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Randomized Receding Horizon Navigation
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Abstract—The note combines (weak) control Lyapunov function-based
nonlinear receding horizon control, with randomized optimization. This
approach is applied to the problem of robot navigation in the presence
of state and input constraints. It is shown that under certain conditions,
relaxing the definiteness requirements on the terminal cost function allows
one to select control inputs through a Monte-Carlo optimization scheme
in a way that preserves the stability and convergence properties of the
closed loop system. While the particular randomized optimization scheme
used here can be substituted for the nonlinear optimal control method of
choice, the introduction of randomization in receding horizon optimiza-
tion is anticipated to offer additional trade-offs between performance and
computation speed compared to the fixed-overhead nonlinear optimal
control strategies typically employed.

Index Terms—Model predictive control; randomized algorithms; robot
navigation

I. INTRODUCTION

In the motivating application, a robot moves between any two con-
figurations in its workspace, under constraints on its state and inputs,
while attempting to optimize some mission performance metrics. The
control strategy can be switching, with the robot dynamics given as

ẋ = fσ(x, u) , (1)

where x ∈ Rn is the state, u ∈ Rm the control input, and
σ ∈ Σ ⊆ R is a controlled switching signal indicating the particular
dynamics currently active. The robot’s workspace is a set W ⊂ Rn
and the system may be constrained to stay clear of the union of
possibly disconnected regions of the state space O ⊂ W representing
obstacles or state constraint sets. The free workspace is then the set
P ,W \O, and the boundary of P is assumed known.

The approach outlined in this note is a blend of control Lyapunov
function-based model predictive control schemes, with navigation
functions and randomized optimization algorithms. What motivates
the search for a solution with these ingredients is the desire to deploy
miniature mobile robots which execute optimal or near-optimal
motion plans with guaranteed stability and convergence properties. A
nonlinear receding horizon architecture is chosen because it allows
the real-time generation of sub-optimal control laws for systems
of the form (1). It has been shown that such architectures, when
combined with control Lyapunov functions (CLFs), can guarantee
closed loop asymptotic stability [2]. The motion planning nature
of the task, as well as the need for a control Lyapunov function,
suggests the integration of navigation functions into the nonlinear
receding horizon framework. Randomized algorithms can then be
used to simplify the online optimization task, and enforce task-
specific constraints.

The use of control Lyapunov functions as terminal costs in receding
horizon nonlinear optimization offers closed loop stability in the infi-
nite horizon [2]–[4], as well as robustness [5]. Enforcing stability by
means of terminal constraints [6] imposes additional computational
overhead. For the unconstrained case, an appropriately long control
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horizon may permit excluding a terminal cost in the objective function
[5], although still useful for numerical conditioning [2].

Randomized algorithms are an alternative to exact analytic or
numerical optimization techniques [7], [8]. The (NP-hard) complexity
of several robust stability design problems [9], motivates the use
of randomized algorithms for control synthesis [10]–[12]. These
randomized approaches offer explicit bounds on the number of
samples required to guarantee specific confidence and accuracy levels.

Robot motion planning in the presence of obstacles is also an NP-
hard problem [13]. To address such problems both purely analytical
[14], numerical [15], randomized [16], as well as hybrid [17], [18]
methods have been proposed, with the latter aimed at addressing the
problem of local minima in the classical potential field approach. In
one of the several available approaches to deal with the problem of
local minima [19], navigation functions are introduced as a special
class of potential functions which can be tuned1 so that the only
minimum is the desired configuration. An additional feature of a
navigation function is that it serves as a natural Lyapunov function
candidate. For time-varying or switching systems, standard Lyapunov
stability conditions impose limitations on the use of navigation
functions, since the gradient of latter cannot be guaranteed to be
non-zero, except for trivial cases.

The technical challenge addressed in this note is that of integrating
nonlinear model predictive control, navigation function-based motion
planning, and randomized algorithms, while preserving the desirable
attributes of the original methods, such as the feedback character of
the control laws, the closed loop stability, the sub-optimality of the
solutions, and the guaranteed constraint satisfaction. Randomization
compensates for inadequate tuning of navigation function parameters,
and allows performance/speed trade-offs in receding horizon by
regulating computational overhead in each loop. Receding horizon
control, on the other hand, preserves the convergence of solutions in
navigation function-based motion planning and allows the simultane-
ous satisfaction of secondary objectives and constraints.

II. NAVIGATION FUNCTIONS AND SWITCHING DYNAMICS

Consider a mechanical system with p ∈ P being the vector of its
generalized coordinates. A navigation function can then be defined
as a total map ϕ : P → [0, 1], [19] which is smooth (or at least
C2), has a unique minimum at a single point pd ∈ P , is uniformly
maximal on the boundary of P , and is a Morse function. It has been
shown [20] that the following construction

ϕ(p) =
‖p− pd‖2

(‖p− pd‖2κ + β)1/κ
, (2)

where β is the product of functions βi = ‖p− pi‖ − ri, each repre-
senting a spherical obstacle of radius ri centered at pi in the robot’s
workspace, can be turned into a navigation function for a sufficiently
large value of κ > 0. For cases where the system dynamics can be
adequately described by ṗ = u, setting u = −∇pϕ(p) stabilizes
the system at pd while avoiding the regions where βi are negative.
In that sense, the navigation function is practically a (local) control
Lyapunov function [21] for the system with state x = (p, ṗ)T , that is,
is a differentiable and positive definite function V : P → [0, 1] for
which infu

n
∂V (x)
∂x

f(x, u)
o
< 0, ∀x 6= 0 . For ϕ(p), this condition

is satisfied almost everywhere in P , with the exception of a set of
measure zero consisting of the saddle points of ϕ. These points might
appear as a small nuisance in the case of continuous-state feedback,

1Although theoretical results guarantee the existence of lower bounds for
the admissible values of the tuning parameters, the tuning process might be
challenging, especially in high dimensional spaces.
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but they present a challenge in the discontinuous case, when the con-
dition on the Lyapunov function is strengthened [22]–[24] in the form
infu

n
∂V (x)
∂x

fσ(x, u)
o
≤ −W (x), with W (x) being a continuous

positive definite function. This condition cannot be satisfied when
navigation functions are used as control Lyapunov functions, unless
one is prepared to exclude neighborhoods of the saddle points. This
motivates one to seek alternative conditions for asymptotic stability
for the case of switching dynamics or discontinuous feedback, which
do not bound the derivative of the control Lyapunov function below
another negative definite function.

Suppose that the switching in (1) is caused exclusively due to a
time-invariant feedback control law u = k(σ;x). The closed loop
dynamics are then written as ẋ = fσ(x), and asymptotic stability
can be guaranteed under the conditions of the following result:

Proposition 1: Let V (x) be a differentiable, positive definite func-
tion that is lower bounded by a class-K∞ function θ(‖x‖). If for
a class-K∞ function γ(·), within each of the switching intervals
(τi, τi+1] in a dwell-time switching signal σ,

max
t∈(τi,τi+1]


∂V

∂x
fσ(x)

ff
<
θ(‖x(τi)‖)
τi+1 − τi

, (3)Z τi+i

τi

∂V

∂x
fσ(x) dt ≤ −γ(‖x(τi)‖) , (4)

then ẋ = fσ(x) is asymptotically stable at the origin.
Proof: Pick an ε > 0 and define a ball Bε , {x ∈ Rn | ‖x‖ ≤

ε}. On the boundary of Bε, V (x) attains a minimum by continuity.
Set Vε , minx∈∂Bε V (x) and define Ωε to be the path connected
component of the set {x ∈ Rn | V (x) ≤ Vε}, which contains the
origin. Let Vδ , Vε − θ(‖x(τi)‖) > 0 and similarly define Ωδ
as the path connected component of the set {x ∈ Rn | V (x) ≤
Vδ} containing the origin. Fit a ball Bδ inside Ωδ , by defining it
as Bδ = {x ∈ Rn | ‖x‖ ≤ minx∈∂Ωδ ‖x‖}. Assume that at time
τi, x(τi) ∈ Bδ . Since Bδ ⊆ Ωδ , V (x(τi)) ≤ Vδ = Vε − (τi+1 −
τi)d, where d , θ(‖x(τi)‖)

τi+1−τi
. For the evolution of V (x(t)) in t ∈

(τi, τi+1) one has V (x(t)) = V (x(τi)) +
R t
τi

∂V
∂x
fσ(x(τ)) dτ and

due to (3), V (x(t)) ≤ V (x(τi)) + d(t − τi). Thus, x(t) ∈ Ωε, for
all t ∈ (τi, τi+1]. In addition, due to (4) x(τi+1) ∈ Ωδ , and an
inductive argument using (3) and (4) shows that x(τk) ∈ Ωδ ⊂ Ωε
for all k ≥ i. Thus stability is established. Note though that the
level sets of V (x) are not necessarily invariant: even if x(τi) ∈
Ωδ , x(t) for t ∈ (τi, τi+1] is not forced to stay in Ωδ as in the
case where V̇ (x) is negative semidefinite. Condition (4) implies the
existence of a converging sequence {V

`
x(τk)

´
}, since V (x) is lower

bounded by 0 away from x = 0 and it is strictly decreasing. It
follows that as k → ∞, the difference between two consecutive
terms ‖V

`
x(τi)

´
− V

`
x(τi+1)

´
‖ should converge to zero. Unless

limk→∞ V
`
x(τk)

´
= 0, this means that γ(‖x(τk)‖) → 0, without

‖x(τk)‖ → 0, which is impossible since γ(·) is a class-K∞ function.
Therefore, {V

`
x(τk)

´
} → 0 as k → ∞ implying ‖x(τk)‖ → 0

when k →∞. Thus, the origin is asymptotically stable.
Compared to [25], Proposition 1 effectively bounds the worst case

increase of V within the switching interval by a class-KL function
of state and dwell time, which forces a predictable and faster rate of
convergence at the origin. It should be noted that in the context of
Proposition 1, the switching signal σ is thought to be controllable:
the designer may regulate the length of the switching intervals to
satisfy (4)-(3).

III. MODEL PREDICTIVE NAVIGATION

In finite horizon optimization, one aims to minimize the functional

JT
`
x, uT (·)

´
,
Z T

0

q
`
xu(τ ;x), uT (τ, x)

´
dτ+V

`
xu(T ;x)

´
, (5)

that quantifies the cost of flowing along a closed loop system
trajectory xu(t;x) starting at x, under the control law uT (t, x),
for a time interval in which t ∈ [0, T ]. The function V (·) in
(5) is an approximation of the tail of the infinite horizon integral,
now truncated at T . The problem is to determine the optimal
control law u∗T , which minimizes the finite horizon cost from x,
u∗T (x; ·) , arg min JT

`
x, uT (·)

´
, giving rise to an optimal finite

horizon trajectory
`
x∗T (t;x), u∗T (t;x)

´
, for t ∈ [0, T ], with x∗T

denoting the optimal closed loop trajectory for that time interval.
In a receding horizon strategy, one uses u∗T (t;x) for t ∈ [0, ζ], with
ζ < T , and then recomputes for a new initial state xu

`
t;x∗T (ζ, x)

´
.

Control Lyapunov functions can be used to approximate the
terminal cost within a finite horizon optimization [3], [4]. Although
relaxed stability conditions have been suggested [5], the standard
assumption for the control Lyapunov function in this framework [2]
is that it is compatible with the incremental cost q(x, u), in the
sense that infu(·)

`
∂V
∂x
f(x, u) + q(x, u)

´
≤ 0. A navigation function

cannot satisfy this compatibility in any small neighborhood of its
critical (saddle) points.

The assumption that follows is used as a fact in [2], because it
can be guaranteed based on the continuity and properness of the
infinite and finite horizon cost functions. We choose to state it as
a working assumption to place emphasis on it, because it is pivotal
in establishing asymptotic stability. Here, Ω is defined as the path
connected component of {x ∈ Rn | 0 ≤ V (x) ≤ cV < ∞}
containing the origin, where cV is a positive constant. (If V (x) is a
navigation function, cV = 1.)

Assumption 1 (Bounds on optimal cost): For all x ∈ Ω and T >
0 there exist positive constants cT and m∞ for which (i) J∗∞(x) ≥
m∞‖x‖2, and (ii) J∗T (x) ≤ cT ‖x‖2.

The next assumption is in fact a stability condition, and it is the
equivalent of the compatibility condition [2, Eqn. (2.4)] for the case
considered here, where a control Lyapunov function is not available:

Assumption 2 (Cost compatibility): The incremental and terminal
costs are compatible in the sense that there exists a feedback control
u = k(x), a K∞ class function γ(·), and a constant ζ > 0 for whichZ ζ

0

q
`
x(τ), k(x(τ))

´
dτ ≤ γ

`
‖x(0)‖

´
≤ −

Z ζ

0

V̇
`
x(τ), k(x(τ))

´
dτ, ∀x(0) ∈ Ω . (6)

Based on these two assumptions, we can state the following results.
Proposition 2: [cf. [2, Theorem 2.2.1]] Suppose that x ∈ Rn and

T > 0 are such that x∗T (T ;x) ∈ Ω. Then, for any ζ(x), and feedback
control u = k(x(t)) for which there exists a K∞ class function γ
satisfying (6) for x ∈ Ω, the optimal cost from x∗T (ζ;x) is such that

J∗T (x∗T (ζ;x)) ≤ J∗T (x)−
Z ζ

0

q(x∗T (τ ;x), u∗T (τ ;x)) dτ . (7)

Proof (sketch): Let (x̃(t), ũ(t)), t ∈ [0, T + ζ], be the
trajectory obtained by concatenating (x∗T , u

∗
T )(t;x), t ∈ [0, T ], and

(xk, uk)(t − T ;x∗T (T ;x)), t ∈ [T, T + ζ]. Consider the cost of
using ũ(·) for T seconds beginning at an initial state x∗T (ζ;x),
and expand it so that

R T+ζ

T
q(x̃(τ), ũ(τ)) dτ +

R T+ζ

T
V̇ (x̃(τ)) dτ

appear explicitly. Noting that the aforementioned term is nonposi-
tive due to (6), JT (x∗T (ζ;x), ũ(·)) is upper bounded by J∗T (x) −R ζ

0
q(x∗T (τ ;x), u∗T (τ ;x)) dτ . The result follows since the optimal

cost satisfies J∗T (x∗T (ζ;x)) ≤ JT (x∗T (ζ;x), ũ(·)).
Although (3) is not explicitly invoked in the following discussion,

it has to be enforced to ensure stability, and satisfaction of the
constraints encoded in V (x) when the latter is constructed as a
navigation function. Specifically, θ(‖x0‖) must be small enough so
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that V
`
x(t)

´
+ θ(‖x0‖) < 1, for all t ∈ [0, ζ]. Also note that ζ can

depend on x as long as ζ(x) > 0, for all x ∈ Ω.
Corollary 1: Suppose the terminal cost function is replaced by

the infinite horizon cost-to-go resulting from the application of an a
priori obtained stabilizing controller that satisfies (6) for a sequence
of control horizons {ζ`}, with terms defined recursively as ζ` =
ζ
`
x
`P`−1

k=1 ζk
´´

. Then (7) still holds.
Proof (sketch): The argument follows almost inductively,

based on the proof of Proposition 2. In this case it is shown
that JT (x∗T (ζ1;x), ũ(·)) = J∗T (x) −

R ζ1
0
q(x∗T (τ ;x), u∗T (τ ;x)) dτ ,

and the proof is completed by noting that J∗T (x∗T (ζ;x)) ≤
JT (x∗T (ζ;x), ũ(·)).

Lemma 1: [cf. [2, Lemma 2.2.1]] Suppose that x ∈ Ω. Then
x∗T (T ;x) ∈ Ω for any T =

P`
i=1 ζi, and for every ` ≥ 1, where ζi

satisfies (6).
Proof: The statement follows directly from the stability argument

in the proof of Proposition 1, once inequality (6) is established.
Proposition 3: [cf. [2, Prop 2.2.2]] Let T > 0, be such that

x∗T (T ;x) ∈ Ω for all x ∈ Γ, where Γ is the path connected
component of Ω in which J∗T (x) is finite.2 Let x0 ∈ Γ and consider a
trajectory (xrh(t), urh(t)), t ≥ 0, resulting from the use of a receding
horizon strategy RH(T, {ζk}) with δk > 0,

P
k=0` ζk → ∞ as

`→∞. Then, J∞(x0, urh(·)) ≤ J∗T (x0).
Proof: The receding horizon strategy defines a sequence of

points {xk}∞k=0 according to xk+1 = x∗T (ζk, xk), starting with x0

so that xk = x(
Pk
i=1 ζi). By the principle of optimality, the cost of

flowing from xk to xk+1 is given by J∗T (xk)−J∗T−ζk+1
(xk+1) ≥ 0.

The total cost of this strategy satisfies J∞(x0, urh(·)) ≤ J∗T (x0),
because J∗T (xk) ≤ J∗T−ζ(xk), for all ζ ≥ 0 and k ≥ 0.

Theorem 1: [cf. [2, Thm 2.2.2]] Let T > 0 and consider the use
of a receding horizon scheme RH(T, {ζk}) with each ζk ∈ (0, T ]
and

Pk
j=0 ζj →∞ as k →∞. Then, for each x0 ∈ Γ, the resulting

trajectory converges to the origin exponentially fast.
Proof: Define the continuous function W (t;x0, urh(·)) ,R∞

t
q(xrh(τ), urh(τ))dτ . By Proposition 3, W (t;x0, urh(·)) ≤

J∗T (xrh(t)), and since RH(T, {δk}) is suboptimal, J∗∞(xrh(t)) ≤
W (t;x0, urh(·)). Now, ∂

∂t
W (t;x0, urh(·)) ≤ − cq

cT
W (t;x0, urh(·)),

and using the bounds of Assumption 1 from the Comparison Lemma
it follows m∞‖xrh(t)‖2 ≤ cT e

− cq
cT

t‖x0‖2, which implies that
‖xrh(t)‖ converges exponentially to the zero.

Note that the terminal cost estimate does not need to be a
navigation function. Rather, any positive definite function satisfying
the requirements of Proposition 1 can qualify as a terminal cost. Thus,
Proposition 1 practically allows the use of a more general class of
potential functions, as long as the dynamics of the system can ensure
the satisfaction of (3) and (4).

IV. RANDOMIZED MODEL PREDICTIVE CONTROL

This section suggests an alternative approach to finite-time nonlin-
ear optimal control design using randomized algorithms. Instead of
numerically computing the finite horizon optimal control law u∗T (·)
one can evaluate probable near minimizers of the finite-horizon cost
JT , using Monte Carlo sampling. Simple probabilistic reasoning
offers (conservative) lower bounds on the sample size which relate to
the volume of the solution space which is missed by the sampling.3

Given that a nominal, feasible and stabilizing solution is available
(the one for which the conditions of Proposition 1 are satisfied), the

2Since V (x) is finite in Ω by definition, this condition depends on how
q(x, u) is defined.

3The sampling algorithm used here is a placeholder for the randomized
algorithm of choice. Its use is motivated by our interest to extend the proposed
method to the case of uncertainty.

randomized algorithm returns an alternative solution that improves
on the performance of the nominal one.

Proposition 4: For a fixed T > 0, and for ζi > 0 for every i ∈
N+, let {ui(x)}∞i=1 be a sequence of controls satisfying (6) and
JT
`
xi+1, ui+1(·)

´
< JT−ζi

`
xi+1, ui(· + ζi)

´
, for all i ∈ N+.

Then xui(t)→ 0 as t→∞.
Proof: Define the sequence of finite horizon costs {ci}∞i=1,

with ci , JT
`
xi, ui(·)

´
, and observe that for T = ζi, ci −

ci+1 >
R ζi

0
q
`
xui(τ ;xi), ui(·)

´
dτ. Condition (6) then ensures that

ci − ci+1 > γ(‖xi‖) suggesting that {ci} is monotonically de-
creasing. In addition, it is nonnegative by definition, and therefore
converges. If that limit is assumed to be bounded away from zero,
then ci−ci+1 → 0, while γ(‖xi‖)→ c > 0, which is a contradiction.
Therefore one has to have ci → 0⇒ q(x, u)→ 0⇒ x→ 0.

Let each feedback control law u = k(x) be parameterized in terms
of a set of control parameters η ∈ H . Thus, given a state x, the finite
horizon cost becomes a function of the parameter (decision) vector
η. If the parameterization chosen is complete, then the optimal finite
horizon cost from state x can be written J∗T (x) = infη∈H JT (η) and
the optimal decision vector η∗ is such that JT (x, η) = J∗T (x).

Assume a probability measure P on H . It is straightforward to
show that if µi, i = 1, . . . , Ns ≥ ln(1/δ)

ln(1/(1−α))
independent and

identically distributed random samples are drawn from H according
to a probability distribution P(η), where α and δ are positive
parameters in the interval (0, 1), then J◦T , mini J(ηi) is a probable
near minimum [8], [11], [26] of J∗T to level α and confidence 1− δ,
in the sense that for every set H̃ ⊂ H measuring P(H̃) ≤ α, one
has P

n
infH JT (η) ≤ J◦T ≤ infH\H̃ JT (η)

o
≥ 1− δ.

Algorithm 1 Randomized optimization

Require: α, δ, JT , P , H , T , ζ, γ, θ, xη , V , V̇ .
Ensure: J◦T and η◦.

1: Ns ← d ln(1/δ)
ln(1/(1−α))

e.
2: η̃ ← ∅
3: repeat
4: Generate Ns−|η̃| i.i.d. samples ηi from H according to P(η)
5: η̃+ ← {ηi | V (xη(ζ, x)) − V (x) ≤ γ(‖x‖) ∧

maxt∈[0,ζ] |V̇ (ηi;x
η(t, x))| ≤ θ(‖x‖)

ζ
}

6: η̃ ← η̃ ∪ η̃+

7: until |η̃| = Ns
8: J◦T ← minη̃ JT (ηi)
9: η◦ ← arg minη̃ JT (ηi)

The algorithm will halt at step 3 if the stability constraints of
Proposition 1 are not satisfied for the number of samples determined
by the choice of α and δ. Variations of the above algorithm could
include an adaptive increase in the number of samples until an
upper bound is reached, which can be associated with the largest
computational cost the control designer is willing to accept. There
will always be a trade-off between performance and the ability to
satisfy the stability conditions on one hand, and the corresponding
computational cost on the other.

V. NUMERICAL RESULTS

The simulation described here is a navigation scenario for an agent
with single integrator dynamics ṗ = u moving in a two dimensional
sphere-world environment (cf. [19]). Here, x = (p, ṗ)T , and the
environment topology captured by a function ϕ of the form (2), which
is not tuned properly to become a navigation function (Fig. 1). As a
result, a local minimum with nontrivial attraction basin exists.

In addition to moving from initial to final configuration, the agent
also needs to minimize the shadowing effect of obstacles to the
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radio signal from a stationary base station, captured by a posi-
tive semi-definite cost function C(x). The combined cost function
for the receding horizon optimization takes the form JT (x, u) =R T

0
{c1‖u(τ)‖2 + c2‖x(τ)‖2 + c3 C

`
x(τ)

´
} dτ + ϕ(x), where ci,

i = 1, . . . , 3 are constants. The input u is parameterized in terms of
a polynomial function basis, and sampling is performed on the space
of the constant coefficients.
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(a) The initial position for the agent is marked by a hollow dot. Its location
after ten cycles is shown by a filled dot and its path is traced by a solid
curve. The two circular obstacles are located at coordinates (−0.2,±0.3),
while the radio base station is at (0, 0.3). The agent starts from within the
attraction region of the local minimum (within the closed contour around
(0.7, 0)) and needs to stabilize at the origin.
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(b) The evolution of optimization costs over time. The change in the rate
of increase of the incremental cost at around 0.6 sec is due to the agent
establishing line-of-sight with the base station. Note also the slight, short-
term increase in the terminal cost around the same time —possibly due to the
maneuver for obtaining better signal. This temporary increase is permitted
by Proposition 1.

Fig. 1. The communication-aware navigation task for a mobile agent is
performed using randomized receding horizon optimization.

Typical steepest descent along the gradient of φ results in the
agent being trapped at the local minimum configuration. In our
numerical tests, however, there were consistently samples that steered
the agent away from the basin, although the randomized nature of the
design offers no guarantee that such samples will always be found.
Randomization cannot always compensate for a bad design.

VI. CONCLUSIONS

Lyapunov-based conditions for asymptotic stability of switching
nonlinear systems can be relaxed, so that stability and convergence
of solutions in receding horizon optimization can be guaranteed with
a terminal cost that does not have a negative semi-definite derivative.
Instead, the CLF-like condition can be replaced by an integral
inequality ensuring that the function decreases significantly between
switching times. This fact alleviates the consequences on convergence
of systems steered using inadequately tuned navigation functions,
and overcomes a limitation to their use as receding horizon terminal
cost functions. The application of a randomized algorithm suggests
an alternative to the use of Newton-based nonlinear optimization
algorithms in model predictive control while preserving the stability
and convergence properties of the receding horizon strategy. It is
conceivable that in a future implementation randomized and gradient-
based trajectory optimization are combined; one possible way would
be to locally optimize each sample input trajectories using projection
operators [27], an approach which will also ensure that the inputs
tested for optimality are all feasible.
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