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 Abstract–In many applications the time available for nuclear 
materials detection is short, the signals are weak, and the 
backgrounds are large, variable, and difficult to control. We 
develop optimal strategies for nuclear search in these difficult 
conditions, and demonstrate these strategies in experiments. 
Model-driven algorithms promise to reduce search time by order 
of magnitude, with increased reliability of detection and reduced 
number of false positives. These strategies can be applied to 
various nuclear search scenarios, for both mobile and stationary 
detectors, hand-held detectors and sensors on robotic platforms. 
Our methods can be used against nuclear smugglers and 
terrorists, for safeguards and non-proliferation treaty 
monitoring, as well as in other situations where radioactive 
sources need to be found.  

I. INTRODUCTION 

PECIAL nuclear materials are weak emitters of radiation and 
therefore difficult to detect, especially in the presence of 

natural and artificial backgrounds. Success of detection 
depends largely on the proximity of the sensor and the time for 
measurement. A small detector up close outperforms a much 
larger detector at a distance (Fig.1, 2). When noise is 
dominated by statistical variations in background, a 1 cm2 
detector at 1 m can obtain the same signal-to-noise ratio as a 1 
m2 detector at 10 m range [1]. Mobile sensors can close the 
distance gap, enabling high sensitivity with low false alarm 
rates.  

We need an optimized strategy for a moving detector that 
minimizes search time. Our objective is more efficient 
strategies for search when signal-to-noise is limited by the 
quantum noise of nuclear detection. Small number statistics 
and large backgrounds can make nuclear detection difficult. 
However if the backgrounds are known and the statistical 
behavior of their fluctuations are predictable, we can 
theoretically quantify the optimal approach to the search 
problems.  

In classical statistical methods, the data are first collected 
and then the analysis is performed. For source detection at a 
single location, this means that we collect data for the entire 
allocated search time Ts before making a decision about the 
presence or absence of a source, depending on whether or not a 
given threshold is crossed. However, a decision can typically 
be made at an earlier time Td ≤ Ts, if we can monitor the 
counts continuously. The basic idea is to consider two 
alternative hypotheses and, based on the strength of the 
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measured signal, decide sequentially at times t1 , t2 , ... 
between three options: 1) hypothesis Ho holds, 2) hypothesis 
H1 holds, or 3) more data are needed to decide between the two 
hypotheses. The principle of continuous real-time monitoring 
and making decisions constitutes the foundation of the 
classical sequential testing theory [2].  

 Fig. 1. Bigger detector does not guarantee more efficient detection for a 
point source. Source signal grows as solid angle (green line), while 
background grows proportionally to the detector area (red line), as a result, 
signal to noise ratio (blue line) has a maximum at a relative detector size (ratio 
of the detector radius to the detector-source distance) close to 1. Meanwhile, 
cost of the detector usually grows proportional to the area (yellow line). 

 
Fig. 2. Smaller detector close to the source outperforms the bigger one at 

the distance. For the same collected signal (green line), both background (red 
line) and cost (yellow line) decrease dramatically as the source gets closer, and 
signal to noise ratio (blue line) raises dramatically as a result. 

II. NUCLEAR SEARCH STRATEGIES 
We showed in our previous work [3] that smart strategies 

are almost an order of magnitude more effective than naïve, 
uniform search. The simplest way to search for a radiation 
source is to scan the area uniformly, exposing each region for 
a fixed time interval. The standard deviation of the Poisson 
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distribution is 
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" = µ # t . By exposing it long enough, σ 
becomes small relative to µ, and one can separate the count 
rate distributions from the source and background. For an 
average expected background µb, signal µs and exposure time 
t, the threshold of the number of observed counts can be set 
that satisfies the required false positive and false negative 
probabilities of the search outcome. of experiments. In the 
uniform search, the resources (sensors and exposure time) are 
allocated independently of the observation. When a few 
sources are present in a large area, most of the time is spent on 
measuring the background.  

Application of the classical sequential testing theory allows 
one to save time by rejecting certain sequences of observation 
at early stages. The theory suggests stopping rules that allow 
for rejection of certain sequences of observations at early 
stages. Either positive or negative identification can be made 

based on the likelihood ratio 
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Nk counts within time period tk from a source with an average 
count rate µk. 

The stopping rules are determined from the desired false 
negative and false alarm rates. Real-time updating of a 
physical model of the radiation field is essential to this 
strategy, allowing optimal resource management and sensor 
cooperation.  

One can do even better in the situation of multiple fast 
scans, followed by dwells on tentative detections. In this case 
we can search the area by allocating search time at each 
location as suggested by the prior probability of source 
detection. The prior initially can be taken either uniform or 
biased, incorporating any prior knowledge about the area. The  

Fig. 3: Smart nuclear detection techniques yield better performance at 
reduced inspection time. Uniform inspection strategy (thick solid line) is 
compared with sequential strategy (thin solid line) and multiple-scan 
Bayesian strategy (dashed line). 

probability of that the set of observations N={N0, N1, … Nk , 
…} was obtained as a result of source being present in 
location k is: 
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whereas the probability that there is no source present in the 
area is: 
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At the next sweep we would like to spend more time at the 

locations, where 
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Strategies outlined here provide much better performance in 
shorter time, especially reducing number of false positives, as 
necessary for many nuclear search applications (Fig.3). 

III. ROBOTIC HARDWARE IMPLEMENTATION 
We demonstrate the feasibility of our strategies in a series of 

experiments, using mobile detectors. Experimental 
implementation of the sequential search algorithm was 
performed using the Khepera II robot with a custom- built 
turret to interface the CsI radiation sensor (Fig. 4). The 
Khepera II robot features a Motorola 68331, 25MHz processor 
with 512 Kbytes RAM and 512 Kbytes Flash memory, 
running our embedded C code that implements the sequential 
search motion controller. We use three analog inputs provided 
by the I/O turret, and communicate with it through RS232. 
Data acquisition software is also developed, allowing for real-
time 1-D and 2-D radiation mapping during experimentation. 

The Khepera II is equipped with a CsI radiation sensor. 
Gamma-rays that pass through the CsI crystal have a 
probability of depositing some or all of their energy. The 
deposited energy goes into excitement of the electrons into 
higher energy levels that decay with characteristic lifetime and 
emit visible light. The 4 cm long and 1.2 cm in diameter 
cylindrical CsI crystal was encapsulated into the Al casing 
with the Hamamatsu S3509 pin photodiode mounted on it to 
detect light induced in the crystal by passing photons. The 
sensor was assembled by the Alpha Spectra, Inc. The pulse 
generated by the diode is very weak and needs to be amplified. 
We used the A250 preamplifier with external FET from 
Amptek. The pulse is then shaped through a four-stage 
shaping amplifier based on operational amplifiers. On the 
output of the amplifier we get almost Gaussian pulse, which 
peak corresponds to the energy that was deposited by the 
gamma-ray in the active region of the detector. The pulse is 
processed using digital board that is based on low power, high 
speed, 8-bit National Semiconductor ADC08200 and Altera 
Cyclone 2910 FPGA. The FPGA can be programmed to 
perform all necessary pulse post-processing. We have 
developed FPGA code to perform peak finding and pulse 
counting. We estimated the total power consumption of the 
electronics to be below 200 mAh at 6V, allowing us to power 
them for several hours with four rechargeable digital camera 
batteries. The pin photodiode is in reverse bias and consumes 
negligible amount of power (nAh at 25V). 



 

Fig. 4: A miniature robot Khepera from K-Team Inc., equipped with our 
gamma-sensor and data acquisition electronics. We use this robot/sensor 
combination in our demonstration experiments. 

IV. EXPERIMENTAL SEQUENTIAL STRATEGY 
In a sequential search for a weak radiation source the space 

is divided into pixels and the sensor collects measurements at 
each for different time periods. These time periods are 
determined by the need to reach a statistically definitive 
conclusion on whether a radioactive source is present in the 
pixel. Once the decision is made, the sensor jumps to the next 
pixel.  For real world applications we need to modify the 
method to make it applicable in a continuous space-time 
framework, where sensor cannot jump from one pixel to 
another and measurements are collected continuously. We 
approach this issue by regulating the velocity and acceleration 
of the moving sensor to approximate the discrete algorithm as 
close as possible. To speed up the search, our motion 
controller maintains a maximum scanning speed while the 
observed count rate is consistent with our model of natural 
background radiation. When the increase in the count rate is 
observed, the sensor decelerates to a level where the exposure 
time is sufficient to produce a definitive answer at a very high 
confidence level as to whether source is present there. As soon 
as the robot can reach a decision regarding the presence or 
absence of a source, it starts moving again at a maximal speed.  

While robot is moving with the constant speed each location 
is exposed for the same time. During each sampling period 
ΔT, the counts recorded by the radiation detector are added up. 
At the end of each step, the sum is stored and the detector's 
buffer is cleared to begin recording the new sum. The rate of 
change (increase) of counts in the i-th step is estimated at the 

end of each time step as 
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above a set threshold, the robot decelerates and continue to 
collect counts from the location of suspected source until its 
presence can be confirmed with high fidelity or refuted. 

We have been able to detect radiation sources in 2D 
demonstration experiments using our movable sensor. Further 
steps include extensions to three-dimensional searches, the use 
of prior knowledge about the search area, as well as the 
introduction of Bayesian statistics for the on-line update of the 

world model. The latter will enable us to map arbitrary 
radiation levels over an area, rather than just confirm the 
presence of a source. We also plan to address a problem of 
navigation in the presence of some realistic obstacles. 

V.  CONCLUSION 
Our strategies can be applied to various nuclear search 

scenarios, for both mobile and stationary detectors, hand-held 
detectors and sensors on robotic platforms. Our methods can 
be used against nuclear smugglers and terrorists, for 
safeguards and non-proliferation treaty monitoring, as well as 
in other situations where radioactive sources need to be found. 
Efficient nuclear search requires using advantages of close 
range detection. In the future nuclear search can be performed 
with a swarm of radiation sensors moving around on robotic 
platforms. Existing capabilities of robotic platforms are not 
adequate for the task, but they are rapidly improving. Dynamic 
interaction between data collection and knowledge extraction 
allows reduction in search time. Smart algorithms are needed 
to perform search in minimal time, with a few false positives 
and false negatives. 
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