
Bounding the uncertainity in nonlinear robust model predictive control
using sphere covering

Shridhar K. Shah and Herbert G. Tanner

Abstract— We consider nonlinear continuous-time systems
with additive model uncertainty. We design controllers based
on a receding horizon optimization strategy, and we propose
a new method to bound the uncertainty along the predicted
trajectories. The bounds derived here are less conservative
compared to existing methods, because the proposed method
limits the exponential growth of the invariant cones around the
nominal predicted trajectories. This is achieved by applying
results from computational geometry, which allows us to cut
and reset the width of the mouth of these cones through
tunable control parameters. The method does not impose
specific constraints on the structure of the uncertain term in
the equations, other than assuming that it is locally Lipschitz
and upper bounded.

Index Terms— Robust model predictive control, nonlinear
systems, computational geometry

I. INTRODUCTION

Model predictive control has been found to be a reasonable
and practical relaxation to the problem of infinite (time)
horizon optimal control. Developed within control engi-
neering practice, it has found applications in a wide range
of problems, from chemical process control, to automotive
[1] and robotics [2]. For linear dynamical systems, the
theoretical framework of model predictive control is well
developed and closed form solutions for the optimal control
policies exist [3]. For nonlinear systems, however, due to the
inherent complexity of the optimal control problem, model
predictive control is still an active area of research [4].

Having an accurate system model is not always possible.
Robustness to model uncertainties is therefore an important
issue in control design, and model predictive control is no
exception. There are different approaches in the literature
to provide robustness within a (nonlinear) model predictive
control framework. These can broadly be categorized as
follows: (i) min-max optimization based approaches [5],
[6]; (ii) approaches based on adaptive control, for uncer-
tainties represented as unknown constant parameters [1];
(iii) auxiliary-controller based methods, where a robustifying
feedback control action is pre-computed based on an offline
characterization of uncertainity [7]; and (iv) using worst-
case bounds around nominal trajectory computed based on
bounds on the uncertain terms in the dynamics and Lipschitz
constants for the nominal system. [8]. For a paper of this
length, the literature coverage is necessarily incomplete, and
we refer readers to [9], [10].
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Naturally, existing methods have limitations. Min-max
approaches [5], [6] tend to be quite computationally de-
manding for online implementation. The use of auxiliary
robust feedback [7], [8] to restrict the actual trajectories
within invariant tubes around the nominal trajectory under
the predicted optimal feedforward control is a reasonable
solution, however, for general nonlinear systems —especially
those subject to nonholonomic constraints— one may not
have existence guarantees for these auxiliary inputs. In
addition, as time evolves, worst-case bounds derived using
Lipschitz constants [8] can become overly conservative to
be practically useful. Finally, if the receding horizon control
policy for the nominal system is not known before hand
(e.g., in the form of fixed state feedback control gains) it
is not clear how it can be computed on-line with some of
the existing robust MPC methodologies. That is because in
a real-time implementation, the system cannot wait until the
next update time to compute the control input that is to be
applied then; it should have the control law computed within
the previous time step. If however it cannot be sure of where
it is going to be at the end of this time step, planning of the
trajectory beyond that point becomes problematic.

The contribution of this paper is the use of results from
computational geometry, in conjunction with Lipschitz con-
stant based methods, to (i) offer a clear way to compute the
nominal receding horizon policies in real time, and (ii) bound
the uncertainty around nominal model predictive control
trajectories in a less conservative, and adjustable way. By
adjustable, we mean that the size of the invariant sets (or
cones) can not only be decreased by decreasing the control
horizon, but can also be reset on-line at the end of each
control horizon to a user-defined upper bound. To achieve
this, we use results on variants of the sphere covering prob-
lem, specifically solutions to the lattice covering problem, to
decompose the invariant set at the end of each control horizon
into much smaller sets, out of which a different nominal
solution can be computed. In that way, at the end of each
control horizon, the uncertainty bound is at most as big as
the the ball which the actual solution has landed at.

The sphere covering problem is a well studied problem
in computational geometry [11]. Solutions to this problem
are extensively used in computer science, in the context
of coding theory, and numerical results are available [12].
The sphere covering problem can be defined as “finding the
minimum number of spheres of specific size to cover a given
larger sphere.” The lattice covering problem, on the other
hand, is a special case of the sphere covering problem, in
which the spheres are constrained to lay on the vertices of



some lattice, and the problem is to find the optimal lattice
structure [13]. Details on the solution can be found in [13]
and are beyond the scope of this paper. There exist solutions
for spaces of upto twenty four dimensions, and a list of the
best known solutions can be found [14]. More details on
these problems are given in [15].

The approach to bounding uncertainty that this paper
outlines, starts by constructing invariant sets for future states
around the trajectory of a nominal model under a given
control input, using Lipschitz constants of the terms that
describe the nominal system and the uncertainty model in
the expression of the perturbed dynamics. Up to this point,
the method is similar to that of [8]. We expand these sets to
the full length of the control horizon, at which point we
uniformly divide the set of all possible states at the end
of the control horizon into finite smaller balls, based on
the known (and off-line computed) solution of the lattice
covering problem for the specific dimension, applied in
scale to the specific case. The idea now is that we can
use the control horizon to compute nominal (sub-optimal)
trajectories originating from the center of each one of the
balls covering the invariant set at the end of the control
horizon. At that moment, the actual (perturbed) trajectory
is bound to land in one of these smaller sets, and we will
already have a (closest) pre-computed sub-optimal policy
to use during the next step of the receding horizon step.
What is different compared to [8], is that as soon as the ball
containing the state is identified, the size of the invariant
cone automatically shrinks to that of the small ball, and
in subsequent time, the Lipschitz constant based estimates
build on the small covering sphere rather than the full mouth
of the invariant funnel. With successive application of this
algorithm, we achieve a constant worst-case upper bound
on the perturbed trajectories, without having to assume the
existence of any auxiliary input. We demonstrate the method
using a two-dimensional example and employ the best known
2D lattice covering (hexagonal packing).

The rest of the paper is organized as follows: Section
II presents the model predictive control design problem
formulation and introduces the basic common assumptions
in robust model predictive control. Section III describes the
proposed approach, and the coverage of the wide “mouth” of
the invariant cones using the solution to the lattice covering
problem. Section IV presents a new definition for optimality
in a robust control framework, and shows formally why
this definition is well posed. Our computational example
follows in section V, and conclude the paper with section
VI that summarizes the results and outlines ongoing research
directions.

II. PRELIMINARIES

A. Nominal model predictive control

Let the nominal (unperturbed) system dynamics be of the
form

˙̂x = f(x̂, u) , (1)

where x̂ ∈ Rn, is the state vector and u ∈ Rm is the control
input, and m,n ∈ N+. The function f : Rn × Rm → Rn is
assumed to be locally Lipschitz:

Assumption 1: Function f(x, u) is Lipschitz in x, uni-
formly in u on the domain X×U, satisfying that ∀x1, x2 ∈ X,
and u ∈ U

‖f(x1, u)− f(x2, u)‖p ≤ L‖x1 − x2‖p ,
where L is the Lipschitz constant for f on X, with respect
to some p-norm.

Given an initial condition x0 and a control input u(·), the
solution of system (1) at time t of (1) under input u(t), which
passes through x0 for t = 0 is defined as

x̂u(t;x0) = x0 +
∫ t

0

f
(
x̂u(τ ;x0), u(τ)

)
dτ .

We use the ˆ notation to denote the trajectories of the nominal
system (1) and distinguish them from those of the perturbed
dynamics, which will be introduced shortly.

From an (initial) state x and for a specific input function
u(t), we define an (infinite horizon) cost as an integral over
the trajectories x̂u(t;x) of (1), given by a functional

J(x, u(·)) ,
∫ ∞

0

q
(
x̂u(τ ;x0), u(τ)

)
dτ , (2)

where q(·, ·) is a positive semi-definite function of both of its
arguments, referred to as the incremental cost. The cost (2),
computed over an infinite time horizon, can be approximated
by the finite horizon cost, expressed as

JT (x, u(·)) ,
∫ T

0

q(x̂u(τ ;x), u(τ))dτ+V
(
x̂u(T ;x)

)
, (3)

where V : Rn → R+ is a function which approximates
the tail of the infinite horizon integral in (2), and to ensure
stability in the infinite horizon [16], it can be chosen as a
control Lyapunov function which is also compatible with
incremental cost q(·, ·) in the sense that

min
u

(V̇ + q)(x, u) ≤ 0 . (4)

It can then be shown that under some additional reasonable
assumptions on the existence of quadratic upper and lower
bounds for the optimal and finite horizon costs [16], the
system (1) is exponentially stable at the origin. In this
context, the optimal finite horizon cost is be defined as

J∗T (x) , inf
u(·)

JT
(
x, u(·)

)
.

In what follows, we assume that states should remain
inside an invariant set W ⊂ Rn, and satisfy the constraint
x(t) 6∈ O ⊂ Rn for all t > 0. In view of this, the admissible
subset of the state space can be expressed as W \O. It has
been shown [2] that state constraints of this type can be
incorporated in the framework of [16] if V is constructed as
a navigation function modeling O as an “obstacle” region,
and if in addition, either certain neighborhoods of the saddle
configurations of V are excluded, or the stability condition
(4) is relaxed into an integral version [2]. For the sake of



simplicity, and trying to keep in this paper self-contained, we
will assume that appropriate neighborhoods of the isolated
points where ∇V (x) = 0, x 6= 0, are excluded.

B. Robust model predictive navigation

Let us now consider the perturbed version of (1) in the
form of the following continuous-time nonlinear system with
additive uncertainty,

ẋ = f(x, u) + g(x, u) , (5)

where, as before, x ∈ X ⊆ Rn is the state and u ∈ U ⊆
Rm is the control input. The vector-valued function g(·) can
represent unmodeled dynamics. Obviously, g(·) is unknown;
what we assume that we know about g(·) is that its norm
is upper bounded for all time and states by some known
positive constant

‖g(x, u)‖ ≤ µ, ∀x ∈ Rn, µ > 0 . (6)

For the sake of having well defined trajectories for (5) in the
classical sense, we will assume that g(·) is locally Lipschitz
in x, uniformly in u.

For an initial condition x0 and a control input u(·), the
trajectory of (5) can now be similarly to (1), defined as

xu(t;x0) = x0 +
∫ t

0

f
(
xu(τ ;x0), u(τ)

)
dτ

+
∫ t

0

g
(
xu(τ ;x0), u(τ)

)
dτ . (7)

The finite horizon cost for the system (5) is defined
similarly as (3)

JT
(
x, u(·)

)
,
∫ T

0

q
(
xu(τ ;x), u(τ)

)
dτ + V

(
xu(T ;x)

)
.

However, the state trajectories xu(τ ;u), τ ∈ [0, T ] cannot be
known a priori, due to the effect of uncertainty. For a given
time instant t, the set of possible states given any locally
Lipschitz function g(·) satisfying (6), can be expressed as

Xf (t;x0) =
⋃

g(τ);τ∈[0,t]

xu(t;x0) .

C. Continuous dependence on initial state

It is straightforward to prove analytically the intuitive
thought that for “small” uncertainties, the trajectories of (1)
and (5) stay “close” to each other.

Theorem 1 ( [17]): Let f(t, x) be piecewise continuous
in t and Lipchitz in x on [t0, t1]×W with a Lipchitz constant
L, where W ⊂ Rn is an open connected set. Let x(t) and
x̂(t) be the solutions of

˙̂x = f(t, x̂) , x̂(t0) = x̂0 and
ẋ = f(t, x) + g(t, x) , x(t0) = x0 ,

respectively, such that x(t), x̂(t) ∈ W , for all t ∈ [t0, t1].
Suppose that

‖g(t, x)‖p ≤ µ, ∀(t, x) ∈ [t0, t1]×W ,

for some µ > 0, and that

‖x̂(t0)− x(t0)‖p ≤ ε .

Then ∀t ∈ [t0, t1],

‖x̂(t)− x(t)‖p ≤ ε exp[L(t− t0)] +
µ(exp[L(t− t0)]− 1)

L
.

III. INVARIANT SETS OVER THE CONTROL HORIZON

To facilitate the discussion that follows, let us introduce a
set operation.

Definition 1 (Minkowski sum): Given A ⊂ Rn and B ⊂
Rn, their Minkowski sum is defined as

A⊕ B , {z ∈ Rn | ∃x ∈ A, y ∈ B : z = x+ y} .
The Minkowski sum is probably a more formal and general
way of expressing what is usually denoted in literature as
x+ B where x is a vector and B is a set (typically a ball).

A. Invariant sets

As illustrated in figure 1, under the influence of the
uncertain term in (5), actual trajectories xu(t;x0) diverge
from the predicted nominal trajectory x̂u(t;x0) originating
from a given point x0. The Lipschitz constant L is used to
construct bounds on how far away from x̂u(t;x0), perturbed
trajectories xu(t;x0) can be.

Let us assume that the initial state at time t0, x0 = x(t0)
is not known exactly, but rather x0 ∈ {x̂0}⊕Bε0 , where Bε0
denotes a ball of radius ε0 ≤ ε and {x̂i} is the center of
closest small ball from current state at ith control horizon
and was used as initial points for computation of selected
nominal trajectory. Based on theorem 1, the state xu(τ ;x0)
at time τ = t is inside the set

Xf (t;x0) = {x̂u(t;x0)} ⊕ Λ(t) ,

where,

Λ(t) =
{
z ∈ Rn : ‖z‖ ≤ εeL(t−t0) +

µ(eL(t−t0) − 1)
L

}
.

For example, the leftmost circle in figure 1 would correspond
to {x̂u(δ, x0)} ⊕ Λ(δ), whereas the middle cone would be
expressed as Xf (δ;x1) = {x̂u(δ, x̂1)} ⊕ Λ(t) where ‖x̂1 −
x(δ)‖ ≤ ε.

x(0)

x(δ)

x̂(δ)

x̂1

x(2δ)

x̂2

x̂(2δ|x̂(δ) = x̂1)

x(3δ)

x̂(3δ|x̂(2δ) = x̂2)

Fig. 1. Invariant sets at the end of each control horizon of length δ. Nominal
trajectories are shown in dashed pointed lines, whereas actual trajectories
are depicted solid. Around each terminal point x̂(δ) of a nominal trajectory
for the length of a control horizon, a ball is centered and shown in dashed
outline, containing all possible perturbed solutions x(δ) after time δ. The
dashed curves that surround each ball mark the boundaries of the invariant
set along each control horizon.



As figure 1 hints at, the growth of sets Xf (δ;x0) with time
can be restricted, if the initial state at the beginning of the
next control horizon is known to an accuracy ε0. Then the
diameter of the set Xf (δ+∆t;x0), for a small ∆t > 0, does
not need to be larger than that of Xf (δ;x0); it can actually
shrink back to kε, where k is some pre-determined constant.
The availability of state feedback at regular periods of (at
most as big as) the control horizon, makes this feasible.

The challenge presented by on-line computation of reced-
ing horizon policies is that the “new” policy for the control
horizon (t+ δ, t+ 2δ) needs to be precomputed in the time
interval (t, t + δ) and be available for implementation at
t = (t+ δ). But if the “initial” state for the control horizon
(t + δ, t + 2δ) is not known due to uncertainty, it is not
clear how the receding horizon policy can be computed. Both
issues, keeping the uncertainty bounds constant and enabling
the application of (nominal) receding horizon policies com-
puted on-line, can be addressed if the set Xf (t + δ, x0) is
decomposed into balls Bi, i = 1, . . . , N , and control policies
for the receded prediction horizon (t+ δ, t+ δ+ T ) starting
at each ball center, are computed during the time period
(t, t+ δ).

To ensure that the starting point of each precomputed
policy is not more than ε away from the actual state of the
perturbed trajectory xu(t+δ;x0), the balls need to be chosen
so that any point in Xf (t + δ, x0) is not more than ε away
than a ball center. If xi denotes such the center of a ball Bi.
Then for a given set Xf , the problem is formulated as

Find xi ∈ Xf , i = 1, 2, .., N,
s.t. ∀x ∈ Xf , inf

xi
‖x− xi‖p ≤ ε .

The following section presents a solution to this problem,
using existing results from computational geometry.

B. Getting a constant bound on uncertainty

The problem stated in section III-A, is an instance of the
well known sphere covering problem, for which the optimal
solution is known for certain dimensions [11]. Unfortunately,
computing these optimal solutions —even when such a solu-
tion is known to exist— is quite computationally demanding
to find. There is a variation of the sphere covering problem,
known as the lattice covering problem [13], restricts the
centers of the spheres to form a lattice. Optimal solutions
to the lattice covering problem are known for spaces of
dimension up to 24. What is more, the optimal lattices can be
computed off-line for a specific dimension, and then scaled
and fitted in place at every Xf .

Here, we are interested in lattice covering solutions. For
the two-dimension cases, as the one treated in section V,
the best known lattice covering is the hexagonal lattice [14]
as shown in figure 2. Figure 2 shows the solution N = 7
obtained for r = R

2 .
Any perturbed trajectory xu(τ ;x{k}), τ ∈ [0, δ] of system

(5) will land within the ball Xf (δ;x{k}) at the end of a
control horizon τ = δ. If it is given that for some xi ∈

R = ε exp[Lδ] + µ
L [exp(Lδ)− 1]}r = R

2

Fig. 2. Hexagonal lattice covering in two dimensions.

Xf (0;x{k−1}), it is ‖xi − x{k−1}‖, then setting

r := ε , R := ε eLδ +
µ(eLδ − 1)

L
, (8)

yields the following expression for the minimum number of
spheres1 needed to cover the ball Xf (δ;x{k}):

N ≥ 2π
3
√

3

(
eLδ +

µ(eLδ − 1)
Lε

)2

. (9)

The right hand side of (9) is actually a lower bound on
the spheres of radius ε that are needed in general case
not necessarily a lattice solution. It should be noted that
actual number of balls required will be larger for a lattice
solution. Also depending on the dimension of the space in
which the balls are embedded, the optimal lattice structure
differs. Hence, the calculation of number of balls will differ
for different cases. If, however, (lattice) optimality is not
required, one can pick their favorite lattice structure, and
just scale it appropriately so that they fit at least as many as
N small balls in the bigger ball of radius R.

C. The interplay between δ and ε

If the system (5) is subject to constraints of the form
x(t) 6∈ O ⊂ Rn, then it may be of interest to be able to
ensure that perturbed trajectories remain feasible, at least
over the control horizon. It follows that for a control horizon
δ, and from an initial state for the predicted trajectories x0,
one needs to verify that⋃

t∈[0,δ]

Xf (t;x0) /∈ O .

With the proposed approach this is possible, either by ad-
justing the length of the control horizon δ or the uncertainty
bound ε over the initial state at the beginning of a predicted
nominal trajectory. In view of (8), a decrease of either δ or

1For the two-dimension cases, the minimum number of disks required to
cover a disk of radius R, over all possible radii r ≤ R in limit is given by
[18]

N ≥
2π

3
√

3

„
R

r

«2

.

which represents the unavoidable overlapping of disks. This arrangement
does not necessarily form a lattice but gives a lower bound on the minimum
number of disks in general case.



ε results in a decrease of the radius R of Xf . The control
horizon δ influences R more strongly than ε, but in general,
for a given value for R, a smaller value for one parameter
allows a larger value for the other. Any reduction, however,
comes at a cost: reducing δ means that the system has less
time to compute the policy for the next control horizon;
reducing ε means that there are more spheres covering the
next ball Xf and thus, more predicted trajectories to compute.
There are thus trade-offs, and the appropriate choice of δ and
ε depends on the particular implementation.

IV. FEASIBILITY AND OPTIMALITY

Stability of a model predictive control scheme with (5),
cannot be ensured based on (4) alone. In addition, the
presence of state constraints raise the issue of trajectory
feasibility. We formalize trajectory feasibility as follows.

Definition 2 (Feasibility): A trajectory x(t) given in (7),
is feasible for interval [t0, t1] if ∀t ∈ [t0, t1], x(t) ∈ W \ O.

Stability and convergence for the closed-loop (5) under
a model predictive control strategy is beyond the scope of
this paper. The remaining of the section outlines briefly
our intended approach, which involves strengthening (4) as
follows.

Assumption 2: For (5) there exists a robust-control Lya-
punov function and ∀g(·) and x(t) ∈ Xf , ∃u ∈ Rn such
that

min
u(·)

(
∂V

∂x
(f + g) + q

)
(x(t), u(t)) ≤ 0, ∀t > 0 . (10)

It has been noted [9], that in the presence of uncertainty,
the principle of optimality cannot be invoked in general.
Motivated by this fact, and as part of an ongoing robust
stability analysis of a CLF-based model predictive control
strategy for (5), we here introduce an alternative notion of
optimality for the cost.

Definition 3 (Optimality): A trajectory x(t) given in (7),
is optimal for interval [t0, t1] if ∀t ∈ [t0, t1] and ∀u(·) ∈ Rm,
∃u∗(·) and ∃g∗(·) such that

J̃∗T (x, u(·)) , inf
u(·),g(·)

JT (x, u(·)) . (11)

What (11) suggests when considering optimizing a finite
horizon cost in the presence of uncertainty, is to treat g(·)
as if it were an input. Instead of planning for the worst,
(11) takes into account the best possible scenario for the
uncertainty to define the optimal cost. This way, the optimal
finite horizon cost will always be the lowest for any choice of
control and occurrence of g(·). In this setting, we can prove
that the use of navigation functions in the role of control
Lyapunov functions as suggested in [2] results in optimal
trajectories which are well defined.

Lemma 1: Given (10), if V is a navigation function attain-
ing a maximum uniformly on the boundary of O, then the
optimal trajectory defined implicitly through (11) is always
feasible.

Proof: Suppose that at initial time t0 the state is in
the feasible workspace W \ O, but optimal trajectory is
infeasible. This means that x(t0) ∈ W \ O, but x(t) ∈ O
for some time t ∈ [t0, t0 + δ]. If V is a navigation function,

there must be V (x(t0)) < V (x(t)). However, V is a robust
Lyapunov function, which means that ∃u(·), such that ∀g(·),(
∂V
∂x (f + g) + q

)
(x(t), u(t)) ≤ 0. But if this condition

holds for all g(·), it must also hold for the best-case g∗(·)
for which the optimal trajectory is defined. Thus,(

∂V

∂x
(f + g∗) + q

)
(x, u) ≤ 0 . (12)

Now since for every x, (12) must hold for some u,
and given that whenever V increases, JT increases too
(because the incremental cost is always increasing), the
optimal control input u∗(·) should be such that ∀x,(
∂V
∂x (f + g∗) + q

)
(x, u∗) ≤ 0. But then, if V always

decreases along an optimal trajectory, it is impossible for
V (x(t)) > V (x0), for any t > 0, which is a contradiction.

It should be noted, however, that unless the model pre-
dictive control policy is designed to account for the worst
possible case of g(·), as in the min-max based approaches,
the perturbed closed-loop trajectories cannot be guaranteed
to be feasible.

V. EXAMPLE

Consider a planar mobile robot, which needs to be stabi-
lized at the origin of R2, while avoiding a circular region O1

of radius 0.1 around (0.2, 0.3) and staying always within a
disc of radius 1, centered at the origin, the complement of
which in R2 is denoted O0. The dynamics of the robot is
that of a single integrator, perturbed by an uncertain term ∆

ẋ = u(x, t) + ∆, x(0) = x0 ,

where x represents the position of the robot on the plane,
and u(x, t) is the control law. The term ∆ is considered
unknown, but for the purposes of this example it is taken
as ∆ = 0.1 sin(x0 − x); thus, µ = |∆| ≤ 0.1. Define a
navigation function [19] φ(x) on R2, having the form

φ(x) =
( ‖x‖2κ
‖x‖2κ + β0β1

) 1
κ

,

where κ = 2.3, and β0 = 1− ‖x‖2, β1 = ‖x− x1‖2 − 0.12

with x1 = (0.2, 0.3). The robot is controlled using u(x) =
−K∇φ(x). Constant K is a gain taken 0.01, which defines
the speed at which the robot is traveling. From that, the
Lipschitz constant of the nominal system dynamics on R2 \
(O0 ∪ O1) is estimated at L = 3.

The nominal and perturbed trajectories are calculated over
the period of two control horizons each of size δ = 0.1. With
the initial condition known exactly, the radius of Xf (δ; x0)
is found as R{1} = µ

L (eLδ − 1) = 0.0117. Let ε = 0.0117,
so that the first ball Xf does not need to be covered. En
route, the robot computes its control input for the next control
horizon; without being able to predict exactly where it is
going to land in Xf (δ; x0), it computes this input based on
the nominal dynamics and assuming that it starts its second
control horizon starts at the center of Xf (δ; x0).

At the end of the first control horizon, after time δ, figure 4
shows that the robot slightly overshot its prediction, but still
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Fig. 3. Contour lines of a navigation function with one spherical obstacle
at (0.2, 0.3) with radius 0.1. The boundary of the workspace is a circle of
radius 1.0, while the desired position is the origin. The initial position for
the system is marked with a dot, while the nominal and perturbed trajectories
are shown by dotted and solid lines respectively; the × marker indicate the
end of a control horizon.

landed within the ball Xf (δ; x0) of radius 0.0117. At time δ,
the robot implements its precomputed policy for the period
[δ, 2δ], and based on its nominal model it predicts the center
of Xf (δ; x{1}), which now has a radius R{2} = R{1}eLδ +
µ
L [eLδ − 1] = 0.0275. To cover Xf (δ; x{1}) with balls of
radius ε = 0.0117 we need N = 13 such balls (figure 4).
From the center of each one of these balls, a new receding
horizon policy can be computed. When the robot arrives at
Xf (δ,x{1}) it can pick the policy that is associated with
an initial condition at the ball center which is closer to its
current position. In Fig. 4, that center is marked with a small
red * marker. Proceeding this way, the actual state at the end
of each control horizon is not more than R = εeLδ+ µ

L [eLδ−
1] = 0.0275 from the predicted state at that time.

VI. CONCLUSIONS AND FUTURE WORK

Using known results from computational geometry it
is possible to keep the bounds of uncertainty around the
predicted trajectories at the end of each control horizon,
bounded. The uncertainty bound is tunable, and depends on
the length of the control horizon, and the number of sample
trajectories computed from that point on, which is ultimately
related to the amount of additional computational overhead
that can be afforded in order to keep the uncertainty from
growing exponentially. Ongoing work is along completing
a framework for robust model predictive control based on
navigation functions in the role of robust control Lyapunov
functions. Along these lines it is expected to use lattices
in more than two dimensions, in which case the trade-
offs between the additional computational overhead and the
reduction in the uncertainty cones will be revealed.
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Fig. 4. An scaled portion of Fig. 3, showing the predicted (dashed) and
perturbed (solid) trajectories more clearly, along with the sphere covering.
At the end of the first control horizon, the actual state is within R = 0.0117
distance from the predicted, with the bound marked by a green circle. At
the end of the second control horizon, the radius of the uncertainty region
has grown to R = 0.0275, and N = 13 smaller balls of radius r = 0.0117
are used to cover it.
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