
Control Barrier Navigation Functions for STL Motion Planning

Ashkan Zehfroosh and Herbert G. Tanner

Abstract— This paper describes an approach to constructing
control barrier functions that realize planning and control objec-
tives that are expressed in a fragment of signal temporal logic.
The particular construction is based on the navigation function
method for robot motion planning and is attractive because it
offers a straightforward way to design the robot control law
that implements the signal temporal logic specification. The
efficacy of the reported method is illustrated through simulation
examples.

I. INTRODUCTION

As computational, sensing, and actuation capabilities
improve, robots are called to complete increasingly more
complex tasks that could involve several subtasks interleaved
over time and space. One way that robot motion planning
and control methodologies evolved to respond to this need
is by encompassing temporal logic as a way of codifying
complex specifications.

Signal temporal logic (STL) is a branch of temporal logic
that is interpreted over continuous-time signals [1], and in
contrast to linear temporal logic (LTL), STL also captures
timing constraints associated with complex tasks. This feature
makes STL an even more appropriate choice for defining robot
tasks within time-limited applications (e.g., robot-assisted
pediatric motor rehabilitation [2]).

Motion planning under STL tasks is known to be hard
and usually leads to computationally demanding solutions
[3]. The standard approach to STL-based motion planning
involves a mixed-integer linear programming step [4], [5],
[6], which is undoubtedly computationally demanding. The
computational complexity of these methods makes real-time
implementation challenging, especially in the presence of
dynamic environments [7]. This is one of the reasons why
control laws may be pre-computed [8], thus trading off some
robustness against disturbance and uncertainty for the ability
to implement control action in real-time.

The computational burden of STL motion-planning though
can be somewhat reduced [3] by employing a control barrier
function (CBF) based methodology (see [9]). That method
accounts for a fragment of STL that includes conjunctions in
the predicates or the temporal operators, and the associated
control design still involves the solution of a quadratic
programming problem at each time step of the motion
planning and control loop. Subsequent extensions of this
CBF-based STL motion planning method were made along
the directions of multi-agent systems with conflicting local

Zehfroosh and Tanner are with the Department of Mechanical Engineering
at the University of Delaware; Email: {ashkanz,btanner}@udel.edu.

This work is made possible in part by support from NSF via award
#2014264.

specifications [10], and dynamically coupled multi-agent
systems [11]. A singular STL motion planning method
currently available and able to circumvent the computational
burden of solving a quadratic problem at every iteration is the
funnel-based procedure that provides continuous-time control
laws [12], [13]. The price paid for computational expediency
is that only a much smaller fragment of STL can be covered.

This paper contributes to the area of STL-based motion
planning by providing another computationally expedient
alternative method, which can cover the original fragment
of STL. The new methodology centers around the concept
of navigation functions [14], which is a well-known motion
planning technique that provides a direct path to the construc-
tion of feedback control laws with guaranteed properties of
safety and convergence. Using navigation functions as the
base for the construction of control barrier functions allows us
to determine control laws that implement STL specifications
in closed form through the computation of the navigation
function gradient, thus circumventing the need to solve a
quadratic problem in each iteration of the motion planning
and control loop. What is more, the proposed method allows
the incorporation of both robot motion planning destinations
as well as regions for the robot to avoid within the same
analytical expression, thus reducing the size of the STL
specification for a desired task.

For clarity of exposition, the present paper describes the
methodology as it applies to sphere world environments,
with pathways to extensions to star world [15], as well as
time-varying robot workspaces [16], [17] readily available.

The rest of this paper is organized as follows. Section II
introduces some key technical concepts and necessary mathe-
matical preliminaries. Section III formally states the problem
addressed in this paper, and specifies the fragment of STL
specifications that motion planning and control solutions
are needed for. The control barrier navigation functions are
introduced in Section IV as a solution to the stated problem,
where both their construction steps as well as the control
input computation procedure are outlined. Section V reports
on simulation results that illustrate the efficacy of the method.

II. TECHNICAL PRELIMINARIES

This section introduces necessary mathematical background
needed for the subsequent technical discussion. The section
briefly reviews STL, CBFs, and some known results that will
be utilized in following sections.

A. Robot dynamics

The exposition in this section starts with some minimal
technical terminology and a description of the particular

system dynamics that the proposed method applies at. To
that end, let x ∈ Rn be the state of the robot’s dynamics,
u ∈ U ⊂ Rm to be its control input, and let the robot’s
dynamics be expressed in the form

ẋ = f(x) + g(x)u , (1)

assuming that, for now, functions f : Rn → Rn and g :
Rn → Rn×m are locally Lipschitz continuous.

When every solution to (1) which starts in a set stays
in a set C, then that set C is said to be forward invariant
relative to (1). Here, we allow for a forward invariant set
to be time varying [3] and say that a set C(t) is forward
invariant with respect to (1) if x(t0) ∈ C(t) =⇒ x(t) ∈ C(t)
∀ t ∈ [t0, t1] ⊂ R+.

B. Signal Temporal Logic

Signal temporal logic (STL) is a temporal logic formalism
that involves logical predicates µ whose truth values are
evaluated over continuous signals. In this particular case, the
continuous signals are the system’s state trajectories at time
t, namely x(t). The predicates assume their logical valuates
based on a (continuous) predicate function h : Rn×R+ → R
as in

µ :=

{
True if h(x, t) ≤ 0

False if h(x, t) > 0 .
(2)

Based on such predicates, an STL formula φ can be recursively
defined as

φ ::= True | µ | ¬ φ | φ1 ∧ φ2

| 3[a,b] φ | 2[a,b] φ | φ1 U[a,b] φ2 ,

where a, b ∈ R+ with a ≤ b are timing bounds, ¬ represents
negation, ∧ represents conjunction, 3 stands for the temporal
operator eventually, 2 stands for the temporal operator always
and U denotes the temporal operator until (see [1]).

If a solution x : R+ → Rn of (1) satisfies an STL
specification φ at time t, then we write (x, t) |= φ. The
STL semantics are recursively given by the following rules

(x, t) |= µ iff h(x, t) ≤ 0
(x, t) |= ¬ φ iff ¬

(
(x, t) |= φ

)
(x, t) |= φ1 ∧ φ2 iff (x, t) |= φ1 and (x, t) |= φ2

(x, t) |= 3[a,b] φ iff ∃t1 ∈ [t+ a, t+ b]
s.t. (x, t1) |= φ

(x, t) |= 2[a,b] φ iff ∀t1 ∈ [t+ a, t+ b],
(x, t1) |= φ

(x, t) |= φ1 U[a,b] φ2 iff ∃t2 ∈ [t+ a, t+ b] s.t.
(x, t2) |= φ2 and
∀t1 ∈ [t+ a, t2],
(x, t1) |= φ .

C. Control Barrier Functions

A CBF enables controller synthesis for dynamic systems
such that if the system starts safe set, it will never leave the
safe set, rendering the set forward invariant with respect to
the dynamics of the system. A CBF can characterize the set of
allowable control inputs that guarantee forward invariance of

certain regions for a dynamical system at hand. The required
control input is picked from a set defined in terms of the
CBF, for example by solving an optimization problem in a
sampled-data fashion [18]. Such forward invariant sets can
potentially be time-varying, as indicated in Section II-A.

For a domain D ⊆ Rn and a (possibly time-varying) set
of interest C(t) ⊂ D, a CBF appears in the form of a scalar
differentiable function b : Rn × R+ → R for which

C(t) = {x ∈ D | b(x, t) ≥ 0} .

Mirroring Lyapunov stability analysis, one considers can-
didate barrier functions, which satisfy some basic structural
requirements, and valid barrier functions, which have been
shown to work as intended relative to the dynamics of the
system at hand. A function is called a candidate (control)
barrier function if there exists (for some control law u) a
solution to (1) such that a set C(t) is forward invariant for a
given time interval starting at initial time t0:

Definition 1 ([3]). A differentiable scalar function b : D ×
[t0, t1] → R where D ⊆ Rn is a candidate control barrier
function for (1) if for any x0 ∈ C(t0) ⊂ D there exists an
absolutely continuous function x : [t0, t1] → Rn such that
x(t0) = x0 and x(t) ∈ C(t) for all t ∈ [t0, t1].

Note that Definition 1 implies that C(t) is nonempty for
all t ∈ [t0, t1]. A candidate (control) barrier function is called
valid, if there exists a control law u for (1) that can keep its
total time derivative above a negated class K function of the
the barrier function itself:

Definition 2 ([3]). A candidate control barrier function b :
D × [t0, t1] → R where D ⊆ Rn is a valid control barrier
function for (1) if there exists a locally Lipschitz extended
class K function α such that for all (x, t) ∈ C(t)× [t0, t1] it
holds that

sup
u

{
∂b
∂x

(
f(x) + g(x)u

)}
+
∂b

∂t
≥ −α

(
b(x, t)

)
. (3)

It is known that (3) is sufficient to ensure the nonnegative-
ness of b(x, t) over the interval [t0, t1]:

Lemma 1 ([3]). Let α : R+ → R+ be a locally Lipschitz
(extended) class K function, and η : [t0, t1] → R an
absolutely continuous function. If η̇(t) ≥ −α

(
η(t)

)
for all

t ∈ [t0, t1], then η(t) ≥ 0 ∀ t ∈ [t0, t1].

III. PROBLEM STATEMENT

Following [3], this paper considers the following fragment
of STL:

ψ ::= True | µ | ψ1 ∧ ψ2 (4a)
φ ::= 3[a,b] ψ| 2[a,b] ψ| ψ1 U[a,b] ψ2| φ1 ∧ φ2 , (4b)

where formulae ψ1 and ψ2 are of the type defined in (4a),
and formulae φ1, φ2 are of the type defined in (4b).

Similarly [3], the common assumptions are made regarding
the boundedness of solutions of (1) and the nature of the
term g(x) that appears in its right hand side:

Assumption 1 ([3]). For an STL formula φ as defined in
(4b), there exists a constant C ≥ 0 such that

(x, t0) |= φ =⇒ ∥x(t)∥ ≤ C ∀ t ≥ t0 .

In other words, satisfaction of formula φ guarantees a
bounded trajectory. For the (control affine) dynamics of the
robot in (1) we essentially assume that we can feedback
linearize it:

Assumption 2 ([3]). The vector function g(x) in (1) is such
that g(x)g(x)⊺ is positive definite for all x ∈ D.

Now the problem under consideration of this paper can be
stated as follows:

Problem 1. Find an input control law u(x, t) that guarantees
that the solution x : R+ → Rn of (1) starting from x0 =
x(t0) be such that (x, t0) |= φ.

IV. TECHNICAL APPROACH

This section introduces a special time-varying CBF that
is based on a navigation function [14]. This particular
construction leverages the navigation function properties of
a key component of the CBF to yield a direct method for
obtaining the control law u in (1) that is guaranteed to satisfy
the desired STL specification.

A. Navigation functions as control barrier functions

Navigation functions were originally introduced for robot
navigation tasks in static environments [14]. In the context
of time-varying forward invariant sets, the relatively recent
extension of the navigation function methodology that allows
for time-varying and set-valued destinations [16] seem par-
ticularly relevant. To this end, this section borrows from this
extension and for simplicity restricts the discussion to sphere
world robot workspace topologies, with the understanding
that extensions to more complicated star world workspaces
and time-varying destinations are available [15].

Interestingly, navigation functions can capture and codify
predicates expressing regions of the robot workspace that
need to be avoided (in the form of “obstacles”), and by doing
so allow for a more compact representation of STL formulae
and a shorter expression of the total STL system specification.
Recent extensions of the navigation function methodology to
time-varying obstacle cases [17] can offer additional avenues
for future work, but for clarity of exposition are not leveraged
in this particular paper.

To see how STL specifications can be codified in control
barrier navigation functions (CBNFs), recall that an STL
formula consists of logical predicates µ of the form (2),
representing regions in the workspace of the robot that may
be of interest at different time instants. Since the workspace
of the robot has been assumed to be a sphere world, all such
regions are naturally expressed as spheres. This assumption
does not limit the generality of the approach given available
extensions to star world environments [14], [15].

One of the key features in the navigation function extension
to time-varying destinations [16] is that it allowed for

destination manifolds as opposed to isolated points. Such
a destination manifold is still sphere-shaped and represents
the zero level set of the function

hi
(
x(t)

)
= ∥x(t)− xci∥2 − r2i , (5)

which can be taken as the predicate function encoding logical
predicate µi. In (5), one distinguishes the predicate function’s
(spherical) region having a center xci and radius ri. Consistent
with the STL semantics (2), µi is true when hi(x) ≤ 0
and false otherwise. Regions of the robot’s workspace that
always need to be avoided can now be encoded as (static)
obstacles and incorporated all together in a specific functional
representation [14]. To that end, assume first that the implicit
representation of each one of those isolated (obstacle) regions
is defined as a function

βj(x) = ∥x(t)− xobj
∥2 − r2obj

, j = 1, . . . ,M

where xobj
and robj

denote the center and radius of each
undesirable spherical (obstacle) region. Our understanding is
that obstacles are being avoided by the robot located at x as
long as βi(x) > 0. Similarly, the boundary of the workspace
itself is captured by the function

β0(x) = −∥x(t)− xws∥2 + r2ws ,

where xws and rws stand for the center and radius of the
workspace boundary, respectively. Given these constructs, the
combined obstacle representation can take the form

β(x) =

M∏
j=0

βj(x) ,

and with that, a (time-varying) navigation function ϕi(x) can
be explicitly constructed for predicate µi as

ϕi(x, t) =
hi(x, t)[

hi(x, t)κ + β(x)
]1/κ , (6)

with κ = 2n for n ∈ N in the role of a positive tuning constant
which be set sufficiently high to guarantee navigation function
properties for (6). These navigation function properties are
essentially that

• ϕi is continuously differentiable,
• the destination manifold globally minimizes ϕi,
• ϕi is uniformly maximal on the boundary of undesirable

regions,
• the gradient of ϕi is nonzero everywhere but at a finite

set of (possibly time-varying) isolated points, and that
• for the gradient system defined by ϕi the attraction

region of the points where the gradient vanishes is a set
of measure zero.

Note that as constructed in (6), ϕi(x, t) ∈ (0, 1] for all x that
do not satisfy µi, and unless the initial condition x(t0) is on
the zero-measure set of attraction of this finite set of isolated
points, the flows of ẋ = −∇xϕi(x, t) eventually converge to
the zero level set of hi(x, t). (For a proof of the convergence
properties of such a time-varying gradient system, see [19].)

B. A Compositional Approach for CBNFs

1) STL specifications with no conjunctions: This sub-
section describes how to construct a CBNF for an STL
specification that does not involve conjunctions of predicates
and temporal operators.

If th STL specification at hand is of the form 3[a,b]µi then
the CBNF can be constructed as

bi(x, t) = 1− ϕi(x, t)− ci(t) , (7)

where ci : R+ → [0, 1] is a non-decreasing function satisfying
ci(0) = 0 and ci(t′) = 1 at some a ≤ t′ ≤ b. Note that when
ci(t

′) = 1, to have bi(x, t) ≥ 0, there must be ϕi(x, t) ≤ 0
and thus hi(x, t) ≤ 0 which means µi is true at t′ ∈ [a, b].

If the specification has the form 2[a,b]µi, the CBNF can
have the same general form (7), only now the non-decreasing
function ci : R+ → [0, 1] is such that ci(0) = 0 and ci(t′) = 1
for all t′ ∈ [a, b].

The remaining case refers to specifications of the form
µ1 U[a,b] µ2, for which the CBNF is constructed as

b(x, t) = − ln
(
e−b1(x,t) + e−b2(x,t)

)
, (8)

where once again bi(x, t) is in the form (7), and the difference
between b1 and b2 is that for i = 2 the function c2 : R+ →
[0, 1] is a non-decreasing function satisfying c2(0) = 0 and
c2(t

′) = 1 for some t′ ∈ [a, b], while for i = 1 the function
c1 : R+ → [0, 1] is a non-decreasing function satisfying
c1(0) = 0 and c1(t′′) = 1 for all t′′ ∈ [a, t′]. It is noted here
that such c1 functions can actually constructed to be smooth,
following an example given in [20].

2) STL specifications with no temporal operator conjunc-
tions: This subsection refers to STL specifications that may
have conjunctions involving predicates but not temporal
operators. Without loss of generality, let us work with
formulae ψ1 = µ1 ∧ µ2 and ψ2 = µ3 ∧ µ4 as generic
representatives of such predicates.

If the specification at hand has the form 3[a,b]ψ1, the CBNF
can once again take the form of (8) where bi(x, t) is built as
in (7) for i ∈ {1, 2} and now both ci : R+ → [0, 1] functions
are non-decreasing with ci(0) = 0 and ci(t′) = 1 for some
t′ ∈ [a, b].

For specifications of the form 2[a,b]ψ1, the CBNF can be
similarly constructed as in the form (8), where this time
bi(x, t) following (7) for i ∈ {1, 2} both involve functions
ci : R+ → [0, 1] that are non-decreasing and satisfy ci(0) = 0
and ci(t′) = 1 for all t′ ∈ [a, b].

Finally, for specifications that involve the Until operator
and are of the form ψ1 U[a,b] ψ2 = (µ1 ∧µ2)U[a,b](µ3 ∧µ4),
the CBNF can be formed similarly to (8) in the form

b(x, t) = − ln

 k∑
i=1

e−bi(x,t)

 , (9)

where k = 4, and all bi(x, t) are based on (7), but for
i ∈ {3, 4} the functions ci : R+ → [0, 1] are non-decreasing
with ci(0) = 0 and ci(t

′) = 1 for some t′ ∈ [a, b], while

bj(x, t) = 1 − ϕj(x) − cj(t) for j ∈ {1, 2}, where cj :
R+ → [0, 1] is a non-decreasing function with cj(0) = 0 and
cj(t

′′) = 1 for all t′′ ∈ [a, t′].

3) General case of STL specifications: Combining the
constructions of Sections IV-B.1 and IV-B.2, one is now in
position to form CBF for more general STL specifications in
the fragment defined in (4).

Take for example the following STL formula:

(3[a1,b1]ψ1) ∧ (2[a2,b2]ψ2) ∧ (ψ3U[a3,b3]ψ4) .

Based on the aforementioned process, the CBNF that encodes
this whole expression can take the form

b(x, t) = − ln
(
e−b1(x,t) + e−b2(x,t) + e−b3(x,t)

)
,

where

• b1 is constructed as in (8) with the ci functions associated
with the predicates in ψ1 attaining the value of 1 for
some t ∈ [a1, b1];

• b2 is constructed as in (8) with the ci functions associated
with the predicates in ψ2 attaining the value of 1 for all
t ∈ [a2, b2]; and

• b3 formed as in (9), where the ci functions associ-
ated with the predicates in ψ4 achieving 1 for some
t′ ∈ [a3, b3] and the ci functions associated with the
predicates in ψ3 becoming 1 for all t′′ ∈ [a3, t

′].

The exponential form (9) can sometimes lead to con-
servative control designs when an STL specification has
large number of conjunctions. The conservativeness of the
construction process outlined in Sections IV-B.1–IV-B.3 can
be partially relaxed by using the deletion mechanism of [3],
whereby a component CBF bi(x, t) drops from the composite
construction b(x, t) whenever time t exceeds the upper limit
of the time interval of its corresponding temporal operator,
say, [ai, bi], i.e., t > bi.

C. Efficient determination of the control input

Section IV-A primarily illustrated how the navigation
functions can be used in the construction of CBNFs that
encode STL specifications in the fragment defined by (4).
This section focuses on demonstrating that control design can
also be facilitated due to the navigation function properties
afforded by the proposed component CBNFs.

Without loss of generality, assume that the CBNF codifying
the desired STL specification is constructed through the pro-
cess outlined in Section IV-A and is presented in the form (9),
where each component bi is continuously differentiable.

Similarly [3], the following assumption is made:

Assumption 3. For any time tj ≤ t ≤ tj+1, the safe set C(t)
is either non-decreasing or decreasing. For the latter case,
it holds that ∂b(x,t)

∂x ̸= 0 for all (x, t) ∈ C(t) \ C(tj+1) ×
[tj , tj+1].

Now, following from Lemma 1 and the above assumption,
the control input u for (1), that guarantees b(x, t) ≥ 0 at

each time interval [tj , tj+1] can be computed directly using
the gradient of the CBNF:

u(x, t) :={
−g(x)⊺f(x)
g(x)g(x)⊺ , ∃ t′ ∈ [tj , tj+1] :

∂b
∂x |x(t′) = 0

k g(x)⊺ ∂b(x,t)
∂x otherwise

, (10)

and for the case ∂b(x,t)
∂x ̸= 0, k is selected such that the

following condition, involving an extended class-K∞ function
α, holds:

∂b(x, t)

∂x

⊺(
f + g u

)
+
∂b(x, t)

∂t
≥ −α

(
b(x, t)

)
. (11)

Therefore, k can be selected as the solution of the equation

k
[
∂b
∂x

⊺
(gg⊺) ∂b∂x

]
= −α

(
b
)
− ∂b

∂t
− ∂b

∂x

⊺

f(x) . (12)

Note that if Assumption 2 holds (i.e. g(x)g(x)⊺ is positive
definite), a solution to (12) always exists for any ∂b(x,t)

∂x ̸= 0.
The following proposition states that the control law (10)

in fact offers the minimum-norm input to keep b(x, t) ≥ 0.

Proposition 1. The second term in control law (10) coincides
with the solution of the following quadratic programming:

min ∥û∥2 such that
∂b
∂x

⊺[
f + g û

]
+ ∂b

∂t ≥ −α
(
b
)

.
(13)

Proof: Let u∗ be the solution to the quadratic program-
ming (13). Toward contradiction argument, suppose u ̸= u∗,
so it must be the case that ∥u∥ > ∥u∗∥. Then by (12) and
(13), both the following conditions should be satisfied:

∂b
∂x

⊺
g u = −α

(
b
)
− ∂b

∂t − ∂b
∂x f

∂b
∂x

⊺
g u∗ ≥ −α

(
b
)
− ∂b

∂t − ∂b
∂x f

}
. (14)

Given now that u is by construction aligned to the vector
g⊺ ∂b

∂x , and since ∥u∥ > ∥u∗∥, the inner product
(
∂b
∂x

⊺
g
)
u

must always be bigger than
(
∂b
∂x

⊺
g
)
u∗, i.e.

(
∂b
∂x

⊺
g
)
u >(

∂b
∂x

⊺
g
)
u∗. This contradicts (14).

Now comes the main theorem of this letter.

Theorem 1. Consider an STL specification φ in (4b) is
encoded in a CBNF b as instructed by Sections IV-A and
IV-B which is a valid control barrier function as well. If
Assumptions 1, 2 and 3 hold, system (1) with the control
law (10) for each time interval [tj , tj+1] behaves in a way
that leads to x |= φ.

Proof: For the control law of the form (10), but
with the second term being the solution of the quadratic
programming (13), the proof mirrors that of [3, Theorem
2]. Proposition 1 shows that the second term of (10) in fact
coincides with the solution to (13). Therefore, the proof
argument in [3, Theorem 2] carries over.

V. SIMULATION RESULTS

This section showcases how the CBNFs perform using a
two-dimensional test case of a point robot navigating a sphere
world and needing to satisfy a nontrivial STL specification.

Consider a robot in a 2D sphere world with an outer
boundary having radius 1, in which the robot is initially
positioned at coordinates x0 = (0.9, 0.2)⊺. The workspace
contains a static obstacle centered at (0.5, 0)⊺ with radius
0.2236. Let µi be the predicate that represents the ith

(spherical) region of interest, and consider an STL task
specification constructed based on those µi predicates. Table I
represents the center position and radius of all those regions
of interest.

TABLE I: Geometrical features of the STL regions of interest

Predicate Center Radius Predicate Center Radius

µ1 (−0.1, 0)⊺ 0.3 µ2 (−0.4, 0)⊺ 0.3

µ3 (−0.6, 0.2)⊺ 0.3 µ4 (−0.35,−0.3)⊺ 0.2

µ5 (−0.4,−0.6)⊺ 0.2

The STL task specification given to the robot to satisfy is:

φ1 = (2[3,7]µ1 ∧ µ2) ∧ (3[4,5]µ3) ∧ (µ4U[6,10]µ5) . (15)

Figures 1, 2 and 3 depict snapshots from the robot’s
trajectory as it is steered based on (10) in an attempt to satisfy
the STL specification φ1 given in (15), and encoded using
CBNFs. The trajectory snapshots capture key time instances
as determined by the STL temporal operators involved in (15).
In addition, figure 4 demonstrates the control input inserted
for the robot to complete the STL task (15).

-1 0 1

x

-1

-0.5

0

0.5

1

y

t=3

 X
0

-1 0 1

x

t=5

 X
0

1

2

3

4

5

obstacle
trajectory

Fig. 1: The robot’s path at time t = 3 is shown in the left; the
dashed red circle marks the zero level set of the predicate function
for µ1, the cyan solid circle marks the zero level set of the predicate
function for µ2, and the solid disk represents the static obstacle.
The robot is expected to satisfy the conjunction of µ1 and µ2 at
t = 3. The robot’s path at time t = 5 is shown in the right; at
this time, in addition to satisfying the conjunction of µ1 and µ2,
the robot is expected to satisfy µ3 (eventually, for some t ∈ [4, 5]),
which is associated with a predicate function that has a zero level
set outlined with a yellow dashed line.

Figure 4 indicates the evolution of the x and y components
of the input u(x, t) over time, computed based on (10)–(12).
The apparent jumps that can be noticed on the graphs of the
two control input components are due to the application of
the deletion mechanism [3] that simplifies the STL formulae
when the temporal relevance of some predicates expires.

For the above simulation example, we discritized time
interval [0, 10] into 1000 time steps. Running the existing
method [3] that requires quadratic programming solution at

-1 0 1

x

-1

-0.5

0

0.5

1
y

t=6

 X
0

-1 0 1

x

t=7

 X
0

1

2

3

4

5

obstacle
trajectory

Fig. 2: The robot’s path at time t = 6 (left) and t = 7 (right); at
both these times, in addition to satisfying the conjunction of µ1 and
µ2, the robot needs to satisfy the leftmost predicate in the Until
operator, µ4, the predicate function of which is zero where the
dashed-dotted green circle appears. Predicate µ5 on the right of the
Until operator and marked on the workspace with a dotted purple
circle does not need to be satisfied just yet.

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

t=10

 X
0

1

2

3

4

5

obstacle

trajectory

Fig. 3: The robot’s path at time t = 10; at this time, no other
predicate needs to be satisfied but µ5. Indeed, the robot has reached
the boundary of the zero level set of the predicate function for µ5,
marked with the dotted purple circle.

every steps for the above example takes 4.6562 seconds on
a system with Intel Core i5 (3.30GHz) processor and 16GB
of memory using Wolfram Mathematica. With the presented
CBNF method, running the above simulation example on the
same system takes only 2.6250 seconds, which shows an
improvement of 43.6%.

0 2 4 6 8 10

t

-0.8

-0.6

-0.4

-0.2

0

0.2

(a) ux

0 2 4 6 8 10

t

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b) uy

Fig. 4: Control input u = (ux, uy)
⊺ as computed by (10) for the

STL specification φ1 expressed in (15).

VI. CONCLUSION

Navigation functions, a key tool for feedback-based robot
motion planning and control, can play a key role in the
construction of barrier functions that are designed to enforce
STL specifications. Their introduction into this framework
for the first time with this paper allows for significant
computational benefits in the implementation of STL-based
control designs, as it obviates the need for solving a quadratic

programming problem in every iteration of the control loop
for the determination of the robot control input. Due to
the way that STL predicates are composed in this paper,
the navigation function properties of individual component
barrier functions are unfortunately not preserved; however,
this limitation seems to be circumvented through nonsmooth
compositional constructions, which will be reported in a
forthcoming paper.

REFERENCES

[1] O. Maler and D. Nickovic, “Monitoring temporal properties of
continuous signals,” in Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[2] A. Zehfroosh and H. G. Tanner, “Reactive motion planning for temporal
logic tasks without workspace discretization,” in IEEE American
Control Conference, 2019, pp. 4872–4877.

[3] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE Control Systems Letters, vol. 3,
no. 1, pp. 96–101, 2018.

[4] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control, 2014, pp. 81–87.

[5] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in 53rd Annual Allerton Conference on Communication,
Control, and Computing, 2015, pp. 772–779.

[6] Z. Liu, J. Dai, B. Wu, and H. Lin, “Communication-aware motion plan-
ning for multi-agent systems from signal temporal logic specifications,”
in IEEE American Control Conference, 2017, pp. 2516–2521.

[7] D. Gundana and H. Kress-Gazit, “Event-based signal temporal logic
synthesis for single and multi-robot tasks,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 3687–3694, 2021.

[8] A. M. Jones, K. Leahy, C. Vasile, S. Sadraddini, Z. Serlin, R. Tron,
and C. Belta, “ScRATCHS: Scalable and robust algorithms for task-
based coordination from high-level specifications,” in International
Symposium on Robotics Research, 2019, pp. 1–16.

[9] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and
P. Tabuada, “Control barrier functions: Theory and applications,” in
18th European Control Conference, 2019, pp. 3420–3431.

[10] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
multi-agent systems under conflicting local signal temporal logic tasks,”
IEEE Control Systems Letters, vol. 3, no. 3, pp. 757–762, 2019.

[11] ——, “Barrier function based collaborative control of multiple robots
under signal temporal logic tasks,” IEEE Transactions on Control of
Network Systems, vol. 7, no. 4, pp. 1916–1928, 2020.

[12] ——, “Feedback control strategies for multi-agent systems under a
fragment of signal temporal logic tasks,” Automatica, vol. 106, pp.
284–293, 2019.

[13] ——, “Funnel control for fully actuated systems under a fragment
of signal temporal logic specifications,” Nonlinear Analysis: Hybrid
Systems, vol. 39, p. 100973, 2021.

[14] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial
potential functions,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 5, pp. 501–518, 1992.

[15] C. Li and H. G. Tanner, “Navigation functions with time-varying
destination manifolds in star worlds,” IEEE Transactions on Robotics,
vol. 35, no. 1, pp. 35–48, 2018.

[16] J. Sun and H. G. Tanner, “Constrained decision-making for low-count
radiation detection by mobile sensors,” Autonomous Robots, vol. 39,
no. 4, pp. 519–536, 2015.

[17] C. Chen, C. Li, and H. G. Tanner, “Navigation functions with non-
point destinations and moving obstacles,” in Proceedings of the IEEE
American Control Conference, 2020, pp. 2532–2537.

[18] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[19] I. Yadav and H. G. Tanner, “Exact decentralized receding horizon
planning for multiple aerial vehicles,” in Proceedings of the IEEE
Conference on Decision and Control, 2021, (to appear).

[20] W. M. Boothby, An Introduction to Differentiable Manifolds and
Riemannian Geometry, 2nd ed. Academic Press Inc., 1986.

	Introduction
	Technical Preliminaries
	Robot dynamics
	Signal Temporal Logic
	Control Barrier Functions

	Problem Statement
	Technical Approach
	Navigation functions as control barrier functions
	A Compositional Approach for CBNFs
	STL specifications with no conjunctions
	STL specifications with no temporal operator conjunctions
	General case of STL specifications

	Efficient determination of the control input

	Simulation Results
	Conclusion
	References

