Dynamics-compatible potential fields using stochastic perturbations
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Abstract— This paper suggests a method for numerically
constructing almost globally converging artificial potential fields
for motion planning, in a way that ensures that the resulting
gradient field is compatible with the dynamics of the navigating
robot. Convergence to an arbitrarily small destination set can
be guaranteed, and the size of the destination set can be reduced
at the expense of additional off-line computational time. The
construction is based on the solution of the Hamilton-Jacobi-
Bellman (HJB) equation associated with a related stochastic
optimal control problem. This partial differential equation
(PDE) is solved numerically by simulating paths of the system
with Gaussian random perturbation applied to the input. The
resulting control laws are optimal in terms of the magnitude
of control actuation. The method is applied to the case of a
Dubin’s car navigating amongst obstacles.
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I. INTRODUCTION

This paper describes a stochastic simulation method that
builds a potential field for robot navigation, which not only
is free of local minima, but also provides directly imple-
mentable state feedback laws ensuring convergence to goal
sets with minimum input effort. The control laws constructed
are compatible with the dynamics and differential constraints
of the system, since the latter are taken directly into account
during the construction process. The result is a numerical
method for the construction of input-optimal feedback mo-
tion plans with guaranteed convergence properties, which are
customized to the system’s dynamics and have no need for
manual parameter tuning.

The connection between the hitting probabilities of ran-
dom processes and artificial potential fields has long been
recognized [1]. While it is possible to generate optimal
feedback motion plans by solving the HJB PDE [2], [3],
analytical solutions of this partial differential equation cannot
be obtained in general. Numerical solution methods on
a discrete grid space can be constructed using dynamic
programing [4]; the latter reference contains a comprehensive
literature review on the issue, which cannot be matched here
due to space limitations. The approach of [4] allows a few
algorithmic improvement options to speed up the computa-
tion of the solution to the HJIB, and results in a numerical
potential field. More recent approaches [3] exploit advances
in the field of numerical solutions of PDEs to scale up the
dimension of the state space of the underlying (generally,
nonlinear) dynamical system. Kinodynamic motion planning
[5], [6] is another approach that incorporates part of the
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dynamics of the system in the resulting open-loop reference
trajectories. These motion references have to be tracked using
a separate trajectory tracking controller. If one prefers a one-
stage approach like the one in [3], [4], an available alternative
is to learn a navigation function (a particular type of potential
function with guaranteed absence of local minima [7]) based
on experimentally measured feasible system trajectories [8].
In contrast to the preceding approaches, the latter makes no
assumption regarding any knowledge of obstacle locations,
and instead approximates an obstacle function component of
the navigation function, through the solution of an inverse
problem. The desirable feature of absence of local minima
is also present in harmonic potential fields [1], obtained
through the solution of a Laplace PDE [9]. This class of
methods are inspired by vector fields associated with physical
phenomena such as fluid flow [10] and heat conduction
[11], giving local-minima-free potential fields with slightly
different properties each time.

Regarding the latter approach, one of the common lim-
itations in harmonic potential field methods is that they
do not take into account the system’s dynamics during
the construction process; rather they focus on the topology
of the obstacle-free workspace. As a result, the resulting
potential field is not compatible with the system dynamics
in general (cf. [3] for exceptions). The learning approach of
[8] on the other hand, which does incorporate some dynamic
effects through the experimental data that it uses, requires
a sufficient number of successful system runs in order for
this body of data to become available. Collecting this data
may be difficult or labor-intensive, albeit possible. Still, the
method cannot guarantee that the resulting potential field is
completely compatible with the system dynamics, and there
is no apparent guarantee of optimality of the derived control
law. Kinodynamic motion planning methods are particularly
capable of handling large-dimensional problems, but they are
point-to-point methods; that is, they solve the problem of
navigating from point A to point B. If a feedback strategy is
to be generated using this method, the process needs to be
repeated from all practically possible initial conditions. In
addition, while the reference trajectories themselves might
be time-optimal, the performance of the required trajectory
tracking controller may not be. These methods have a history
of application for motion planning in different type of robotic
systems [4], [6]. However, these tools do not offer a one-
stage optimal motion planning feedback control strategy,
which is directly implementable on the system dynamics
without the need for prior numerical or experimental testing.

Earlier numerical solution approaches to the HJB PDE
[4] fit the stated problem specifications; on a closer look,



though, it is not clear how dynamic effects such as system
inertia is sufficiently captured in the one-step solution com-
putation (between neighboring grid nodes). Furthermore, and
although it might be possible in principle to specify goal sets
yielding full-state convergence for the system at hand, this
has not been explicitly done—unicycle dynamics are steered
to a ball around the goal point with arbitrary orientation.
Finally, the cost in computation time imposed by executing
the dynamic programming algorithm is a fixed overhead,
which might not be suited for real-time implementation on
vehicles with limited computational capabilities. More recent
developments [3] directly address the issue of incorporating
system dynamics in the resulting potential field, offering
one of the most advanced solutions to date, with the only
potential limitation being that sophisticated numerical PDE
solvers are brought to bear.

The method proposed in this paper offers a straightforward
alternative to direclty involving PDE solvers, by approximat-
ing the solution of the HIB through a process of stochastic
simulation on the basis of the Feynman-Kac lemma [12].
Just like [3], the motion planning problem is being mapped
to a stochastic optimal control problem, but from that point
on the solution approach diverges. The stochastic optimal
control formulation, together with the specific structure of
the resulting stochastic HIB equation, affords a linearization
of the PDE through a logarithmic transformation. Then,
application of the Feynman-Kac lemma [12] permits an
approximation of the solution to the HJB PDE through
numerical simulation of an associated stochastic differential
equation (SDE). It appears that this specific formulation
permits numerical solutions in dimensions slightly higher
than alternative constructions based on the deterministic
version of the HIB.

The logarithm transform used to linearize the HJB equa-
tion associated with the stochastic optimal control problem
appears in [13]. Based on this transform, path integral meth-
ods have been developed to solve the PDE [14]. Different
variations of this path-integral method for the solution of
stochastic optimal control problems have been explored,
for reinforcement learning [15], variable stiffness control
(equivalent to automatic tuning of PD gains) [16], and risk
sensitive control idea [17]. To a great extend, path integral
tools [14], [15] are used to learn control strategies to follow
desired trajectories, and do not naturally lend themselves
to applications in feedback motion planning problems. To
achieve this, we deviate from the classic path integral formu-
lation, and instead use the notion of exit time. A stochastic
optimal control problem with exit time was considered in
[18]. The introduction of the exit time allows us to simulate
an SDE, which is truncated at the exit time and derive a
solution of the related PDE on which to base our poten-
tial function. These ideas have been explored for enabling
stochastic nonholonomic systems to navigate in constrained
environments by transitioning between waypoints in a re-
ceding horizon fashion [19]. In that later work, however,
the model of the vehicle was stochastic, orientation was
ignored, and local navigation between obstacles did not have

to consider collisions to obstacles. Here, in contrast, the
system is deterministic (its stochastic extension is used only
for design) and obstacles are interspersed between initial and
desired poses.

The method proposed in this paper is associated with
computation effort that is tunable; obviously, the price of
reducing computation is less accuracy and sparser poten-
tial field representation. In addition, in the implementation
example reported in this paper, a nonholonomic system
(Dubin’s car) is shown to converge to goal sets which restrict
final orientation within a pre-specified range. The proposed
method is based on forward stochastic simulation of the
system dynamics, which offers two advantages: explicit
consideration of long-range inertial effects, and robustness to
noise and perturbations up to thresholds determined during
the design phase. Finally, the potential function produced as
the solution of the HIB can be interpreted directly as the
logarithm of the probability of achieving convergence to the
goal when using the suggested control law, in the presence
of noise contaminating the input.

The paper is organized in the following way. Section II
states the problem considered. Section III contains the main
technical result, describes the construction of the potential
field, and establishes its convergence guarantees. Section
IV illustrates the application of the method to the case
of steering Dubin’s car amongst obstacles, and the paper
concludes with Section VI, which summarizes the results
and hints at future extensions.

II. CONVERGENCE WITH OBSTACLE AVOIDANCE

Let D C R"™ be a bounded domain, and let the obstacles
within this space be represented as a set . The collision-
free workspace where the system can move is expressed as
P £ D\ O. Assume that the boundary of P, denoted OP
is described by a function which is twice differentiable (i.e.,
in C?), and consider a time invariant nonlinear system with
state q and control input u : R™ — R™ having dynamics of
the form

q= f(a)+g(a)u(a) . ¢))

The the nominal drift vector field f : R® — R™ and the
control matrix g : R™ — R™*™ are assumed to be Lipschitz
continuous—fairly standard assumptions for the drift and
diffusion terms in the stochastic process [12] which will
be associated with (1); local relaxations of these continuity
assumptions are possible [20].

The objective is to design a static feedback control u(q)
such that the system converges to an arbitrarily small set
around origin q = 0.

III. LEARNING TO NAVIGATE OPTIMALLY

Consider the free workspace P as a bounded domain with
C? boundary OP and the closure P. The goal set for the
system is denoted G and without loss of generality is assumed
to be an e-neighborhood of the origin:

G={qeP|lall<e} .



Assume that the boundary of G, 9§, is also C? and is disjoint
from OP.

Let W ={W(t),F, : 0 <t < oo} be an m-dimensional
Brownian motion on the probability space (2, F,P) where
Q is the sample space, F is a o-algebra on 2, P is the
probability measure, and {F; : ¢ > 0} is a filtration (i.e.,
an increasing family of sub-c-algebras of F), assumed right
continuous and such that Fy contains all P-null (of measure
zero) sets [12]. Taking now

V(q) £ —log (lP’ [a(r) € 9G | q(0) = q}) ,

and defining ¥ : R" — R™*™ as a bounded matrix with
bounded inverse which is also Lipschitz continuous on P\ G,
and after setting a(q) £ Y(q)XT(q), we expect that the
feedback law we seek to derive is of the form

u(q) = —a(q) g7(q) 9V (a) - 2)

Here, the function V(q) will be computed by numerically
simulating the stochastic system

dq = f(q)dt +g(q)(X(q)dW); q(0)=q  3)

The continuity conditions on f(q) and g(q) are still in force.

With respect to (3) define 7 to be the first (stopping) time
at which the system hits either the boundary OP (which
represents the boundary of obstacles) or that of 9G. In this
case, function V represents the negative logarithm of the
probability of sample paths hitting the goal set boundary
before any other boundary surface. This probability can be
estimated empirically by simulating a number sample paths
of (3) for different initial conditions.

A. Derivation of the potential field

Let E9 denote expectation over all trajectories starting
from initial condition q, and define t A 7 £ min(¢t, 7).
Consider a stochastic perturbation applied to (1) in the form
of

dq = f(q) dt+g(q)[u(q) dt+X(q) dW]; q(0) =q . (4)

This section presents the control law u*(q) that minimizes
the cost functional

V(t,q) = Iurzilr)lEq l/o ’ iuT(s) a(q) " u(s)ds
+@(q(t A T))} 5)

recalling that 7 is the first exit time from P \ G.
Letting t — oo, the value function takes the form

V(q) = minEq[/OT 1uT(s) a(q) "t u(s)ds

u(q) 2
+<I>(q(7))} G

The HIB equation associated with the optimal control
problem (5) is expressed in terms of the generator (second-
order partial differential operator) A corresponding to the

diffusion (4),

A2 fT(q)dq +uT(q) g7(q) Iq

+%tr{ZT(Q) 97(a) dgq 9(a) Z(a)} . (D

in the form
. 1 _
min {AV (q) + 5u"(a) a(a) " u(@)} =0 -

This minimizer is [18]

u*(q) = —a(q) g7(q) 94V (a) 8®)

and substituting in the HIB equation yields

fT(a) 94V (a) — %aqVT(q) g(a)a(a) g™ (a) 94V (a)

1
+5tr{37(a) g7(a) gqV(@)g(@)X(a)} =0 . (9)
Suppose now that the solution to the PDE is of the form [18]

V(q) = —log(q)

and substitute to (9) to obtain the PDE

g7 (a) f(a)
+ {27 (@) g7 (@) daq (@) 9(a) S(a)} =0 (10)
with boundary condition

P(q) =exp [—®(q(7))]; qed(P\G) .

An analytic solution of (10) is generally not possible
for complex nonlinear systems. However, the Feynman-Kac
formula relates such a PDE to a SDE, and allows one to
determine the solution of the PDE by simulating the SDE.
The associated SDE is constructed as follows. Recalling that
7 has been defined as the first exit time from domain P\ G,
let ((t) be the Markov process on P\ G C R™ obeying [12]

d¢(t) = b(C(1)) dt + g(¢(1)) B(CH)) AW (t) . (1)

Then the solution of (10) satisfies

w(a) = E |exp [~ (¢(1)] [ €(0) = q

It is possible to guarantee that the system does not exit
through the part of the boundary of 0P adjacent to obstacles
by imposing an infinite cost on hitting that part of the
boundary. Defining Xyp to be the indicator function on 9P,

0 on 0G
X =
o {1 on OP

the penalty for hitting the wrong boundary is introduced with
®(q) = +o00- Xop .

Then, function 1(q) becomes the probability of the state
hitting the goal boundary G before any other:

¥(q) =P[¢(r) € G| ¢(0) =q] (12)



With this insight, the optimal control law (8) is rewritten
as

u” = —a(q) g7(q) Oq{—1log P[C(7) € G [ ¢(0) = q]} (13)
which is essentially the analytic expression of the right-hand
side of (2).

Remark 1: Evaluating (8) requires 1(q), which is found
either by solving (10), or by numerically simulating (11) and
computing (12). Since ¢ imposes an infinite penalty on states
exiting the obstacle boundary P, the above construction
offers a guarantee that system exits first at 9G and not on any
other portion of the boundary. As states approach 9P, inputs
pushing the system away from it increase. This means that in
the case where the control input of (1) is constrained, there
can be initial conditions from which no feasible control input
exists to prevent the system from hitting the wrong boundary,
JP, or to force it enter G.

Here we assume that u(q) is unconstrained, and we state
the following result.

Theorem 2: Given that u € R™ defined in (2) exists, the
system (1) steered by (8) converges to G from all initial
conditions in the interior of P.

Proof: We treat the deterministic system (1) as a special
case of (4) where dW = 0.

First we show that the system will not hit 9P. This part
of the proof is established by contradiction. Consider the
closed-loop system (4)—(8)

dq = f(q) dt+g(q) (—a(q) g7(q) 94V (q) dt+X(q) dW) ,

and assume that there exists an initial condition q¢ from
which at least one sample path exits through 9P instead of
0G. As the terminal cost & — oo on q € 9P, the value
function
Vian) = minE | [ Sur(s)ata)us)ds + ¥(a(r)
u(q 0
becomes unbounded with q — q(7) € IP. We know
that 7 < oo, so V(qg) is to escape to infinity in finite
time. However, the mere existence of an optimal control
law implies by default that V(qo) < oo, and thus an
unbounded value function directly contradicts the feasibility
of the optimal control problem. It thus follows, that since
almost no sample paths hit 0P and the first exit time is
finite, they should necessarily exit from 0G:

P [a(r) € 9G | q(0) = qo] =1 . (14)

Now recall (1); this closed loop system has dynamics of
the form

q = f(a)dt —g(a)a(q) g7(a) 9V (a)
where the value function V' (q) is

Vo) =min | [*Jur(s)ata) ! ) ds + a(a(r)

Since in this case dW = 0, all sample paths are identical
and (14) reduces to

qa(t) € 9G, VYq(0) =q .

IV. DUBIN’S CAR

We demonstrate the proposed method using the kinematics
of Dubin’s car [21] as an example. This kinematics is
expressed as

T cos 0
g = | sinf |+ 0 |u
0 0 1

where u € [—1,1]. The Dubin’s car has a constant linear
speed of 1 m/s; because of the constraint on the angular
speed, there is a minimum turning radius. We identify the
state as q = (w,y,0)T, the drift vector field as f(q) =
(cosf,sin@,0)T and the control vector field as g(q) =
(0,0,1)T.
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Fig. 1. A graphical representation of Dubin’s car

To construct the potential field, we simulate the following
stochastically perturbed model parameterized by X

dx cos 0
dy| = [sinf| + |0 (XdW) .
dé 0 1

15)

For simulation purposes we take ¥ = 0.5 and consider
a spherical workspace of radius R = 10 m containing
two obstacles of radius 1 m at coordinates (—6,—2) and
(—2,—6). System (15) is a stochastic differential equation,
which we simulate using Euler-Maruyama method [22]. We
divide the state space into a grid of 41 x 41 x 41 grid,
and treat each grid point as a potential initial condition.
The discretization time is chosen to be d¢ = 0.1 sec, and
the simulation time is continuously increased until 95%
of the paths computed exit either at the goal set or at
the obstacle boundary. The Brownian noise term can be
intuitively thought of as Gaussian noise with zero mean and
variance equal to v/dL.

In the simulation results depicted in Fig. 2, The free
workspace is enclosed in a circle of radius 5 punctured
by two disk-shaped obstacles marked in black. The final
orientation of the vehicle is not regulated. The goal set is
defined as

G={qeP|z2+y2<1,0 €[ 7]}



, and is marked with a blue circle. Several initial conditions
are tested, each marked with a small blue circle, while
the initial orientation of the vehicle is represented by a
smaller red dot on the small blue circle showing the initial
position. Because the cost function penalizes control input,
the resulting trajectories use minimum control effort to reach
the goal set, although the path traversed may not necessarily
the shortest possible. The control inputs used to produce the
sample path annotated with numeral 1, are shown in Fig. 2.

Y [m]

Fig. 2. Simulated paths for different initial conditions for a Dubin’s car,
ignoring final orientation. Initial positions are marked with a small circle

0 ||

Control inputs for the trajectory annotated with 1 in Fig. 2

Fig. 3.

Function v is the probability that sample paths reach the
goal boundary before hitting any other:

Y(q) =P[q(r) € 9G | q(0) = q]

This function can be estimated as the ratio of sample paths
hitting the goal over all sample paths generated. In these
simulations, function (q) is approximated by simulating

500 sample paths of (15) for each initial condition. A plot
of ¥(q) estimated in this way is shown in Fig. 4 for § = 7.
Once ¥ becomes available, the control law is expressed as

u(q) = —0.25 - Og(—log¢(q)) . (16)

Y(a)
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Fig. 4. Function ¢(q) for @ = 5 and X = 0.5 for the case of convergence
without orientation regulation

To avoid numerical overflows, all zero values of ¢(q) were
mapped to an arbitrarily small value (e.g., 10~1°). Equation
(16) prescribes large values near the obstacle boundary, but
Dubin’s vehicle input constraints saturate the values obtained
within the interval [—1,1].

In a second set of simulation trials, we regulate final
orientation too by by defining the goal set as

g={aeP|Va+y<10e[z.3]}

The resulting sample paths are shown Fig. 5, where it is
evident that all generated paths hit the target set with an
orientation between T and 7. It is possible to reduce the
acceptable range of final orientation angles, but with the
constraint on angular velocity this would limit the set of
initial conditions from which convergence with regulated

orientation can be achieved without collision to obstacles.

V. DISCUSSION

The method presented in this paper is a numerical ap-
proach and hence the resolution of the discretization influ-
ences accuracy. It should be noted, however, that state and
time spaces generally admit discretizations with different
resolution. The question of what is the optimal resolution
is beyond the scope of this paper; the resolution used in
the examples of the preceding section is chosen empirically.
Another important parameter is the size of the goal set. As
the goal set becomes smaller, the set of initial conditions
producing trajectories hitting the target becomes smaller as
well, and sufficiently accurate estimation of the probability
function then requires increasingly fine resolution in the
discretization of the state space.
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Fig. 5. Simulated paths for different initial conditions for a Dubin’s car
us

with orientation convergence between g and I

The selection of the stochastic perturbation is yet another
design parameter that affects the convergence of sample paths
simulated. For the case of Dubin’s car, a relatively large value
for ¥ (in the order of 1.0) results in a function v (-) with
gradient too small to yield a uniform average convergence
rate. Too small values for ¥ (in the order of 0.1 and below)
result in ¢ (-) varying too abruptly, suggesting that a finer dis-
cretization of the state space might be necessary. Ultimately,
what is an appropriate value for 2 depends on the magnitude
of the control authority given; in this example, that would be
the interval [—1, 1]. Reasonable choices for X are those that
produce perturbations in the order of, and of size comparable
to available control inputs. (These perturbations are samples
taken from a distribution A/ (0, % - \/dt).

The presented approach is practical for systems of up
to five or six dimensions; given sufficient computational
power, eight dimensions can also be handled. Alternative
motion planning methods applicable to high-dimensional
spaces typically do not produce feedback control policies as
do the ones presented here. They are effective for steering
a vehicle from (a given) point A to (a given) point B, but
may not be used to obtain motion planning strategies for all
possible initial conditions.

VI. CONCLUSIONS

The problem of deriving feedback control policies to op-
timally steer vehicles with nontrivial kinematics in obstacle
environments with guaranteed convergence properties to a
goal set, is ultimately related to the solution of a HIB PDE.
In the specific case of control laws which are optimal in
terms of actuation effort, the solution of this PDE can be
interpreted as the the negated logarithm of the probability
of a stochastically perturbed version of the unforced original
dynamics to hit the goal set. This insight allows the cal-
culation of optimal control laws based on the empirical exit

probability, obtained through Monte Carlo simulations of the
associated stochastic dynamics.
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