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Leader-to-Formation Stability
Herbert G. Tanner George J. Pappas Vijay Kumar

Abstract—The paper investigates the stability properties of mo-
bile agent formations which are based on leader-following. We
derive nonlinear gain estimates that capture how leader behav-
ior affects the interconnection errors observed in the formation.
Leader to formation stability (LFS) gains quantify error ampli£ca-
tion, relate interconnection topology to stability and performance
and offer safety bounds for different formation topologies. Anal-
ysis based on the LFS gains provides insight to error propagation
and suggests ways to improve the safety, robustness and perfor-
mance characteristics of a formation.

I. INTRODUCTION

Interconnected systems have lately received considerable at-
tention, motivated by recent advances in computation and com-
munication, which provide the enabling technology for appli-
cations such as automated highway systems [1], cooperative
robot reconnaissance [2], [3] and manipulation [4], [5], for-
mation ¤ight control [6], [7], satellite clustering [8] and con-
trol of groups of unmanned vehicles [9], [10], [6]. Advantages
of interconnected multi-agent systems over conventional sys-
tems include reduced cost, increased ef£ciency, performance,
recon£gurability and robustness, and new capabilities. A space
radar based on satellite clusters [11] is estimated to cost three
times less than currently available systems, increase geoloca-
tion accuracy by a factor of 500, offer two orders of magnitude
smaller propulsion requirement and be able to track moving tar-
gets through formation ¤ight.

Formations have been represented by means of virtual struc-
tures or templates [12], [7]. Graphs have also been used to
capture the interconnection topology in a formation [13], [14]
and re¤ect control structure [15], constraint feasibility [16], in-
formation ¤ow [17] and error propagation [18]. These graphs
can have undirected edges, when the latter model position
constraints [13], [14], or directed for the case of information
¤ow [17] or leader-following inter-agent control speci£cations
[19], [20], [21].

Formation control and interconnected systems stability have
been analyzed recently from many different perspectives. In
behavior-based approaches [2] the group behavior emerges as
a combination of group member behaviors, selected among a
set of primitive actions. Lyapunov based techniques have been
used extensively to establish asymptotic stability in multi-agent
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formations. Formation control speci£cations are usually en-
coded in a formation constraint function [22] or in some arti-
£cial potential functions [23], [13] that usually play the role of
Lyapunov function candidates. Another approach that applies
to linear spatially interconnected systems is a distributed con-
trol scheme [24] that is based on L2-norm performance mea-
sures. Local coordination control schemes that aim at stabiliz-
ing agents around some desired con£gurations have also been
successfully applied [7], [19], [25]. String stability has proved
to be an important tool in analyzing the stability of platoons of
vehicles [26], [27], [28], [29]. System cascading is made stable
by ensuring that the error attenuates as it propagates from one
system to the next downstream. The string stability property is
given an elegant state space formulation and it was shown to
be robust with respect to structural perturbations [1]. Mesh sta-
bility, which can be thought of as a generalization to multiple
dimensions [30], also enjoys similar properties.

In the new generation of interconnected systems that are now
being developed, safety, robustness and performance are going
to be critical properties, and distinguish such systems from all
their predecessors. Most previous approaches to formation con-
trol aim at establishing convergence properties for formation er-
rors, which is necessary to make such a system operational. To
address issues related to safety and performance, we need new
tools [31] that allow as to quantify, bound and estimate the error
amplitudes in the worst case.

In this paper we introduce Leader-to-Formation Stability
(LFS) in an effort to address these issues. The notion is based on
input-to-state stability [32] and its invariance properties under
cascading [33], [34]. LFS quanti£es error ampli£cation during
signal propagation in leader-following formations. We estab-
lish nonlinear gain estimates between the errors of the forma-
tion leaders and the interconnection errors observed inside the
formation. In this way, we can characterize how leader inputs
and disturbances affect the stability of the group. We are also
able to assess the stability of particular subgroups inside the
formation and thus guide analysis. In the case where the gain
estimates can be expressed as linear functions of the formation
errors, then gain propagation can be done ef£ciently through
an algorithm based on algebraic matrix formulas, in which the
interconnection topology of the formation appears explicitly in
the form of the adjacency matrix of the underlying graph.

II. DEFINITIONS AND PRELIMINARY REMARKS

In the context of this paper, a formation is de£ned as a net-
work of vehicles interconnected via their controller speci£ca-
tions. These speci£cations dictate that each agent must main-
tain a certain relative state vector with respect to its leaders.
Agent interconnections are modeled as edges in a directed (for-
mation) graph [35], labeled by the respective control speci£ca-
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tions. This section introduces the material needed for describ-
ing formally the formation, and de£nes the stability notions that
are going to be used in the subsequent analysis.

A. Graph Theory Preliminaries

A directed graph consists of a vertex set V (X) and an di-
rected edge set E(X), where a directed edge is an ordered pair
of distinct vertices.An edge (x, y) in a directed graph is said to
be incoming with respect to y and outcoming with respect to
x. Such an edge has vertex x as a tail and vertex y as a head.
The indegree of a vertex in a directed graph is de£ned as the
number of edges that have this vertex as a head. If (x, y) is an
edge, then x and y are adjacent. A subgraph of a graph X is
a graph Y such that V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X). A
subgraph Y of X is an induced subgraph when any two adja-
cent vertices in V (Y ) are also adjacent in X . A path of length
r in a directed graph is a sequence v0, . . . , vr of distinct ver-
tices such that for every i ∈ [1, r], (vi, vi+1) ∈ E. A weak
path is a sequence v0, . . . , vr of r+1 distinct vertices such that
for each i ∈ [1, r] either (vi, vi+1) or (vi+1, vi) is an edge in
E. A directed graph is weakly connected or simply connected
if any two vertices can be joined with a weak path. The dis-
tance between two vertices x and y in a graph X is the length
of the shortest path from x to y. The diameter of a graph is the
maximum distance between two distinct vertices. A (directed)
cycle is a connected graph where every vertex is incident with
one incoming and one outcoming edge. An acyclic graph is a
graph with no cycles.

B. Formation Graphs

We consider formations that can be represented by acyclic 1

directed graphs. In these graphs, the agents involved are iden-
ti£ed by vertices and the leader-following relationships by (di-
rected) edges. The orientation of each edge distinguishes the
leader from the follower. Follower controllers implement static
state feedback control laws that depend on the state of the par-
ticular follower and the states of its leaders.

De£nition II.1 (Formation Control Graph). A formation
control graph F = (V,E, S) is a directed acyclic graph con-
sisting of:

• A £nite set V = {v1, . . . , vN} of N vertices and a
map assigning to each vertex vi a control system ẋi =
fi(t, xi, ui) where xi ∈ R

n and ui ∈ R
m.

• An edge set E ⊂ V × V encoding leader-follower rela-
tionships between agents. The ordered pair (vi, vj) � eij
belongs to E if uj depends on the state of agent i, xi.

• A collection D = {dij} of edge speci£cations, de£ning
control objectives (setpoints) for each j : (vi, vj) ∈ E for
some vi ∈ V .

For agent j, the tails of all incoming edges to vertex j rep-
resent leaders of j, and their set is denoted by Lj ⊂ V .
Vertices v� of indegree zero represent formation leaders with
v� ∈ LF ⊆ V . Since there are no incoming edges for the ver-
tices in LF , no formation speci£cations can be de£ned for for-
mation leaders; instead, these agents regulate their behavior so

1The case of cycles in a formation graph is treated in [18].

that the formation may achieve some group objectives such as
navigation in obstacle environments or tracking reference paths.

Given a speci£cation dkj on edge (vk, vj) ∈ E, a setpoint
for agent j can be expressed as xr

j = xk − dkj . For agents with
multiple leaders, the speci£cation redundancy can be resolved
by projecting the incoming edges speci£cations into orthogonal
components:

xrj =
∑
k∈Lj

Skj(xk − dkj) (1)

where Skj are projection matrices with
∑

k rank(Skj) = n.
Then the error for the closed loop system of agent j is de£ned
to be the deviation from the prescribed setpoint x̃ j � xrj − xj ,
and the formation error vector is constructed by stacking the
errors of all followers:

x̃ � [· · · x̃j · · · ]T , vj ∈ V \ LF

Formation leaders are supposed to pursue some group objec-
tives (missions). Consider a formation leader associated with
a vertex v� ∈ LF . If these objectives are known a priori, then
they can be encoded in some nominal trajectory, x r

� , in which
case we can de£ne the error for agent � as: x̃ � = xr� − x�. Now
consider the input transformation u� = ũ� + w�, and assume
a feedback control law ũ�(x̃�), which makes the origin of the
closed loop system

˙̃x� = f̃�(t, x̃�, w�)

with w� = 0, asymptotically stable. Similarly, if the mission
objectives are unspeci£ed, we can set xr

� = 0, and assume the
existence of an asymptotically stabilizing control law, ũ �, that
makes ˙̃x� = f̃�(t, x̃�, 0) asymptotically stable. Then, the mis-
sion objectives can be realized by means of the input term w �.

C. Leader-to-Formation Stability

In this section we investigate the stability properties of the
formation with respect to all leader inputs w� or errors x̃� (in the
case where leader control specs have been encoded in x r

� .) We
obtain nonlinear gain estimates that quantify the transient ef-
fects of initial errors x̃(t0) and the steady state effects of leader
inputs w�, v� ∈ LF on the amplitude of the formation error x̃.

De£nition II.2 (LFS). A formation is called leader-to-
formation stable (LFS) if there is a class KL function β and a
class K function γ such that for any initial formation error x̃(0)
and for any bounded inputs of the formation leaders, {w �} the
formation error satis£es:

‖x̃(t)‖ ≤ β(‖x̃(0)‖ , t) +
∑
�∈LF

γ�

(
sup
[0,t]

‖w�‖
)

(2)

The functions β(r, t) and γ�(r) are called transient and asymp-
totic LFS gains for the formation.

Leader-to-formation stability builds on the notion of input-
to-state stability and it is a ‘robustness’ property [36], [37]. In
this approach, the formation is viewed as a nonlinear opera-
tor from the space of leader input/disturbances to the space of
the formation internal state. Functions β(r, t) and γ�(r), in (2)
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are ‘nonlinear gain estimates’ quantifying the effect of initial
conditions and leader input on formation errors. Inequality (2)
provides a safety bound on the formation error. Thus, given a
safety speci£cation, and a set of initial conditions, one can esti-
mate an upper bound on the admissible input that can keep the
system safe; conversely, given a safety speci£cation and under
a particular input regime, a set of initial conditions from which
systems trajectories remain safe at all times, can be determined.

Based on alternative characterizations of input-to-state sta-
bility [36], De£nition II.2 implies the following:

Corollary II.3. If a formation is LFS, in the sense of De£nition
II.2, then the formation error satis£es:

lim
t→∞ ‖x̃(t)‖ ≤

∑
�∈LF

γ�(sup ‖w�‖)

Corollary II.3 establishes the asymptotic LFS gain
γ(sup ‖w�‖) as an ultimate bound for the formation er-
ror. This motivates the de£nition of the following LFS stability
measure:

De£nition II.4. Consider a formation that is LFS. Then the
scalar quantity:

PLFS � 1
1+

∑
�∈LF

γ�(1)

is called the LFS stability measure of the formation.

As de£ned, PLFS varies in [0, 1]. The sum in the denom-
inator of the de£ning equation for the LFS measure gives an
estimate of the region in which the steady state formation er-
ror will remain, when the inputs to the formation leaders are
bounded inside unit balls. The larger the error region grows,
the smaller the LFS measure becomes. On the other hand, as
the size of the error region shrinks, the performance measure
tends to 1.

III. LFS PROPAGATION
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Fig. 1. A generic formation control graph.

In the formation graphs we consider in this paper, all induced
subgraphs with N vertices have the form of Figure 1. This
means that all cycles in the underlying undirected graph are of
order 3. This is done to simplify the analysis, which can be
extended to more general interconnection topologies at the ex-
pense of added analytical complexity. Assume an enumeration

on the induced formation control graph of Figure 1, where the
vertices in the £rst row are assigned the numbers 1, . . . , L, the
vertices in the second are assigned the numbers L + 1, . . . ,M
and the rest are assigned the numbers M + 1, . . . , N . Let the
dynamics of the agents be expressed as follows:

ẋ� = f�(t, x�, u�), � ∈ {1, . . . , L} (3a)

ẋi = fi(t, xi, ui), i ∈ {L+ 1, . . . ,M} (3b)

ẋf = ff (t, xf , uf), f ∈ {M + 1, . . . , N} (3c)

The agents are driven by control laws of the form:

u� = u�(t, x�, x̃�, w�), � ∈ {1, . . . , L} (4a)

ui = ui(t, xi, x̃i), i ∈ {L+ 1, . . . ,M} (4b)

uf = uf (t, xf , x̃f ), f ∈ {M + 1, . . . , N} (4c)

resulting in closed loop error dynamics which can be written as:

˙̃x� = f̃�(t, x̃�, v�) (5a)

˙̃xi = f̃i(t, x̃1, . . . , x̃L, x̃i) (5b)

˙̃xf = f̃f (t, x̃1, . . . , x̃M , x̃f ) (5c)

The main result of the paper is based on the invariance of the
LFS property under a broad class of interconnections:

Proposition III.1. Consider the formation of Figure 1 with
closed loop error dynamics given by (5). If (5b) is LFS with
respect to x̃1, . . . , x̃L:

‖x̃i(t)‖ ≤ βi(‖x̃(0)‖ , t) +
∑L

�=1 γ�i(sup ‖x̃�‖)

and (5c) is LFS with respect to x̃1, . . . , x̃M :

‖x̃f (t)‖ ≤ βf (‖x̃f (0)‖ , t) +
∑M

i=1 γif (sup ‖x̃i‖)

then the induced formation control graph is LFS with respect to
x̃1, . . . , x̃L:

‖x̃(t)‖ ≤ β(‖x̃(0)‖ , t) + ∑L
�=1 γ�(sup ‖x̃�‖)

with x̃ := (x̃L+1, . . . , x̃N ) and

β(r, t) =
∑N

f=M+1

{ ∑M
i=L+1

[
γif

(
4βi

(
2βi(‖x̃(0)‖ , 0), t

2

))
+ βi

( ‖x̃(0)‖ , t)] + βf

(
2βf

( ‖x̃(0)‖ , t
2

)
+

2
∑M

i=L+1 γif
(
2βi(‖x̃(0)‖ , 0)

)
, t

)}
(6a)

γ�(r) =
∑N

f=M+1

[∑M
i=L+1 γif

(
2Lγ�i(r)

)
+ γ�f (r)+

βf

(
2L

(∑L
�=1 γ�f (r) +

∑M
i=L+1 γif (2Lγ�i(r))

)
, 0

)

+
M∑

i=L+1

γ�i(r) +
M∑

i=L+1

γif

(
4βi

(
2Lγ�i(r), 0

))]
. (6b)

Proof. See Appendix.

In the case where the agent dynamics are linear, then the
conditions for LFS are automatically satis£ed. The following
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Proposition takes into account the linearity of the gain func-
tions and provide less conservative bounds than those obtained
by applying (6) to the linear case. The linear version of (3) has
the following form:

ẋ� = Ax� +Bu�, � ∈ {1, . . . , L}
ẋi = Axi +Bui, i ∈ {L+ 1, . . . ,M}
ẋf = Axf +Buf , f ∈ {M + 1, . . . , N},

along with the feedback control laws:

ui =Kix̃i + ei (7a)

uf =Kf x̃f + ef , (7b)

u� =K�x̃� + e�, (7c)

where Ki, Kf , and K� are such that (As − BsKs), s ∈
{1, . . . , N} are Hurwitz, and ei, e� and ef satisfy:

Biei = −Aix
r
i , Bfef = −Afx

r
f , B�e� = −A�x

r
�

These ensure that the control inputs of each follower can pro-
vide the appropriate feedforward action to track the leader. Ap-
plication of (7) results in closed loop error dynamics that can
be written as:

ẋ� =− (A� −B�K�)x̃�, (8a)

˙̃xi =(Ai −BiKi)x̃i + ẋri (8b)

˙̃xf =(Af −BfKf)x̃f −
M∑

i=L+1

Sif (Ai −BiKi)x̃i, (8c)

This model is equivalent to the one used for a string of LTI
systems in [38]. In this case, the LFS gains are as follows:

Proposition III.2. Consider the formation of Figure 1 where
the closed loop error dynamics of the agents are given by (8).
Then, (8) is LFS with respect to x̃1, . . . , x̃L:

‖x̃(t)‖ ≤ β̄ ‖x̃(0)‖ e−µt +
∑L

�=1 γ̄� sup ‖x̃�‖
where θ ∈ (0, 1) is a parameter, µ = 1−θ

4 max{λM [Pi],λM [Pf ]} ,

λM [·] and λm[·] are the largest and smallest eigenvalues of a
matrix, respectively,

β̄ �
M∑

i=L+1

[ N∑
f=M+1

(
β̄2
f + (β̄i + β̄f )β̄iγ̄if

)
+ β̄i

]
(9a)

γ̄� �
N∑

f=M+1

[
(1 + β̄f )γ̄�f +

M∑
i=L+1

(β̄f + β̄i + 1)γ̄if γ̄�i + γ̄�i
]

(9b)

with β̄r =
(
λM [Pr ]
λm[Pr]

) 1
2

, for r = 1, . . . , N , γ̄ji =

2(λM [Pi])
3
2 λM [Aj−BjKj ]

(λm[Pi])
1
2 θ

, and each Pj satisfying:

Pj(Aj −BjKj) + (Aj −BjKj)TPj = −I

Proof. See Appendix.

IV. GRAPH PROPAGATION MATRIX EQUATIONS

For linear systems, the LFS gain propagation equations (9)
can be encoded in recursive matrix equations, in which the for-
mation graph structure appears explicitly in the form of the
graph adjacency matrix. The recursion is based on the prop-
erty of the powers of the adjacency matrix to give the number
of paths of length equal to the exponent between two vertices
in the graph [35]. By labeling the edges of the graph with the
LFS gains associated with the particular edge, we are able to
propagate the gains through the graph and obtain a sequence
of matrices that express the LFS gains of all paths inside the
formation graph.

Consider the adjacency matrix A of G:

A = [aij ], where

{
aij = 1, if (vi, vj) ∈ E

aij = 0, otherwise

and de£ne the matrices Γ, B ∈ R
|V|×|V| as follows:

B =[bij ], where

{
bij = β̄j , if aij = 1
bij = 0, otherwise

(10)

G =[gij ], where

{
gij = γ̄ji, if aij = 1
gij = 0, otherwise

. (11)

Obviously, matrices B and G provide the transient and
asymptotic LFS gains of all paths of length one (edges) in the
formation graph. Thus we de£ne:

B1 = B, G1 = G,

respectively, where the subscript denotes the length of the path.
Then the LFS gains of all longer paths in the formation graph
can be computed through the recursive procedure described in
the following Proposition:

Proposition IV.1. Consider a formation control graph G with
adjacency matrix A and matrices B, G de£ned by (10) and
(11), respectively. Then, the asymptotic and transient LFS
gains of paths of length k > 1 between two vertices vi, vj ∈ V
are given recursively as the (i, j) elements of matrices

Gk = G(Gk−1 ◦Bk−1) +GGk−1 + (G ◦B)Gk−1

+GAk−1 +G ◦ (ABk−1 +Ak) (12a)

Bk = A(Bk−1 ◦Bk−1) +BAk−1 + (B ◦B)Gk−1

+B(Gk−1 ◦Bk−1), (12b)

respectively, where ◦ denotes the Schur (elementwise) matrix
product. Moreover, the recursion terminates after d ≤ |V| − 1
steps, where d is the diameter of the formation graph G.

Proof. See Appendix.

V. RELATION TO ALTERNATIVE METHODOLOGIES

The framework of string and mesh stability provides an alter-
native way of analyzing the stability of interconnected systems.
Mesh stability guarantees error attenuation and establishes sta-
bility properties which are preserved when the group is aug-
mented. LFS, on the other hand, models the effect of leader
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inputs and can be used to address issues related to safety and
performance.

Although both notions re¤ect some robustness properties of
the system, due structural perturbations in the former case and
input disturbances in the latter, the similarities seem to end
here:

• mesh stability ensures scalable stability properties which
are independent of system size whereas LFS relates stabil-
ity properties with initial conditions, input and error spec-
i£cations, and system size and interconnection topology;

• mesh stability establishes the convergence of interconnec-
tion errors to zero while LFS provides ultimate bounds that
depend on initial conditions and inputs;

• in a mesh stable system errors attenuate due to ‘weak in-
teraction’ conditions while in an LFS system errors can
increase but their ampli£cation is quanti£ed via nonlinear
gain estimates.

• there is no notion of input in mesh stability;
• LFS nonlinear systems are generally not mesh stable;
Although LFS and mesh stability are generally incompara-

ble, one can establish a link between them, in the sense that
mesh stability of the unforced system may, under some sector
conditions on the input vector £elds, imply local LFS. In this re-
spect, it is possible to introduce inputs in a mesh stable system
and analyze their effect on the size of the errors observed.

Proposition V.1. For a look ahead system, af£ne in control:

ẋ1 = f1(t, x1) + g1(t, x1)u1 (13a)

ẋ2 = f2(t, x2, x1) + g2(t, x2, x1)u2 (13b)

...

ẋN = fN(t, xN , . . . , x1) + gN (t, xN , . . . , x1)uN (13c)

If for ui = 0, i = 1, . . . , N , (13) is asymptotically mesh stable
at the origin x � (x1, . . . , xN ) = 0, and there are class-K
functions ζi(·) such that

‖gi(t, xi, . . . , x1)‖ ≤ ζ(‖x‖) � max
r,i

{ζi(r)}, i = 1, . . . , N

then there is a neighborhood of the origin, D = {x : ‖x‖ ≤ r}
where (13) is LFS.

Proof. See Appendix.

The converse, however, is not true. If (13) is LFS, setting
ui = 0 does not necessarily mean that ‖xi(t)‖∞ ≤ ‖x(t)‖i−1

∞ ,
which is required for mesh stability [30]. Suf£cient conditions
for mesh stability include global Lipschitz continuity of the sys-
tem vector £elds with respect to coupling terms and exponential
stability of the unforced dynamics [30]. These conditions may
not necessarily be satis£ed in LFS systems [21].

VI. APPLICATIONS

A. LFS in Mobile Robot Formations

The results of Section III can be applied to formations of non-
holonomic mobile robots. We borrow the application example
of [15] and we show that the resulting edge error dynamics are

LFS. For each nonholonomic mobile robot we consider the fol-
lowing kinematic model:

ẋi = vi cos θi, ẏi = vi sin θi θ̇i = ωi. (14)

where (x, y, θ) is the position and orientation of mobile robot
i, and vi, ωi are the translational and rotational velocity control
inputs. For a triple of robots i, j and k where j is supposed
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Fig. 2. Leader following using a separation-bearing controller.

to follow i and i is supposed to follow k, the speci£cation for
the leader-follower relationship can be expressed in terms of
the separation distance � and the relative bearing ψ (Figure 2)
which e.g. for the i− j pair can be written as:

hij = (�dij − �ij , ψ
d
ij − ψij) � (�̃ij , ψ̃ij) = 0.

where �dij and ψd
ij are constant speci£cation parameters. Taking

hij as an output, the dynamics of the i− j leader-follower pair
can be expressed in new coordinates as:[ ˙̃�ij

˙̃
ψij

φ̇ij

]
=

[
cosψij 0
− sin ψij

�ij
1

0 1

][
vi
ωi

]
−

[
cos(φij+ψij) d sin(φij+ψij)
− sin(φij+ψij)

�ij

d cos(φij+ψij)
�ij

0 −1

][
vj
ωj

]

where d is a modeling parameter and φij = θi − θj . Using
input-output feedback linearization:[

vj
ωj

]
=

[
cos(φij + ψij) −�ij sin(φij + ψij)

sin(φij+ψij)
d

�ij cos(φij+ψij)
d

][
kj1�̃ij
kj2ψ̃ij

]
(15a)[

vi
ωi

]
=

[
cos(φki + ψki) −�ki sin(φki + ψki)

sin(φki+ψki)
d

�ki cos(φki+ψki)
d

][
ki1�̃ki
ki2ψ̃ki

]
(15b)

the interconnection error dynamics can take the form:

[ ˙̃
�ij
˙̃
ψij

]
= −

[
kj1�̃ij
kj2ψ̃ij

]
−

[
− cosψij cos(φki + ψki)

sinψij cos(φki+ψki)
�ij

− sin(φki+ψki)
d

�ki cosψij sin(φki + ψki)
− �ki sinψij sin(φki+ψki)

�ij
− �ki cos(φki+ψki)

d

][
ki1�̃ki
ki2ψ̃ki

]
(16)

The internal dynamics of φij can be shown to be stable [15].
Then, using Vij = 1

2kj
1
‖�̃ij‖2+ 1

2kj
2
‖ψ̃ij‖2 as a Lyapunov func-

tion for (16), and denoting ( �̃ij , ψ̃ij)T by z̃ij , we can arrive at:

V̇ij ≤ −‖z̃ij‖2 + ‖z̃ij‖
[

1
kj
1

0

0 1
kj
2

][
− cosψij 0

sinψij

�ij
−1

]
‖( vi

ωi
)‖

which yields for ξ ∈ (0, 1):

V̇ij ≤ −(1−ξ) ‖z̃ij‖2
, ∀ ‖z̃ij‖ ≥ max{ki

1,k
i
2}(d+�d

ki+‖z̃ki‖)‖z̃ki‖
ξdmin{kj

1,k
j
2}
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Then follows that: ‖z̃ij‖ ≤ βij(‖z̃ij(0)‖ , t) + γij(sup ‖z̃ki‖),
where

βij(r, t) = r

√
max{kj

1,k
j
2}

min{kj
1,k

j
2}

e−(1−ξ)min{kj
1,k

j
2}t (17a)

γij(r) =
max{kj

1,k
j
2}

1
2 max{ki

1,k
i
2}(d+�d

ki+r)r

ξdmin{kj
1,k

j
2}

3
2

(17b)

establishing the LFS property of the leader-follower pair.
The simulated response of a string of ten mobile robots with

dynamics described by (14), is steered using the leader-follower
controllers (15) is depicted in Figures 3-4. Figure 3 shows the
paths of the £rst and the last robots in the string, in an effort to
follow a sinusoidal reference trajectory while maintaining the
shape of a straight line. Error propagation causes large over-
shoot for the last follower. Figure 4 presents the time evolution
of the formation errors related to separation and bearing. Af-
ter an initial transient period, the errors remain bounded inside
a certain region that depends on the magnitude of the velocity
along the reference trajectory.
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first vehicle 

vehicle path 

initial string
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final string shape 

Fig. 3. A string of 10 vehicles tracking a sinusoidal trajectory.
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Fig. 4. Formation errors for the string of 10 vehicles.

B. Architecture Comparison

In this section we will £rst turn our attention to a formation
of three mobile robots (Figure 5). We will use LFS to assess

and numerically verify the stability properties of three differ-
ent formation architectures, based on (16). We compare the
three architectures depicted in Figures 6 and 8. In the simu-
lation runs, the formation leader, robot 1 has to follow a cir-
cular reference trajectory, while the other robots have to re-
main in a straight line behind the leader. The parameter val-
ues selected are �d12 = 0.75[m] ψd

12 = π[rad], �d23 = 0.75[m],
ψd

23 = π[rad], �d13 = 1.75[m], d = 0.25[m] and the controller
gains are set to k1 = 10, k2 = 10 for all robots.

The cascade formation of Figure 6 has an LFS asymptotic
gain: γ(r) = 8r(r + 2) + 256r(r + 2)[2 + 16r(2 + r)] +
512r(2 + r)[2 + 64r(2 + r)] and an LFS performance measure
PLFS = 3.367 × 10−7. For the parallel formation of Figure
8 we have γ(r) = 16r(2 + r) and PLFS = 0.98, which in-
dicate a signi£cant qualitative difference in performance. This
difference is depicted in Figures 7 and 9, where it is obvious
that in parallel formation, the robots are able to move in align-
ment more accurately. Although the gain estimates calculated
are crude, having to account for the worst case, there are still
indicative of the stability properties of the system. Indeed, as it
can be seen in Figure VI-B, the parallel formation clearly out-
performs the cascade architecture.
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Fig. 10. Formation error evolution for the two formation architectures.

Consider now the formation depicted in Figure VI-B. All
robots are thought to use the controllers (15), with the only dif-
ference that the vehicle 3 uses higher feedback gains compared
to all the others. In view of the increased performance capa-
bilities of robot 3, one may consider assigning robots 5, 6, and
7 to follow 3. However, an LFS analysis reveals that such a
change will in fact increase the magnitude of the formation er-
rors: assume that ki

1 = kI2 = k, for i = {1, 2, 4, 5, 6, 7} and
k3
1 = k3

2 = k′ > k. Suppose that collision avoidance imposes
a maximum allowable error bound, ‖r‖ < R. Then the LFS
gains of (17) can be overapproximated as follows:

βij(r, t) = re−(1−ξ)kj t, (18a)

γij(r) =
ki

kj

(
d+ �+R

ξd

)
r (18b)

With ξ = 0.5, d = 0.25 and � = 0.75, from (18) we derive:

Nearest neighbor following
γ25 = 2(1 +R)r
γ36 = 2k′

k (1 +R)r
γ47 = 2(1 +R)r

Following 3
γ25 = 2k′

k (1 +R)r
γ36 = 2k′

k (1 +R)r
γ47 = 2k′

k (1 +R)r

Since k′ > k, robots 5 and 7 will exhibit larger errors in the in-
terconnection of Figure VI-B compared to those expected in the
interconnection of Figure VI-B. This is because higher feed-
back gains for robot 3 result to larger control inputs which prop-
agate into robots 5 and 7, increasing their formation errors.
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Fig. 11. Nearest neighbor following.
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Fig. 12. Following the fastest robot.

C. Safety Speci£cations

Leader-to-Formation Stability gains can be used to check and
implement safety speci£cations that are related to formation er-
rors. In the example of this Section, we consider a formation
of three robots connected in cascade via the separation-bearing
controllers (15). The group is supposed maneuver maintaining
a triangular shape for which the faces must not exceed a certain
distance. This will ensure that the robots move in a tight forma-
tion, in the same way as £ghters when ¤ying in formation have
to maintain certain patterns to avoid detection by enemy radars.

The leader of the formation is to follow a reference trajectory.
The time parameterization of the reference trajectory de£nes a
desired velocity for the leader. This reference velocity can be
regarded as an input to the formation and as such it will affect
the size of the formation errors. If the magnitude of this velocity
were a design parameter, then a question that arises is whether
one can select an appropriate value to ensure that the formation
can track the reference trajectory without violating its safety
speci£cation.

The formation motion is simulated £rst for the case where
the reference velocity is set to a constant value: ‖u�‖ = 1. The
robot paths are given in Figure VI-C. A circle of radius ρ =
1.5[m] around the formation leader marks the boundary of the
region in which the followers should be for the group to satisfy
the safety speci£cation. Due to the magnitude of the reference
velocity for the leader, the formation shape is distorted and the
last follower in the string exhibits an unacceptable error, which
forces it to remain outside the safe region.

−15 −10 −5 0 5 10

−10

−8
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−4

−2

0
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8

Original reference velocity

x [m]

y 
[m

]

Fig. 13. Formation input not satisfying safety spec.

Based on the fact that the distance between the last follower
and the leader should not exceed 1.5[m], we can determine the
largest allowable formation error: x̃max = 0.5829. Using the
LFS gain estimates (18), with R = 0.5829, k1 = k2 = 10
and ξ = 0.5, we derive a formation asymptotic gain: γ̄ � =
1721.73. This implies that in order for x̃ ≤ x̃max it suf£ces to
have ‖u�‖ ≤ 0.000338. Then the reference speed for the leader
is set to ‖u�‖ � 0.0001 and the formation motion is simulated
again and depicted in Figure VI-C, where it is clear that the
safety speci£cation is now satis£ed.
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D. Gain Computation

One of the major considerations when dealing with large
scale interconnected systems such as large vehicle formations,
is the ability to compute the gain estimates ef£ciently, regard-
less of the size of the system. For nonlinear systems, due to
their inherent complexity, LFS gain computation using (6) is
cumbersome and does not scale well. The conclusions that can
be drawn in the case of large scale vehicle formations are basi-
cally qualitative: one knows that the LFS property of individual
subsystems ensures the continuous dependence of the size of
the formation errors on the amplitude of the leaders excitation.
Figure 3 shows the vehicle paths in a string of ten, with closed
loop dynamics described by (16). Figure 4 gives the formation
error evolution with respect to time in which, due to the absence
of an appropriate norm on SE(2), we chose to plot the position
and orientation errors separately. Figures 3-4 show how LFS
can ensure boundedness of errors and continuous dependence
of system trajectories on leader input.

In the remaining of this section we will demonstrate the use
of equations (12) to assess the stability properties of the forma-
tion depicted in Figure VI-D. To apply equations (12) we con-
sider a linear overapproximation of the LFS gains in the sense
of (18) and assume β̄ij = 1.2, γ̄ij = 0.2 for any pair of leader i
and follower j with i, j ∈ {1, . . . , 36}. In this formation graph,
the largest path is of length 5. The computation process ter-
minates after 6 steps, yielding an LFS performance measure:

PLFS =
(
1 +

∑3
j=1 6γ̄1j

)−1

= 772.952−1

VII. CONCLUSION

LFS is a stability property of formations that are based on
leader-following which quanti£es the propagation of the input
of the formation leaders to the interconnection network of the
group and captures its effects on the magnitude of the errors ob-
served. It provides performance measures that can be calculated
analytically, and allows the calculation of worst case ultimate
error bounds. which can be used to check the design against
safety speci£cations. The intuitive fact that performance dete-
riorates as the graph that represents the formation interconnec-
tions increases in diameter, can now be formally justi£ed. LFS
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Fig. 15. Gain computation in large formations.

can be used as an analysis tool to assess the performance and
robustness capabilities of different interconnection topologies
and expose weaknesses in the design of the formation architec-
ture in the form of error amplifying interconnections. Finally,
the worst case ultimate error bounds obtained by LFS can be
used to check a particular formation design against error-related
safety speci£cations.
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APPENDIX

Proof of Proposition III.1

For the generic formation of Figure 1, note that LFS of each
follower f with respect to x̃k , k = 1, . . . ,M , for the time inter-
val [0, t/2] and f = M + 1, . . . , N yields:

∥∥x̃f ( t2 )∥∥ ≤ βf
(‖x̃f (0)‖ , t

2

)
+

M∑
k=1

γkf (sup
[0, t

2 ]

‖x̃k‖), (19)

‖x̃f (t)‖ ≤ βf
(∥∥x̃f ( t2 )∥∥ , t

)
+

M∑
k=1

γkf (sup
[ t
2 ,t]

‖x̃k‖) (20)

In case agent f does not follow agent k, the corresponding term
γkf is zero. Similarly, the LFS property of i with respect to
x̃1, . . . , x̃L is equivalent to:

‖x̃i(t)‖ ≤ βi(‖x̃i(0)‖ , t) +
∑L

�=1 γ�i(sup ‖x̃�‖) (21)

and implies:

sup
[0, t

2 ]

‖x̃i‖ ≤ βi(‖x̃i(0)‖ , 0) +
L∑

�=1

γ�i(sup ‖x̃�‖) (22a)

sup
[ t
2 ,t]

‖x̃i‖ ≤ βi
(∥∥x̃i( t2 )∥∥ , t

2

)
+

L∑
�=1

γ�i(sup ‖x̃�‖) (22b)

Substituting (19), (22) into (20) yields a new bound:

‖x̃f (t)‖ ≤ βf

(
βf

( ‖x̃f (0)‖ , t
2

)
+

M∑
k=1

γkf
(
βi(‖x̃i(0)‖ , 0)

+
L∑

�=1

γ�i(sup ‖x̃�‖)
)
, t

)
+

L∑
�=1

γ�f

(
sup ‖x̃�‖

)
+

M∑
i=L+1

γif

(
βi

(
βi(‖x̃i(0)‖ , 0) +

L∑
�=1

γ�i(sup ‖x̃�‖), t
2

)

+
L∑

�=1

γ�i(sup ‖x̃�‖)
)

(23)

Combining (23) with (21) and recalling that for any class-K
function α, α(x1 + · · ·+ xn) ≤ α(nx1) + · · ·+ α(nxn):

‖x̃f (t)‖ ≤
M∑

i=L+1

γif

(
2βi

(
2βi(‖x̃i(0)‖ , 0), t

2

))
+

βf

(
2βf(‖x̃f (0)‖ , t

2 ) +
M∑

i=L+1

2γif
(
2βi(‖x̃i(0)‖ , 0)

)
, t

)
+

L∑
�=1

βf

(
2L

[ M∑
i=L+1

γif
(
2Lγ�i(sup ‖x̃�‖)

)
+γ�f(sup ‖x̃�‖)

]
, 0

)

+
L∑

�=1

M∑
i=L+1

[
γif

(
4Lβi

(
2Lγ�i(sup ‖x̃�‖), 0

))

+ γif
(
4Lγ�i(sup ‖x̃�‖)

)]
+

L∑
�=1

γ�f (sup ‖x̃�‖)
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Summing over all f ∈ {M + 1, . . . , N} and denot-
ing sup ‖x̃�‖ ≡ ‖x̃�‖∞ for brevity, we obtain for x̃ �
(x̃L+1, . . . , x̃N ):

‖x̃(t)‖ ≤
M∑

i=L+1

βi(‖x̃i(0)‖ , t)

+
N∑

f=M+1

[ M∑
i=L+1

γif

(
2βi

(
2βi(‖x̃i(0)‖ , 0), t

2

))
+

βf

(
2βf (‖x̃f (0)‖ , t

2 ) +
M∑

i=L+1

2γif
(
2βi(‖x̃i(0)‖ , 0)

)
, t

)]

+
L∑

�=1

N∑
f=M+1

γ�f(‖x̃�‖∞)+
L∑

�=1

M∑
i=L+1

N∑
f=M+1

[
γif

(
4Lγ�i(‖x̃�‖∞)

)

+ γif

(
4Lβi

(
2Lγ�i(‖x̃�‖∞), 0

))]
+

M∑
i=L+1

γ�i(‖x̃�‖∞)+

L∑
�=1

N∑
f=M+1

βf

(
2L

[ M∑
i=L+1

γif
(
2Lγ�i(‖x̃�‖∞)

)
+γ�f(‖x̃�‖∞)

]
, 0

)
.

Proof of Proposition III.2

The proof follows the same lines as that of Proposition III.1.
Note that every follower f is a perturbed system with expo-
nentially stable nominal error dynamics having as a Lyapunov
function: Vf = x̃Tf Pf x̃f . This implies that for θ ∈ (0, 1):

‖x̃f (t)‖ ≤ β̄f ‖x̃f (0)‖ e
−(1−θ)t
2λM [Pf ] +

M∑
i=L+1

γ̄if sup ‖x̃i‖ . (24)

Expressing (24) for the time intervals [0, t
2 ] and [ t2 , t] and sub-

stituting we obtain:

‖x̃f (t)‖ ≤ β̄2
f ‖x̃f (0)‖ e

−3(1−θ)t
4λM [Pf ]

+
M∑

i=L+1

γif sup
[ t
2 ,t]

‖x̃i‖+ β̄fe
−(1−θ)t
2λM [Pf ]

M∑
i=L+1

γ̄if sup
[0, t

2 ]

‖x̃i‖

+
L∑

�=1

γ�f sup
[ t
2 ,t]

‖x̃�‖+ β̄fe
−(1−θ)t
2λM [Pf ]

L∑
�=1

γ̄�f sup
[0, t

2 ]

‖x̃�‖ . (25)

Similarly, the error for agent i satis£es:

‖x̃i(t)‖ ≤ β̄i ‖x̃i(0)‖ e
−(1−θ)t
2λM [Pi] + 2(λM [Pi])

3
2

(λm[Pi])
1
2 θ

sup ‖ẋri ‖ .

By (1), sup ‖ẋr
i ‖ ≤ ∑L

�=1 sup ‖x̃�‖ which allows us to obtain
the bound:

‖x̃i(t)‖ ≤ β̄i ‖x̃i(0)‖ e
−(1−θ)t
2λM [Pi] +

∑L
�=1 γ̄�i sup ‖x̃�‖ , (26)

Equation (26) now yields the following bounds for the error of
an agent i:

sup
[0, t

2 ]

‖x̃i‖ ≤ β̄i ‖x̃i(0)‖+
L∑

�=1

γ̄�i sup
[0, t

2 ]

‖x̃�‖ (27a)

sup
[ t
2 ,t]

‖x̃i‖ ≤ β̄i‖x̃i( t2 )‖e
−(1−θ)t
4λM [Pi] +

L∑
�=1

γ̄�i sup
[ t
2 ,t]

‖x̃�‖ , (27b)

which are then combined with (25) to produce:

‖x̃f (t)‖ ≤ β̄2
fe

−3(1−θ)t
4λM [Pf ] ‖x̃f (0)‖+

L∑
�=1

γ̄�f sup ‖x̃�‖

+
M∑

i=L+1

γ̄if

(
β̄i‖x̃i( t2 )‖e

−(1−θ)t
4λM [Pi] +

L∑
�=1

γ̄�i sup
[ t
2 ,t]

‖x̃�‖
)

+ β̄fe
−(1−θ)t
2λM [Pf ]

M∑
i=L+1

γ̄if

(
β̄i ‖x̃i(0)‖+

L∑
�=1

γ̄�i sup
[0, t

2 ]

‖x̃�‖
)

+ β̄fe
−(1−θ)t
2λM [Pf ]

L∑
�=1

γ̄�f sup ‖x̃�‖ ,

using the fact that for a linear K class function α(·) it holds
α(x1, . . . , xn) = α(x1) + · · ·+ α(xn). Using once again (26)
for

∥∥x̃i( t2 )∥∥ we £nally arrive at:

‖x̃f (t)‖ ≤ β̄2
f ‖x̃f (0)‖ e

−(1−θ)t
2λM [Pf ]+

M∑
i=L+1

[
β̄iγ̄if

(
β̄f ‖x̃i(0)‖ e

−(1−θ)t
4λM [Pf ] + β̄i ‖x̃i(0)‖ e

−(1−θ)t
4λM [Pi]

)

+
L∑

�=1

(
(1 + β̄f )γ̄�f + (β̄f + β̄i + 1)γ̄if γ̄�i

)
sup ‖x̃�‖

]
.

Combining the above with (26) and summing over f :

‖x̃(t)‖ ≤
L∑

�=1

N∑
f=M+1

{
(1 + β̄f )γ̄�f+

M∑
i=L+1

(
(β̄f + β̄i + 1)γ̄if + 1

)
γ̄�i

}
sup ‖x̃�‖

+
M∑

i=L+1

N∑
f=M+1

(β̄2
f + (β̄i + β̄f )β̄iγ̄if + β̄i) ‖x̃(0)‖ e−µt,

where µ = −(1−θ)t
2max{λM [Pf ],2λM [Pi]} .

Proof of Proposition IV.1

By de£nition, the LFS gains of the paths of length one are
given in matrix form by B1 and G1:

G1 = G, B1 = B (28a)

The gains in paths of length two ending at an agent f can be
derived using (9):

γ̄
(2)
�f =

∑
i∼f

(
γ̄�iγ̄if β̄f + γ̄�iγ̄if + γ̄�iβ̄iγ̄if + γ̄if

)
+ γ̄�f (1 + β̄f ) (29a)

β̄(2) = β̄2
f +

∑
k∼f

(
β̄k + β̄2

i γ̄if + β̄iγ̄if β̄f
)
. (29b)
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where ∼ denotes vertex adjacency. Equations (29) can be writ-
ten in matrix form:

G2 = G(G1 ◦B1) +GG1 + (G ◦B)G1 +GA

+G ◦ (AB1 +A2) (30a)

B2 = A(B1 ◦B1) +BA+ (B ◦B)G1 +B(G1 ◦B1)
(30b)

where ◦ denotes the Schur matrix product (also known as Har-
ramand product) [39]. The Schur product is used to generate
the terms γ̄ij β̄j and β̄2

i for an arbitrary i. The rightmost term in
(29a) is related to the existence of paths of length two between
two vertices in Figure 1 which are already connected with an
edge. These are identi£ed by the term G ◦ (AB 1) as stated in
the following Lemma:

Lemma .1. The elements of the matrix A ◦A2 give the number
of paths of length two between any two adjacent vertices.

Proof. Matrix A2 has as elements the number of paths of length
two between two vertices. On the other hand, the nonzero el-
ements of the adjacency matrix, A, are in positions that corre-
spond to edges in the graph. The Schur product A ◦ A 2 will
therefore have nonzero elements only at positions that corre-
spond to a pair of vertices that are connected both by an edge
and by a path of length two. Further, since a nonzero element of
A◦A2 is given by [aij ] · [aij ]2 �= 0 and the £rst term, [a ij ] = 1,
then necessarily [aij ] · [aij ]2 = [aij ]2 �= 0.

Multiplication by the adjacency matrix of the formation
graph, A, shifts the gains of paths of length one from positions
at rows f = M + 1, . . . , N to the corresponding positions of
their leaders at positions in rows 1, . . . ,M , based on the fact
that powers of the adjacency matrix provide the number of paths
between two vertices of length equal to the exponent [35].

Equations (29) and (30) are based on combining the gains
of agents f = M + 1, . . . , N , that is, β̄f , γ̄if and γ̄�f , with
those of their leaders, β̄i and γ̄�i. The idea now is to apply (30)
recursively, starting from the agents at the end of the longest
paths and moving towards the formation leaders. In each step,
one needs to update the gains of the followers that correspond
to positions f = M + 1, . . . , N in the graph of Figure 1, as the
latter shifts up towards the formation leaders position. In (30),
the gains of agents 1, . . . ,M are provided by B and Γ, whereas
the gains of M + 1, . . . , N were computed in previous steps.

This is formalized with an induction argument. The induc-
tion step is as follows: assume that for some k < d ≤ |V| − 1,
where d denotes the formation graph diameter, the gains of
paths of length k − 1 are given by matrices Bk−1 and Gk−1.
Since all paths of length k ending at an agent i have as a suf£x
a path of length k−1 ending at i, the former will be represented
as paths of length two. Then, by (30), the gain matrices of paths
of length k will be:

Gk = G(Gk−1 ◦Bk−1) +GGk−1 + (G ◦B)Gk−1

+GAk−1 +G ◦ (ABk−1 +Ak) (31)

Bk = A(Bk−1 ◦Bk−1) +BAk−1 + (B ◦B)Gk−1

+B(Gk−1 ◦Bk−1). (32)

In this way one can compute recursively all paths of length at
most |V|− 1.Since this is the maximal path length in any graph
with |V| vertices, the procedure is guaranteed to terminate.

Proof of Proposition V.1

Let the (13) be denoted for brevity as follows:

ẋ = f(x) + g(x)u (33)

where the special “look ahead” structure of f(x) and g(x) is as-
sumed. By de£nition, since the unforced (33) is asymptotically
mesh stable, there exists a class-KL function β(r, t) such that:

‖x‖ ≤ β(‖x(0)‖ , t), ∀t ≥ 0.

A converse Lyapunov argument for the unforced (33) estab-
lishes the existence of a Lyapunov function V (x), such that for
some class-K functions α1(·), α2(·), α3(·), α4(·), it holds:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)
∂V

∂t
+

∂V

∂x
f(x) ≤ −α3(‖x‖),

∥∥∥∥∂V

∂x

∥∥∥∥ ≤ α4(‖x‖)

Then for (33) with u �= 0, the Lyapunov function V will satisfy:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖),
∥∥∥∥∂V

∂x

∥∥∥∥ ≤ α4(‖x‖)
∂V

∂t
+

∂V

∂x
(f(x) + g(x)u)

≤ −α3(‖x‖) + ζ(‖x‖)α4(‖x‖) ‖u‖

From stability of perturbed system it follows that

‖x(t)‖ ≤ β(‖x‖ (0), t) + α−1
1 (α2(α−1

3 (κ sup ‖u‖)))

where κ = ζ(r)α4(r)
θ , θ ∈ (0, 1).


