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Abstract— This paper reports on the first approach to dy-
namical system modeling, identification, control, and environ-
mental quantity estimation with a new, commercially available,
micro-AUV named Jaiabot. The Jaiabot is a small and relatively
inexpensive marine robotic sensor platform that dives vertically
to collect measurements of related to water quality, such as
salinity and temperature. The paper presents (i) the first
dynamical model for Jaiabot’s dive motion estimated based on
field-data, (ii) a controller redesign given mission specifications
associated with vertical environmental quantity profiling, and
(iii) a first underwater implementation of a cooperative Kalman
filter that fuses measurements from several Jaiabots to yield a
confident estimate of temperature or salinity along a path within
the convex closure of the vehicle formation.

I. INTRODUCTION

As the effects of climate change intensify, there is in-
creased demand for accurate and timely prediction and fore-
casting of environmental processes around coastal regions
and estuaries. Existing observational infrastructure is not al-
ways adequate to provide accurate environmental intelligence
at required spatial and temporal resolutions. More often than
not, observational capability relies on a sparse collection of
static point-measurement stations, which in conjunction with
well parameterized computational models have been serving
us well for short-to-mid horizon forecasting, but struggle
to capture dynamic phenomena that evolve in relatively
small spatio-temporal scales. To monitor such phenomena
and capture data of sufficient resolution to appropriately
parameterize environmental models, we need new observa-
tional capabilities that allow for rapid, in-situ, reconfigurable
sensor deployments that can offer adjustable measurement
resolution, can resolve environmental gradients, and can
track dynamic environmental features and processes.

Being able to measure particular water quality variables
at different, varying locations of choice at specific times
is an important capability, but is currently a labor-intensive
and time-consuming task that can be associated with high
costs [1], especially when it involves in-situ samples with
expensive equipment which needs to be deployed from
appropriately instrumented vessels. From this perspective,
micro autonomous underwater vehicles (AUVs) which can
be deployed from shore, especially in coordinated formation
patterns [2], offer unique advantages, facilitating affordable
and scalable field measurement for water-quality monitoring.
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One such micro-AUV which shows promise for this type of an
environmental monitoring application is the Jaiabot (Fig. 1).
The Jaiabot is about a meter long, torpedo-shaped AUV that
can achieve top speeds of almost 10 knots on the surface of
the water. It uses a single propeller for forward thrust and a
rudder surface for yaw steering. The AUV shown in Fig. 1
carries a salinity and temperature sensor, a depth sensor, and
is rated for a depth of up to 30 m.
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Fig. 1: A Jaiabot micro AUV.

Of particular interest for us is vertical profiling of salin-
ity in environments where sea and freshwater mix. Oper-
ationally, salinity can be defined as the concentration of
chloride in a liter of water. Salinity undergoes dynamic
changes specially in estuary environments. In the Delaware
River Basin, a 7-day concentration moving average of 250
mg/l isochlor is set as a regulatory standard because it
becomes harmful to freshwater life and is inappropriate for
human consumption; this imaginary barrier is known to move
by as much as a mile per day in some cases [3]. The intrusion
of saltwater from the ocean into the mouth of rivers, like
the Delaware river [3], depends on an array of underlying
driving processes, including storms, tides, water runoff, and
agricultural activity, and can threaten industrial, agricultural,
and freshwater intakes as well as fishery and aquaculture
activities. Indeed, the salinity gradient determines the bound-
aries of major biotic and abiotic processes that characterize
any estuarine ecosystem [4], [5]. In open water, salinity is
critically linked to global climate, the hydrological cycle, and
circulation [5].

Most typical salinity measurements are taken as time
series at a single deployment point; alternative formats
include through manual “grabs” [4], using drifting and towed
sensors [6], or via satellite through microwave frequencies
(e.g., in open ocean waters) [7]. The recent utilization of
robotic sensor platforms for salinity observation has enabled
independent validation of satellite-based observations [8],
[9]. There is body of work reporting on robotically-assisted
water-quality measurement across a column of water. Un-
derwater gliders have occasionally been used for vertical
profiling of water-quality characteristics, based on their
ability to continuously regulate their depth as they propel



themselves underwater [10]–[13]. In addition to the cost and
logistical difficulties of operating and deploying underwater
gliders [2], the water-quality data they collect are still sparse
if one considers the whole water column (cf. [14]). Vertical
profilers (e.g. sondes) deployed using autonomous surface
vehicles (ASVs) [15]–[17] may not be faced with this data
extrapolation issue, yet compared to a single platform system
they represent a more costly and complex solution, which
may also be influenced by weather and sea state conditions.
There is a subset of work that is going beyond just sampling
to employ sensor fusion and distributed field estimation tools
that are applicable in a marine environmental observation
setting [18]–[21]; indeed, estimation of water quality through
distributed sensor fusion and filtering is important to reduce
measurement noise and provide more confident estimates of
2D and 3D channel dynamics. However most of this work
has been developed for and demonstrated in planar (water
surface) settings.

The need for high-resolution depth-profiling measure-
ments, especially in regions such as the Mid-Atlantic, is
known and documented [22]. Our ultimate goal is to pro-
vide additional tools to respond to this need, that combine
sampling with sensor fusion and filtering, using the Jaiabot
as a versatile, rapid-deployment sensor platform for vertical
profiling of water salinity. In doing that, we are faced with
an opportunity and a challenge: on one hand, the particular
AUV is suited for quick deployment and is capable of steering
itself in strong current environments as those occasionally
found in rivers and coastal regions; on the other hand, the
vehicle’s dynamics are not by default tuned for underwater
maneuvering that is conducive to producing the group forma-
tions that are ideal for sensor fusion from spatially distributed
measurements.

The contributions of this paper are identified on the field
robotics domain and are outlined as follows:

• The identification of the first dynamical model for the
Jaiabot in vertical dive;

• The model-based control redesign for diving with new
safety and sustainability specifications in mind;

• The demonstration of environmental multi-sensor un-
derwater data fusion, as enabled by the new diving
control loop.

The remaining of the paper is organized as follows. Sec-
tion II frames the technical problem that is addressed in this
work. Section III outlines the technical approach followed to
provide the solution to the problem stated, and is followed by
Section IV which provides experimental evidence in support
of the efficacy of the proposed solution. Section V closes the
paper summarizing the research outcomes and reflecting on
them for future work.

II. PROBLEM STATEMENT

The Jaiabot AUV dives vertically, with its propeller apply-
ing negative thrust, oriented in a way that its nose is pointing
up toward the surface and its propeller is pointing toward the
bottom. The purpose of the spacers shown in Fig. 1 are to

protect the propeller and rudder control surfaces from hard
contact with the bottom substrate.

Here lies one of the main reasons motivating this work.
While any reasonable feedback control loop on the AUV
depth can eventually stabilize the AUV at a desired reference
depth, data acquisition near the bottom can become prob-
lematic if significant overshoot is present in the vehicle’s
transient response. Depending on the nature of the benthic
substrate, a high speed overshoot and subsequent contact can
cause the vehicle to partially burry itself there if the bottom
consists of loose sand or mud; it may result in structural
damage to the AUV if the bottom is rocky; or it may also
cause environmental damage if the bottom harbors a fragile
ecosystem such as a corral reef. In addition to be able
to protect the benthic environment as well as the vehicle,
it would also be desirable to be able to settle at desired
depths in at most 10 seconds, as this feature would facilitate
shorter deployments with preservation of vehicle battery and
personnel time in the field.

With these considerations in mind, we frame the technical
problem as follows:

Problem 1: Design a diving controller for the Jaiabot that
exhibits minimal to no overshoot and showcases a settling
time of approximately 5 seconds.

In view of Problem 1, it becomes clear that there is another
associated problem that has to be addressed in advance:
system identification.

Problem 2: Identify the Jaiabot dynamics during its ver-
tical diving phase.

The section that follows presents an experimental approach
to addressing Problem 2 first, and then given the solution
constructed, proceeds with a model-based design in response
to Problem 1.

III. TECHNICAL APPROACH

The vertical diving feature of the Jaiabot offers an op-
portunity to expediently address Problems 2 and 1. This
is because the vertical motion during diving decouples the
different degrees of freedom of the AUV and allows one to
focus exclusively on the vehicle’s surge (forward) dynamics.

A. System Identification

For this surge dynamics, we assume a second order
(cf. [23]) parametric model template

ẍ+ aẋ+ bx = u , (1)

where x denotes depth in meters, u is the control acceleration
thrust provided by the AUV’s propeller in meters per second
squared, and θ ≜ (a, b) represent constant model parameters,
with θ ranging in R2 and left to be identified.

The first dataset used comes from a unit step response
of the Jaiabot with its depth PID controller set at its default
settings of Kp = 10, Ki = 1.6 and Kd = 12.8. One instance
of this behavior, on a fresh water dive has produced the
time series shown in Fig. 2. Noticeable are the significant
overshoot and the relatively long settling times. The 80%
overshoot is arguably more concerning than the settling time,
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Fig. 2: Depth data from an AUV unit step response with its default
PID gains.

and in principle could be attributed to a host of (possibly
compounding) factors that include non-unity system steady-
state gain and integrator windup. To account for the latter
possibility, we designed and tested a PD controller with the
following tuning: Kp = 8.32, and Kd = 19.12. The step
response in fresh water with that configuration is shown in
Fig. 3, indicating a steady-state gain for the closed loop
system that is significantly larger than one.
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Fig. 3: Depth data from an AUV response at a step input of
magnitude 2.8 using a PD controller.

The application of a PD controller leads to a second order
closed loop system that enables a more accurate frequency
response controller (re)design. For this reason, the data time
series of the PD closed loop design featured in Fig. 3 is
adopted for an initial system identification. To that end, (1)
leads to a frequency response model template for the Jaiabot

Gp(s, θ) =
1

s2 + as+ b
,

and a closed loop parameterized transfer function

Gcl(s, θ) =
Kd s+Kp

s2 + (Kd + a) s+ (Kp + b)
, (2)

with a DC gain of Kp

Kp+b . We thus expect a negative value
for b suggesting an open-loop unstable transfer function Gp.

At this point, gray-box linear system identification meth-
ods [24] applied to (2), utilizing an input-output data time
series that subjected the system to a step input of magni-
tude |u| = 4.2 m/s2 yields a parameter estimate of θ =
(31.11,−2.97) with a fit of 70.5% (Fig. 5).
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Fig. 4: Comparison of the estimated system model (3) response in
closed loop with a PD controller to a 2.8 step input, to the data.
Dots: experimental data; dashed line: simulated response of the
fitted model.

The estimated model thus takes the form

ẍ+ 31.11 ẋ− 2.97x = u

=⇒ Gp(s) =
1

s2 + 31.11 s− 2.97
. (3)

Going back to the full PID unit step response of Fig. 2
we can see that the model reasonably captures the high
overshoot, albeit not completely; part of the overshoot can
actually be due to PID integrator windup which may not be
fully captured in simulation.
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Fig. 5: Comparison of the estimated system model (3) unit step
response when in closed loop with a PID controller, to the data.
Dots: experimental data; dashed line: simulated response of the
fitted model.

B. Controller design

The possibility of integrator windup, and the practical
inability (at least at this stage) to implement anti-windup
mitigation measures on the Jaiabot AUV, motivates a con-
servative control design that does not involve integrative
action. Among the design specifications for the new control
law is the requirement for minimal to no overshoot and
short settling times. Specifically, we aim at 0% overshoot
(essentially a critically damped system), and a settling time
of ts < 10 seconds. Based on this requirements, and for the
open loop system (3), a nominal crossover frequency of 1
rad/s is targeted with a phase margin of 100 degrees. In the
absence of integral action, and given the lack of tolerance



to any overshoot, the non-unity DC gain of the closed-loop
system will be compensated by a proportional input scaling.

Based on these requirements, a PD controller is designed
in the form

Gc(s) = Kd s+Kp = 13.28 s+ 31.62 , (4)

giving a closed-loop DC gain of 1.104. A closed-loop
1.104−1 step response is shown in Fig. 6, indicating a settling
time of ts ≈ 5.5 seconds and no overshoot.
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Fig. 6: Simulated unit step response of the identified system model
(3) in closed loop with the PD controller (4). Vertical lines mark
the unit reference, surrounded by a ±2% margin. The vertical line
marks the time when the simulated step response enters the ±2%
band around the reference value.

Compared to the original PID step response of Fig. 2, the
new control design promises a faster rise and settling time
with no overshoot (Fig. 7).
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Fig. 7: Simulated step response (dashed line) of the identified
system model (3) in closed loop with the PD controller (4), targeted
for a unit reference depth, compared with that of the original
controller (data points).

C. Cooperative Estimation

The objective here is to perform sensor fusion and coop-
erative estimation along a vertical plane through the water.
Applying a cooperative Kalman filter [19] on data time
series collected by AUVs at different depths will allow the
estimation of the water-quality parameter of interest at any
point within the convex hull of the AUV formation. Key
to the ability of the cooperative Kalman filter to converge
and provide accurate estimates is for the AUV formation to
correspond to some particular spatial distribution of vehicles,
and for the location of each vehicle to be known with some
reasonable accuracy —for instance, we have observed that

when the AUVs are positioned significantly off the same
vertical plane or are assumed at different depths than the
ones they attained, the filtering process may not converge.

The state of the Kalman filter consists of the environmental
quantity value and its first spatial derivatives along the (x, y)
plane (here: vertical) of observation. If s(x, y) denotes the
depth dependent field variable, then the filter state in this
case is the vector

(
s ∂s

∂x
∂s
∂y

)
, and is evaluated at a

point in the convex hull of the sensor platform formation
denoted rc =

(
xc yc

)
—its centroid, by default. The filter’s

state propagation model, between two subsequent sensor data
updates at instants k − 1 and k is expressed as [19]

s[k]
∂s
∂x [k]
∂s
∂y [k]

 =

[
1 xc [k]−xc [k−1] yc [k]−yc [k−1]

0 1 0
0 0 1

]
s[k−1]
∂s
∂x [k−1]
∂s
∂y [k−1]



+


0

E
{
(xc[k] − xc[k−1])

∂2s
∂x2 + (yc[k] − yc[k−1])

∂2s
∂x∂y

}
E
{
(yc[k] − yc[k−1])

∂2s
∂y2 + (xc[k] − xc[k−1])

∂2s
∂y∂x

}


+ ϵ[k−1] , (5)

where E{·} denotes expectation, and ϵ is assumed to be
a Gaussian, independent identically distributed (i.i.d.) zero
mean vector representing random modeling errors. The fil-
ter’s measurement equation, with pi[k] denoting the field
measurement of AUV i at time step k, is taken to be

pi[k]
...

pn[k]

 =

 1 xi[k]−xi[k−1] yi[k]−yi[k−1]

...
...

...
1 xn[k]−xn[k−1] yn[k]−yn[k−1]


︸ ︷︷ ︸

C[k]


s[k]
∂s
∂x [k]
∂s
∂y [k]



+D[k]




∂2s
∂x2 [k]
∂2s
∂x∂y [k]
∂2s
∂y∂x [k]
∂2s
∂y2

[k]

+ e[k]


+w[k] + n[k] , (6)

where e denotes the (random) estimation error on the field
value’s Hessian, w is a vector of (assumed colored) noise,
and n a white, zero-mean Gaussian noise vector with i.i.d.
components, and

D[k] ≜

 (x1[k]−xc[k])
2 (x1[k]−xc[k])(y1[k]−yc[k])

...
...

(xn[k]−xc[k])
2 (xn[k]−xc[k])(yn[k]−yc[k])

(x1[k]−xc[k])(y1[k]−yc[k]) (y1[k]−yc[k])
2

...
...

(xn[k]−xc[k])(yn[k]−yc[k]) (yn[k]−yc[k])
2

 .

As evident in (5)–(6), the operation of the filter relies on an
estimation of the environmental field’s Hessian matrix, which
can be done directly for a formation of size n ≥ 4 [19] using
an algorithm, a final step of which involves the solution of



an equation for the determination of ∂2s
∂y2 . In that equation,

∂2s
∂y2 is multiplied by (yi − yc)

2 and when this factor tends
to zero because of the instantaneous spatial arrangement of
the AUVs, the equation becomes ill-conditioned relative to
∂2s
∂y2 . Thus in a minor but consequential departure from the
original methodology [19] that suggested using all sensor
measurements for the determination of ∂2s

∂y2 , here we im-
plement a variation of this Hessian estimation algorithm
where we take into account only the sensor at AUV i with
i = argmaxi=1,...,n(xi − xc)

2(yi − yc)
2. With the proposed

modification the cooperative Kalman filter exhibited robust
operation irrespectively of sensor platform deployment and
formation configuration.

IV. EXPERIMENTAL RESULTS

Fig. 8: Four Jaiabots, ready to be deployed on a cooperative
estimation mission, on the pier by Lake Allure, PA.

Experiments were conducted in lake Allure, PA, that
offers sufficient depths to deploy a vertical formation of
AUVs. For these tests, four Jaiabots were deployed in lake
Allure (Fig. 8) on a cooperative estimation mission in De-
cember 2023.

The dynamics of the sensor itself play a role in the
estimation process. Sensor data are to be associated to a
particular GPS location and specific depth, and knowledge
of sensor dynamics, e.g., of sensor response delays, allow
for accurate association of measurement to location. Here,
however, without specific information regarding the band-
width of the particular salinity sensor on the Jaiabot it is
preferable to let the AUV settle at a given depth before taking
the sensor data into consideration. On the other hand, in the
calm waters of lake Allure, PA, it is reasonable to assume
that there are no currents to carry the submerged AUVs away
from the location where they started their dive.

Being a fresh water lake, however, lake Allure does not
allow for a meaningful estimation of salinity measurements.
For that reason, we used temperature as a sensor data sur-
rogate. In winter months, bodies of fresh water are expected
to exhibit some temperature stratification which we hoped

to capture in our experimental data. The setup for the AUV
formation used for estimation is shown in Fig. 9 for the four
Jaiabots indexed 3, 12, 13, and 14.
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Fig. 9: The target sensor platform formation on cooperative estima-
tion for vertical profiling. The AUVs are equally spaced along the
horizontal direction.

As the AUVs settled at their desired depths, time series
of temperature measurements were collected. Figure 10
illustrates the process of the Kalman filter convergence on
the four color-coded AUV sensor data time series, and an
estimate for the temperature at the center of the vehicle
formation, starting from a temperature value lower than
measurements.
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Fig. 10: Four time series of temperature measurements by each AUV
at their designated depth, and a cooperative Kalman filter estimate
for the temperature at the center of the formation during this time
period, when the filter is initiated at a temperature of T0 = 5◦ C.

Figure 11 shows a similar process of convergence as that
of Fig. 10 but from a different initial condition for the filter,
this time higher than the measurement values, demonstrating
the ability of the filter to converge in a timely fashion
independently of initialization.

V. CONCLUSION

This paper demonstrated the capability of a coordinated
AUV sensor network to perform vertical profiling of spatially
distributed scalar environmental fields, providing confident
and accurate cooperative estimates of the quantity of interest.
A new proof of concept system was developed around the
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Fig. 11: Four time series of temperature measurements by each AUV
at their designated depth, and a cooperative Kalman filter estimate
for the temperature at the center of the formation during this time
period, when the filter is initiated at a temperature of T0 = 12◦ C.

Jaiabot micro-AUV sensor platform for the ultimate purpose
of salinity profiling, and was tested in a fresh water environ-
ment using water temperature as a surrogate environmental
field. Three innovations were introduced in this paper as part
of this system development: (i) an experimental data-based
system identification of the Jaiabot’s surge dynamics; (ii) a
design of a new control law for the AUV’s diving mode which
adheres to platform and environmental safety and sustainabil-
ity specifications, and (iii) a modification to the cooperative
Kalman filtering used for data fusion and field estimation,
that circumvents a potential numerical problem which can
arise in the process of estimation of the field’s Hessian matrix
components. An alternative to the proposed solution to the
singularity problem in the Hessian element determination
for cooperative estimation could be the imposition of a
formation control constraint on the AUVs; however, in the
particular underwater deployment scenario considered here,
where there could be no position telemetry nor underwater
communication between the AUVs, the enforcement of such
a constraint would have been problematic.
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