intensities
has been generated using a thinning algorithm [7, 13]. The maximum acceptable
probability of false alarm is taken as α = 10−3 and for numerical purposes the
sensor cross-section is assumed to be 1 m2. Note that these figures are too big for
practical applications, and are used here only for reasons of numerical convenience
to emphasize the differences in sensor performance; see [12] for details.

Figure 2 depicts three different interconnection topologies with which locally
processed information can be disseminated among sensors. Directed edges mark
unidirectional flow of likelihood ratios LT and the histories of the intensities β , ν

between (network) adjacent sensors at time T . These three communication topolo-
gies (graphs) result in different sensor network performance in terms of accuracy of
decision making, at least to the degree that the latter can be reflected on the com-
puted bounds on the probability of missed detection. Various detection scenarios
are depicted in Figures 3-4, showing that for a constant background activity, the
performance of each sensor as a decision-making unit depends on the strength of
the signals perceived by the sensors and the time available to make the decision.
In these figures, individual sensors are denoted by S1 to S5, and the motion of the
source is indicated by the blue line at the top of each figure. Different decision times
T are examined, resulting to different time intervals over which the source remains
in the close vicinity of each sensor, thereby introducing heterogeneity in the mea-
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surement characteristics of each sensor. In each of the Figures 3-4, the vertical axis
corresponds to the logarithm of the bound of the probability of missed detection
computed by (6) and the horizontal axis shows the distance between sensors.

Fig. 2 Different communication topologies studied in Example 2. A directed edge from node i to
node j indicates that at time T , the locally computed LT and µ at node i is transmitted to node j.

Figure 3 shows that the performance of the sensors under more information shar-
ing (graph 2 in Figure 2) is better than their performance under less information
sharing (graph 1 in Figure 2). A major advantage of exchanging information among
individual sensors is evident from the performance of node 3 in Figure 3 (left),
which corresponds to graph 3 of Figure 2. Indeed, due to the larger distance from
the source, sensor 3 neither makes good quality measurements nor it receives sig-
nals from sensor 1; yet it performs better than 1 or 2 because of its location in the
graph. However, more incoming edges to a sensor does not always result into better
performance. To see this, Figure 3 (right) describes network performance when the
spatial arrangement is scaled up by 2 such that all the distances are doubled (1m
instead of 0.5m). Doubling the distances between sensors, results in weakening the
observed signal, in the sense that the intensity of the arrival process perceived by
each sensor decreases. In this case of larger inter-sensor distance, more sensors do
not satisfy the constraint on the probability of false alarm at the end of the decision
interval T = 40 seconds, and the additional information available to sensor 3 due
to its location in graph 3 does not compensate for the overall weak quality of the
signals received by all the sensors.

The dependency of node ranking on the available decision time is illustrated in
Figure 4 (left) for the case of graph 1. It can be seen that as more time is allowed
to make the decision, the location of the best performing sensor shifts in the di-
rection of the motion of the source. This observation reflects the intuitive fact that
the sensor that remains closer than the rest to the source during the detection time
window performs better. As a final remark it should be mentioned that the afore-
mentioned observations on node ranking in terms of their decision-making capabil-
ity are based on the Chernoff bounds (6). To compare the prediction of the bounds
with that obtained by the actual probabilities, Figure 4 (right) depicts an estimate
for the logarithm of the probability of missed detection obtained using Monte-Carlo
simulations. In this particular example, the source intensity is assumed to be 1.75
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Fig. 3 The communication topologies of Figure 2 result in different bounds for the probability
of missed detection for each sensor S1 to S5. These are bounded by the two extreme cases: no
information is shared (magenta curve), and fusion center having data from all sensors (black curve).
Missing line segments indicate that the corresponding sensors do not satisfy the constraint on the
probability of false alarm.

cps and the network topology corresponds to graph 1 of Figure 2. As can be seen,
the prediction of the bounds is the same with that of the estimated probabilities of
missed detection. It is important to note, however, that although the general trend
of actual error probabilities is captured by the bounds [12], one must be aware that
the loss of sharpness associated with the use of bounds may result in node rankings
that do not faithfully reflect the actual ranking; for example, this is the case when
neighboring sensors exhibit comparatively similar decision-making performance in
a way that cannot be differentiated by the bounds.

Fig. 4 The left plot shows the logarithm of the bound on the probability on missed detection with
decision time T using graph 1 of Figure 2. The right plot shows Monte-Carlo estimates of the
probability of missed detection using graph 1 of Figure 2.

5 Conclusions
The paper argues that the decision-making accuracy of individual nodes in a net-
work of radiation detectors can be quantified using explicitly computed Chernoff
upper bounds as proxies for true error probabilities. The resulting ranking of nodes
can be used to choose which node to make the final decision in a distributed setup
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where each individual node can act as a potential decision maker. Examples show
how the capability of each sensor to make a decision about the observed process
depends on the interplay between the location of the sensor in the underlying net-
work architecture (reflecting the quantity of information available to the sensor) and
the spatial location of the sensors with respect to the source (reflecting the qual-
ity of individual sensor measurements). Performance comparable to that of decision
making with a fusion center can be achieved by allowing partial information sharing
between the nodes over some fixed, directional communication topology. This paper
lays the foundation for future work in which the network performance is optimized
by reconfiguring the underlying communication topology (cf. [1]) given the number
of sensors, the strength of the signal, and the time available to make the decision.
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