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Abstract—The paper presents the first result
on ISS properties of dynamic unicycle models de-
scribing nonholonomic mobile robots. It is known
that ISS is related to smooth stabilizability, how-
ever this relation cannot exclude the possibility of
non smoothly stabilizable systems to possess ISS
properties. In fact, it is shown that in a certain
topology that seems to suit the nonholonomic na-
ture of the mobile robot, and by applying a par-
ticular control law, the closed loop system can be
made locally ISS by an appropriate choice of con-
trol inputs. Apart from any possible theoretical
ramifications, this result encourages an ISS-based
stability analysis of groups of mobile robots.

I. Introduction

Input-to-state stability (ISS) [1] is a frame-
work for stability and robustness analysis that
has proved to be extremely useful in a variety
of applications, from biochemical networks [2] to
formation control and robotics [3], [4]. The suc-
cess of input-to-state stability as an analysis tool
is due in part to its invariance properties under
a large class of system interconnections [1]. It is
also known that ISS is closely related to the abil-
ity to stabilize the system using smooth control
inputs [5].

Lately there has been related work on applica-
tions of input-to-state stability on vehicle forma-
tions [3], [4], [6]. Taking advantage of the invari-
ance properties of ISS, one can come up with sta-
bility measures and error bounds for the vehicles
in the formation, that depend on the group lead-
ers input [7]. This work has primarily focused on
linear dynamics, such as those obtained through
input-output feedback linearization. However,
vehicles in general, and mobile robots in particu-
lar, are generally described in terms of nonlinear,
nonholonomic models. It is thus natural to ask
if such techniques can be applicable to the case

where complete nonholonomic dynamics are con-
cerned.

The highly nonlinear nature of the problem
and the peculiarity of the nonholonomic dynam-
ics make the problem particularly challenging.
Moreover, the known result that relates ISS to
smooth stabilization may tempt one to think
that systems that cannot be smoothly stabilized
may not possess any ISS properties. Although
in general this may indeed be the case, in this
paper we show that in a certain topology which
seems to characterize better the nonholonomic
nature of the system, it is possible to establish
local ISS properties. Beyond any theoretical im-
plications regarding the nature of the nonholo-
nomic dynamics, and the insight that one can
gain through an ISS analysis, this result seems
to be implying that generalization of ISS-based
formation control to more detailed, nonlinear ve-
hicle models may be possible.

The result presented in this paper is primarily
based on the introduction of a particular metric
on the state space of the nonholonomic robot and
the use of a discontinuous, nonholonomic feed-
back controller. The stability of the closed loop
system is established through a (nested) singular
perturbation analysis that imposes certain con-
ditions on the controller gains. It is also worth
noting, that the nonlinear gain estimate from dis-
turbances to state can be expressed as a linear
function of the magnitude of the disturbances.
This is important because it opens the way to
efficient gain computation algorithms that can
scale easily in large groups of mobile robots.

The rest of the paper is organized as follows:
in section II we give a brief description of the
problem at hand and we introduce the met-
ric. Section III introduces the dynamic nonholo-



nomic feedback controller and establishes its sta-
bility properties using singular perturbations ar-
guments. In section IV the closed loop system
is shown to be locally ISS with respect to ac-
celeration input disturbances. Section V verifies
the theoretical results via numerical simulations.
Finally, section VI concludes the paper with a
summary of the contributions of this paper.

II. Problem Description
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Fig. 1. A mobile robot tracking a moving target.

Consider a mobile robot like the one depicted
in Figure 1. The robot is supposed to maintain
a constant position and orientation with respect
to another moving target which can be thought
of as its leader. The configuration of the robot
can be specified with respect to its tracking point
by its position difference, (x, y), and the orien-
tation difference, θ. Assume that the vehicle
should move with translational velocity vd and
rotational velocity ωd in order to minimize these
differences, i.e. stabilize the variables (x, y, θ)
to the origin. These speeds are to be realized
through the translational and rotational acceler-
ation inputs, a and α, respectively. Let ev and
eω denote the velocity errors, between the true
vehicle velocities and the desired. Then the dy-
namics of a mobile robot can simply be described

as follows:

ẋ = (vd + ev) cos θ (1a)

ẏ = (vd + ev) sin θ (1b)

θ̇ = ωd + eω (1c)

ėv = a (1d)

ėω = α. (1e)

Using polar coordinates for the description of the
position and orientation:

r =
√
x2 + y2, ϕ = arctan(y/x), eθ = θ − 2ϕ

the dynamics of the robot can be written as:

ṙ = (vd + ev) cos(eθ + ϕ) (2a)

ϕ̇ =
vd + ev
r

sin(eθ + ϕ) (2b)

ėθ = ωd + eω − 2(v + ev) sin(eθ + ϕ) (2c)

ėv = a (2d)

ėω = α. (2e)

Let us consider the regions, S1 =
{(r, ϕ, θ, v, ω) | cosϕ > 0} and S2 =
{(r, ϕ, θ, v, ω) | cosϕ < 0}, and restrict our
analysis to the domain S1 ∪ S2. Note, that by
the definition of ϕ, the origin belongs to S1. The
reason for excluding the two y semi-axes is to en-
sure arbitrarily large but bounded control inputs.
These, in turn can establish positive invariance
for each one of the sets S1 and S2. When only
bounded inputs are allowed, the analysis has to
be restricted to Sδ

1 = {(r, ϕ, θ, v, ω) | cosϕ > δ}
and Sδ

2 = {(r, ϕ, θ, v, ω) | cosϕ < −δ}, for a
sufficient δ > 0.

Due to the invariance of S1 and S2, it makes
sense to define the following metric on S1 and S2:

Proposition II.1 The function d1 : Si → R,
i = 1, 2 given as:

dc(r, ϕ, θ, ev, eω) �
√

r2

cos2 ϕ
+ sin2 ϕ+ θ2 + e2v + e2ω

(3)
defines a metric on Si.



Proof: In order for (3) to qualify for a met-
ric on Si, it has to satisfy: (i) dc(z) ≥ 0, ∀z ∈ Si,
(ii) dc(z) = 0 ⇔ z = 0, ∀z ∈ Si, and (iii)
dc(z1+z2) ≤ dc(z1)+dc(z2), ∀z1, z2 ∈ Si. We will
show that this is the case for S1; the case for S2

follows similarly. Properties (i)-(ii) are obvious.
For (iii) we only to consider any two vectors in
S1, z1 and z2, substitute in Cartesian coordinates
and take the difference dc(z1+z2)−dc(z1)−dc(z2).
In S1, for this difference to be negative, it suffices
to show that r

cos ϕ
− r1

cos ϕ1
− r2

cos ϕ2
< 0. For the

latter:

r

cosϕ
− r1

cosϕ1
− r2

cosϕ2
= −(x2y1 − x1y2)

2

x1x2(x1 + x2)

which is negative in S1 since x1, x2 > 0. Similarly
it is shown for S2.

Figure 6 shows the topology induced by the
metric on the (x, y) plane. Note that this metric
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Fig. 2. The (x, y)-topology induced by the metric.

applies in S1 and S2, but not in S1 ∪ S2. Our
stability results will be expressed with respect to
this metric.

III. Closed Loop Stability

A. The Singularly Perturbed System

By an appropriate choice of control inputs and
sufficiently large gains, the system (2) can take

the form of a singularly perturbed system. Let
the desired velocities be defined as:

vd = − k1r

cosϕ
(4a)

ωd = 2(vd + ev) sin(eθ + ϕ) − kωeθ, (4b)

and the acceleration inputs as:

a = −k2e− r2 sec3 ϕ+ cosϕ sin2 ϕ

r
(5a)

α = −eθ − kαeω, (5b)

If we let kα = kωkθ, with kθ > 1 and substitute
(4b) and (5b) into (2) we obtain a singular per-
turbed version of (2), the (eθ, eω) subsystem of
which is:

1

kω

[
ėθ
ėω

]
= −

[
1 − 1

kω
1

kω
kθ

] [
eθ
eω

]
,

giving rise to an exponentially stable boundary
layer system:

deθ
dτ

= −eθ, deω
dτ

= −kθeω (6)

where τ = t/ε and ε � 1
kω

is the singular param-
eter, and the reduced system

ṙ = (vd + ev) cosϕ (7a)

ϕ̇ =
vd + ev
r

sinϕ (7b)

ėv = a. (7c)

Applying (4a) and (5a) in (7), the closed loop
reduced system becomes:

ṙ = ev cosϕ− k1r (8a)

ϕ̇ =
ev sinϕ

r
− k1 tanϕ (8b)

ėv = −k2ev − r2 sec3 ϕ+ cosϕ sin2 ϕ

r
, (8c)

which is easily shown to be exponentially stable
with respect to the metric (3) after considering
the Lyapunov function candidate:

Vr(r, ϕ, ev) � r2

cos2 ϕ
+ sin2 ϕ+ e2v (9)



and taking its time derivative:

V̇r = −2k2e
2
v − 2k1

(
r2 sec2 ϕ

cos2 ϕ
+ sin2 ϕ

)
≤ −2min{k1, k2}d2

c(r, ϕ, ev).

From the exponential stability of (6) and (7)
we can conclude that there is a sufficiently large
kω for which (2) is exponentially stable with re-
spect to the metric (3). Estimating the bound
for kω is more involved and is treated in the next
Section.

B. Gain Selection for Stability

The stability analysis will be performed here
assuming that the system is within the region
where cosϕ > 0. The case where cosϕ < 0 can
be treated similarly. In the course of the discus-
sion it will become clear that each one of these re-
gions are made positively invariant through (5a)-
(5b).

A Lyapunov function for the boundary layer
system (6) can be the following:

Vb(eθ, eω) � 1
2
e2θ + 1

2kθ
e2ω (10)

Combining (10) with (9) we can define a Lya-
punov function for the singular perturbed sys-
tem:

V = r2 sec2 ϕ+ sin2 ϕ+ e2v + 1
2
(e2θ + e2

ω

kθ
) (11)

Its time derivative, V̇ is:

V̇ = −kθ − 1

2kθ

(eθ−eω)2− 1 + 2kα − kθ

2kθ

(e2θ +e
2
ω)

+
ev sin(2ϕ)[sin(ϕ+ eθ) − sinϕ]

r
+ 2k1 cos eθ sin2 ϕ− k1 sin(2ϕ) sin eθ − 2k2e

2
v

− 2evr sec
3 ϕ sin2( eθ

2
) − 2k1r

2 cos eθ sec4 ϕ.

Using the fact that |eθ| ≤ π
2
, implying cos eθ ≥ 0

and |eθ| ≥ |sin eθ|, we can bound V̇ as follows:

V̇ ≤ −kθ − 1

2kθ

(eθ −eω)2− 1 + 2kα − kθ

2kθ

(e2θ +e
2
ω)

− 2min{k1, k2} cos eθ(e
2
v + r2 sec4 ϕ+ sin2 ϕ)

+2max{1, k1}|eθ| cosϕ(1+ |ev|
r

)(|sinϕ|+r2 sec4 ϕ).

From the local Lipschitz continuity g(x) = x2

it follows that there exists a positive constant L
such that:

|r2 sec4 ϕ| ≤ L|r sec2 ϕ| = Lr sec2 ϕ

from which we can extend the bound of V̇ :

V̇ ≤ −kθ − 1

2kθ
(eθ −eω)2− 1 + 2kα − kθ

2kθ
(e2θ +e

2
ω)

− 2min{k1, k2} cos eθ(e
2
v + r2 sec4 ϕ+ sin2 ϕ)

+ 2(1 + L)max{1, k1}|eθ| cosϕ(1 + |ev|
r

)

(|sinϕ| + r sec2 ϕ+ |ev|).
A necessary step in order to bound V̇ further is
taken with the following Lemma:

Lemma III.1 The term ev

r
is upper bounded by

a positive constant c.

Proof: Boundedness of ev

r
follows from the

stability of (8). If frac1k2 is treated as a singular
parameter then (8) is transformed to a boundary
layer system dev

dτ
= −ev and a reduced system:

ṙ = −rk1 ϕ̇ = −k1 tanϕ,

which is also exponentially stable. Therefore, for
a sufficiently large k2, the origin of (8) is expo-
nentially stable. The time scale decomposition of
(8) imposed by the increase in k1 ensures that |ev|
reduces much faster than r, making the ratio |ev|

r
converge to zero exponentially. This exponen-
tial convergence implies that there are positive
constants, c and m such that

|ev|
r

≤ ce−mt ⇒ |ev|
r

≤ c, ∀t ≥ 0

Using the bound on |ev|
r

suggested by the afore-
mentioned Lemma, we can obtain the following
bound for V̇ :

V̇ ≤ −λmin(Q)d2
c(r, ϕ, ev, eθ, eω) (12)

where λmin(·) denotes the minimum eigenvalue
and the symmetric matrix Q is given as:

Q �
[

1−2kα−kθ
2kθ

√
2(1+L) max{1,k1}(1+c)

√
2(1+L) max{1,k1} 2min{k1,k2} cos

(
eθ(0)

) ]



We then need to make sure that Q is positive def-
inite. First note that without loss of generality,
one can assume that k2 > k1, which is reasonable
since we need k2 to be sufficiently large. Then
in order for Q to have positive eigenvalues, it is
sufficient that

kα >
max{1, k1}2 sec

(
eθ(0)

)
kθ(1 + c)

k1
+

1

2
(kθ−1)

Then, the smallest eigenvalue is:

λmin(Q) = −1

4
+
kα

2kθ

+ (1 + L)k1 cos
(
eθ(0)

)
+

[
16kθ[2(1 + c)2 max{1, k1}2kθ

− (1 + L) cos
(
eθ(0)

)
k1(1 + 2kα − kθ)]

+ [1+2kα +
(
4(1+L)k1 cos(eθ(0))− 1

)
kθ]

2
]1/2

Therefore, with respect to metric dc, V reduces
exponentially. Using the Comparison Lemma,
we conclude for λ ≡ λmin(Q):

dc

(
r(t), ϕ(t), ev(t), eθ(t), eω(t)

)
≤ 2kθV

(
r(t), ϕ(t), ev(t), eθ(t), eω(t)

) ≤ 2kθV (0)e−λt

≤ 2kθdc

(
r(0), ϕ(0), ev(0), eθ(0), eω(0)

)
e−λt

IV. Acceleration Perturbations

This section will demonstrate that under accel-
eration input disturbances, the state of the closed
loop system (1)-(4)-(5) is ultimately bounded
with respect to the metric (3), by a K class
function of the magnitude of the disturbances.
This implies that the system is input-to-state
stable with respect to this metric. Such a prop-
erty is quite important in view of recent results
that link input-to-state stability to vehicle for-
mations, and allow the quantitative characteri-
zation of the performance and robustness prop-
erties of a formation.

Let the closed loop system (1)-(5) be per-
turbed by acceleration disturbances δ �=

(δa, δα)
T :

ṙ = (v + ev) cos(eθ + ϕ) (13a)

ϕ̇ =
v + ev
r

sin(eθ + ϕ) (13b)

ėv = a+ δa (13c)

ėθ = −kωeθ + eω (13d)

ėω = −eθ − kα + δα (13e)

Then, the time derivative of the Lyapunov
function (11) will have two new terms:

V̇ = −kθ − 1

2kθ
(eθ −eω)2− 1 + 2kα − kθ

2kθ
(e2θ +e

2
ω)

+
ev sin(2ϕ)[sin(ϕ+ eθ) − sinϕ]

r
+ 2k1 cos eθ sin2 ϕ− k1 sin(2ϕ) sin eθ − 2k2e

2
v

− 2evr sec
3 ϕ sin2( eθ

2
) − 2k1r

2 cos eθ sec4 ϕ

+ 2evδa +
eωδα
kθ
.

and can similarly be bounded from above by:

V̇ ≤ −λd2
c + 2evδa +

eωδα
kθ

≤ −λd2
c +

√
2max{2, 1

kθ
}dc ‖δ‖2

For a constant parameter ζ ∈ (0, 1), we can then
have:

V̇ ≤ −λ(1−ζ)d2
c+(

√
2max{2, 1

kθ
} ‖δ‖2−λζdc)dc

which is negative, provided that

dc ≥
√

2max{2, 1
kθ
}

λζ
‖δ‖2

Treating (13) as a perturbed system, we have
that:

dc ≤ dc(0)e
−λt +

√
2max{2, k−1

θ }
λζ

‖δ‖2

which implies that (13) is ISS with respect to the
input δ and the norm induced by the metric dc.



V. Numerical Validation

In this section we verify the ISS proper-
ties of the dynamic model (1) with respect to
the metric chosen. In the simulation scenario,
the initial conditions for the system are set
to (x, y, θ, v, ω) = (0.1, 0.1,−π

2
, 0, 0) (Figure 3).

The controller gains were set to k1 = 1, kω = 5,
k2 = 100k1, and kθ − 2. The system is per-
turbed by sinusoidal acceleration disturbances of
the form δa = 50 sin(100t) and δα = 50 cos(100t).
Under these initial conditions and disturbances,
the control scheme proves to be robust, ensuring
convergence of the system state to the origin.
The acceleration disturbances force the robot to
chatter along its path, as shown in Figure 3, how-
ever stability is maintained.
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Fig. 3. Path of the mobile robot.

Figures 4 and 5 show more explicitly the ef-
fect of these disturbances on the position and
velocity, errors of the robot respectively. Fig-
ure 6 shows the evolution of the metric dc along
the trajectory of the robot, indicating clearly the
initial transient phase where it the metric is de-
creasing and then the steady state, where it is
ultimately bounded.

VI. Conclusion

In this paper we establish the ISS properties
of dynamic unicycle models for mobile robots,
with respect to acceleration input disturbances.
The system is rendered ISS after the application
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Fig. 4. The effect of acceleration disturbances on posi-
tion.
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Fig. 5. The effect of acceleration disturbances on velocity
errors.

of a (discontinuous) feedback controller that is
shown to be robust with respect to such pertur-
bations. The ISS properties of the closed loop
system are established with respect to a particu-
lar metric, the induced topology of which seems
suits the nonholonomic nature of the system. We
believe that this result is conceptually impor-
tant because it shows that under certain con-
ditions and in an appropriate topology, systems
that may not be feedback linearizable may still
enjoy ISS properties. This work could find ap-
plication in formation control of mobile robots,
in view of recent developments in this field.
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