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A Navigation and Control Strategy for
Miniature Legged Robots

Konstantinos Karydis,† Ioannis Poulakakis,‡ and Herbert G. Tanner ‡

Abstract—The paper reports on a model-based control strategy for
miniature legged robots tasked with navigation in cluttered environments.
Our approach uses a new model for crawling locomotion, in order to
derive closed-form expressions of state propagation, which then enable
the development of a feedback control navigation strategy. The strategy
consists of a waypoint tracking controller that steers the system along
desired paths, and an outer control loop that updates the reference path to
account for uncertainty. This strategy allows for noise-resilient navigation
for miniature legged robots, and is experimentally validated on an eight-
legged robot that navigates in obstacle-cluttered environments.

Index Terms—Miniature legged robots; Small-scale navigation and
control.

I. INTRODUCTION

Advances in our understanding of legged locomotion at small
scales [1], [2], as well as the advent of novel manufacturing pro-
cesses [3], [4] have led to biologically-inspired robot designs with
exciting new mobility capabilities. As robot capabilities increase, the
introduction and implementation of navigation and control techniques
at this scale will expand the capacity of miniature robots to explore,
manipulate, and act as remote sensors in a range of useful applications
such as search-and-rescue, surveillance, and wildlife monitoring.

The growth, however, in the area of miniature legged robot
design and manufacturing [4]–[10], has not been matched by a solid
understanding on how control can be realized on these crawlers. With
only a few exceptions [11]–[13], such analysis is scarce. This paper
partially fills this gap by improving the understanding of how control
can be effectively applied at this scale—given the constraints and
limitations on payload, energy utilization, and computational power.
This in turn is likely to drive design decisions, and possibly feed back
to biology by shedding light on the trade-offs in locomotion [14].

Current limitations in manufacturing and instrumentation of minia-
ture robots pose challenges to developing and applying planning,
navigation, and control methods in this scale. Size and weight specifi-
cations constrain power density, which in turn prohibits extensive re-
liance on feedback control [5] and restricts power autonomy. One way
to mitigate constraints of computational nature is by performing some
of the processing off-line [11]. While circumventing the problem of
limited on-board computational capacity, this approach shifts some
of the challenges to communication, hindering real-time execution.
Workarounds exist [13]; after substantial off-line pre-computation,
the actual control action can be computed on-board in real time.
The latter approach also offers probabilistic performance guarantees,
assuming unbounded control effort and no temporal limits on the
completion of a navigation task.

Navigation at the miniature scale can be achieved by the hierar-
chical model-based approach for planning, navigation, and control
described in this paper. The approach employs the new Switching
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Fig. 1. The miniature eight-legged OctoRoACH robot [6].

Four-Bar Mechanism (SFM) model [15] to create motion planning
solutions and generate feedback control loops for navigation at
this scale. Motion primitives are constructed and integrated into
a Rapidly-exploring Random Tree (RRT) solver [16, Section 14]
to generate platform-compatible paths in environments populated
with obstacles. A low-level, SFM model-based controller reduces the
tracking error, while an outer control loop updates the reference
path in a receding-horizon fashion to account for process noise. The
strategy is implemented and tested experimentally on the miniature
legged robot OctoRoACH [6] (Fig. 1). Experimental results suggest
that with limited off-line computing, the reported approach enables
the robot to perform real-time navigation tasks utilizing quantized
and limited actuation (cf. [11], [13]). The SFM model links high-level
navigation objectives to physically implementable control strategies.

The reason for utilizing SFM is related to its capacity to capture
salient features of robot behavior and enable real-time optimization
with limited computational resources. Compared to related bio-
inspired dynamic models proposed to capture three-dimensional
motion (such as roll oscillations [17]), or the intricacies of leg-ground
contact (such as sliding [18]), the SFM is amenable to motion planning
and feedback control due to its simple structure that offers closed-
form expressions that predict motion behavior. While other lower-
dimensional kinematic abstractions of mobile robots often employed
in motion planning and control—like the unicycle—are also relevant,
such models offer little evidence of better performance; instead, there
is evidence of over-generalization to behaviors not attainable by small
legged robots such as the OctoRoACH (like turning in place, or going
backward). The SFM, in contrast, is comparatively conservative: it
does not endow the system with more kinematic behaviors than the
physical system actually has.

This work extends previous results which introduced SFM [15], and
tested in simulation its efficacy in RRT planning [19]. Specifically, this
paper utilizes closed-form expressions of state propagation in SFM,
to develop a low-level waypoint tracking controller. The scheme is
wrapped around an outer control loop that addresses uncertainty, and
the whole architecture is experimentally evaluated on the OctoRoACH.

II. PRELIMINARIES

A. The Robot

The OctoRoACH [6] (Fig. 1) is a miniature eight-legged robot that
uses two actuators for differential steering; KL and KR are motor
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gains that regulate left and right leg velocities, respectively, which are
measured by back-EMF 12-bit A/D units.1 Changing the desired leg
velocities results in paths of varied curvature: (i) straight-line paths
(SL) when KL = KR, (ii) clockwise turns (CW) when KL > KR,
and (iii) counter-clockwise turns (CCW) when KL < KR. These
three types of paths are used in the design of the family of motion
primitives considered in this analysis. Table I lists the primitives at
hand, and gives the resulting motor velocities realizing them.

B. The Switching Four-Bar Mechanism Model

A schematic of the Switching Four-Bar Mechanism (SFM)
model [15] is depicted in Fig. 2(a). The SFM consists of a rigid torso
and four rigid legs organized in two pairs, the right {AO1, BO2} and
the left {AO3, BO4}. The two pairs are active in turns, while the tips
of the active legs form hinged joints with the ground—see Fig. 2(b)—
during each step. The motion of the model is parameterized by the
leg touchdown and liftoff angles φtd

i and φlo
i , respectively (where

i = 1, . . . , 4), and is determined by a single degree of freedom.
This feature is exploited to develop analytic expressions for state
propagation, and a closed-loop tracking controller.
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Fig. 2. (a) The SFM model. Two pairs of rigid legs become active in turns,
forming two fourbar linkages, {O1A,AB,BO2} and {O3A,AB,BO4}.
d is the distance between the two hip-point joints A and B, l denotes the
leg length, and G is its geometric center. (b) Pictorial representation of state
propagation—the active pair is marked with thick solid lines.

TABLE I
MOTION PRIMITIVES AND IDENTIFIED MODEL PARAMETERS

Family Description ID Motor Inputs φ̄td φ̄lo

Type (KL,KR) [deg] [deg]

SL Straight
1* (60, 60) 89.84 34.66

Line 2 (40, 40) 89.84 43.55

3 (80, 80) 89.84 24.64

CW Clockwise

4* (60, 20) 51.11 27.27

5 (80, 50) 51.11 12.03

6 (100, 20) 51.11 20.63

7 (100, 60) 51.11 −2.29

CCW Counter

8* (20, 60) 24.64 1.38

Clockwise

9 (40, 80) 24.64 −11.46

10 (20, 100) 24.64 −1.15

11 (60, 100) 24.64 −19.48

1See [6] for details on the design and control architecture of the robot.

C. Parameter Identification

The primitives of Table I are constructed by collecting open-
loop planar position and orientation measurements through a VICON

motion capture system at 30 Hz. For each primitive, 30 paths are
collected. All trials are conducted on a rubber floor mat surface
and last 3 sec.2 The geometric model parameters are specified at
d = 13 cm (equal to the length of the actual platform), and l = 3 cm
(the robot’s half-width), and the number of model steps for each
primitive3 is set at N = 10 (i.e. 5 strides). Straight-line motion is
generated by activating both left and right pairs of legs, with the same
touchdown and liftoff configurations: φtd

1 = φtd
2 = φtd

3 = φtd
4 = φ̄td

and φlo
1 = φlo

2 = φlo
3 = φlo

4 = φ̄lo. Turns are generated as a variation
of the above gait where only one pair is active during each stride.
For example, clockwise turning is realized by a “degenerate” stride
in which the left pair is active, and no motion occurs during the right
pair support (i.e., φtd

1 = φtd
2 = φlo

1 = φlo
2 = 0). Similarly, counter-

clockwise turns happen by right pair activation only, with no motion
during the left pair support: φtd

3 = φtd
4 = φlo

3 = φlo
4 = 0. With

these conventions in place, a constrained least-squares optimization
problem is solved to identify the remaining model parameter values
that enable the model to generate paths that best capture the experi-
mental averages.4 The identified model parameters populate the last
two columns of Table I.

Remark 1: Model parameters are not directly linked to the physical
platform’s actuation characteristics. Instead, Table I provides touch-
down and liftoff angles for the SFM, and actuator inputs for the
OctoRoACH, that produce the same spatial displacement between the
model and the robot while executing a given primitive. Essentially,
Table I serves as lookup table that links model parameter values
to robot actuation inputs (motor velocities). As shown shortly, this is
important for model-based feedback control commands to be mapped
to robot control inputs in real-time.

III. CLOSED-FORM STATE PROPAGATION FOR THE SFM

The state of the model is q = (xG, yG, θ)
ᵀ ∈ R2 × S, where

(xG, yG) denotes the position of its geometric center in the global
coordinate frame {O}, and θ is its heading. Positive changes in the
heading represent counter-clockwise rotations. Let ζ ∈ Z denote
the vector of model parameters, which include the touchdown and
liftoff angles of each active pair, and f the model state propagation
function over one step. This function takes as input the value of
the model’s single degree-of-freedom variable φ, and the set of
constant model parameters ζ, and produces the corresponding spatial
RGG′ = (∆x,∆y), and angular ∆θ displacement of the model in
the local coordinate frame—see Fig. 2(b). One would then write
f :

[
φtd, φlo

]
× Z → R2 × S, and for the corresponding pair of

active legs,

(∆x,∆y,∆θ)ᵀ = f(φ; ζ) . (1)

When the right pair is active, the local coordinate frame is attached
to O1, φ = φ1 ∈

[
φtd
1 , φ

lo
1

]
, ζ =

{
φtd
2

}
, and (∆x,∆y,∆θ)ᵀ =

2The time duration of 3 sec offers a reasonable trade-off between robot
path dispersion and path length, which in turn affects the computationally
complexity of the problem; see [15] for more details.

3This number of model steps is chosen empirically over the course of
data collections and model analyses to provide adequate resolution for the
touchdown and liftoff configurations to capture 3 sec-long experimental data.

4Details on the optimization procedure can be found in [15].
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fR(φ1;φtd
2 ) with

fR(φ1;φtd
2 )=r(φ1) sin

(
ω(φ1)−|φ1−φtd

1 +χ(φ1, φ
td
2 )|
)
−r(φtd

1 ) sinω(φtd
1 )

r(φ1) cos
(
ω(φ1)−|φ1−φtd

1 +χ(φ1, φ
td
2 )|
)
−r(φtd

1 ) cosω(φtd
1 )

φ1 − φtd
1 + χ(φ1, φ

td
2 )

. (2)

Similarly, when the left pair is active, the local coordinate frame
is attached at O3, φ = φ3 ∈

[
φtd
3 , φ

lo
3

]
, ζ =

{
φtd
4

}
, and

(∆x,∆y,∆θ)ᵀ = fL(φ3;φtd
4 ) with

fL(φ3;φtd
4 )=−

(
r(φ3) sin

(
ω(φ3)−|φ3−φtd

3 +χ(φ3, φ
td
4 )|
)
−r(φtd

3 ) sinω(φtd
3 )
)

r(φ3) cos
(
ω(φ3)−|φ3−φtd

3 +χ(φ3, φ
td
4 )|
)
−r(φtd

3 ) cosω(φtd
3 )

−
(
φ3 − φtd

3 + χ(φ3, φ
td
4 )
)

. (3)

With reference to Fig. 2, and for the right pair, let the quantities
r(φ1) and r(φtd

1 ) represent the lengths of the vectors connecting the
tip O1 to the geometric center of the model at liftoff and touchdown,
respectively. The angles ω(φ1) and ω(φtd

1 ) are formed between the
above vectors and the model’s torso, while angle χ(φ1, φ

td
2 ) captures

the range of rotation of leg {O1A} about O1, relative to the body
frame anchored at O1, and depends on the touchdown angle φtd

2 . The
same notation is followed for the left pair as well. See [20, Appendix
B] for the closed-form expressions of r(·), ω(·), and χ(·).

Remark 2: Note that (2) and (3) have the exact same structure, and
differ only in the signs of ∆x and ∆θ. This is because of SFM being
symmetric about its longitudinal axis.

Letting the right pair go first, the model is initiated at qR
−

,
(xG, yG, θ)

ᵀ. The touchdown configuration (φtd
1 , φ

td
2 ) defines the

position of the points O1 and O2, which remain fixed for the duration
of the step. The model state is propagated in the local frame according
to (2) until φ1 reaches its liftoff configuration, φlo

1 . The model
state at the liftoff configuration—expressed in the local frame—is
(∆x,∆y,∆θ)ᵀ = fR(φlo

1 ;φtd
1 , φ

td
2 ), and is then mapped back to the

global frame through a homogeneous transformation, yielding qR
+

.
The state of the model at the end of the right step initiates the left step,
with qR

+

= qL
−

. From (φtd
3 , φ

td
4 ) one finds O3 and O4, solves (3)

until φ3 = φlo
3 , and maps the (local) model state to qL

+

. Then, qL
+

initiates the next (right) pair and the cycle continues. The closed-form
state propagation equations (2), (3) support the development of a step-
by-step state feedback controller that selects liftoff configurations that
bring the state of the model closer to a desired one. Section IV that
follows shows how the implementation of this strategy gives rise to
a waypoint tracking controller that is subsequently applied to the
miniature legged robot OctoRoACH [6].

IV. HIERARCHICAL CONTROL AND NAVIGATION

The reported navigation strategy consists of three distinct phases:
first, the motion primitives of Table I are used by a sampling-
based motion planner to generate reference paths that link origin
and destination points. Then, a (local) low-level controller, exploiting
the structure of SFM, is used for tracking waypoints along reference
paths. Experimentation with the OctoRoACH indicates that the effect
of the ground interaction uncertainty on this particular platform is too
large for the step-by-step local controller. Thus, the third layer of the
hierarchy introduces an outer control-loop that updates the reference
path while the low-level controller is active.

A. Path Planning

In the first phase, the time-parameterized motion primitives are
used in a temporal sequence to generate a collision-free reference path
between an initial and desired state. We employ a Rapidly-exploring

Random Tree [16, Section 14] planner that uses the primitives to
generate new vertices.

To limit the method’s computational requirements, only three
motion primitives—marked with an asterisk in Table I—are used in
this phase. Figure 3 shows the constructed reference path from the
initial state qs = (20, 20,−90)ᵀ [cm, cm, deg], to the goal centered
on qd = (210, 210,−90)ᵀ [cm, cm, deg]. Due to the discretization
imposed by the primitives, reaching exactly qd is unlikely, thus
acceptable paths are allowed to end within a radius of 15 cm around
(xd, yd) with an orientation in the range [−45◦, 45◦].
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Fig. 3. The RRT is outlined in thin curves, while the desired path is
marked with a thick curve. Obstacles (shown in dark shading) are artificially
augmented (lightly shaded regions) to account for platform volume.

Significant levels of noise, evident in the experimental results of
Section V, do not allow the sequence of motion primitives to reach
the goal state when executed in an open-loop fashion; the control
loop needs to close.

B. Path Tracking Control

The analytic expressions of Section III facilitate the design of a fast
(see Section V-C) closed-loop controller tasked with minimizing the
tracking error. With reference to Fig. 4, in every step the controller:
1. extracts from the reference path the desired state at the beginning

of the current q′(m) and next q′(m+ 1) steps;
2. uses the SFM to predict the state q(m+1) at the next step, starting

with the actual state q(m) at the current step, under all pairs of
touchdown and liftoff angles given in Table I;

3. selects the combination that minimizes the tracking error based
on a SE(2) metric;

4. applies the selected settings to update the control input on the
robot (i.e. motor velocities) through Table I.

Fig. 4. Pictorial representation of the tracking controller’s function. Primed
and non-primed quantities denote desired and actual states at the beginning
of step m and m+ 1, respectively.
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If N are the steps the model takes in each primitive, and K is
the number of primitives that compose the reference path, then the
latter will consist of N · K steps. For k ∈ {1, . . . ,K}, define the
mapping πk : {N (k− 1) + 1, N k} → R2 × S; πk[m] produces
the desired state for the system (i.e. a waypoint) at the beginning of
step m, expressed in the global frame. Then, evaluating πk for m ∈
{N (k−1)+1, N k} gives a sequence of reference waypoints for one
primitive. Concatenation of these sequences produces the (discrete)
reference Π , π1π2 · · ·πK : {1, N K} → R2× S. Now let Π[m] =(
x′[m], y′[m], θ′[m]

)ᵀ denote a waypoint along the reference path,
and q[m] =

(
xG[m], yG[m], θ[m]

)ᵀ the actual state at step m. Let
T (q[m]) be the homogeneous transformation on SE(2) that maps the
coordinates of the model state from the local frame to the global. For
a parameter pair

(
φ̄td, φ̄lo) drawn from Table I, the model-predicted

state of the system at the beginning of the next step is(
xG[m+1], yG[m+1], θ[m+1]

)ᵀ
= T (q[m])

(
∆x,∆y,∆θ

)ᵀ
. (4)

Displacements ∆x,∆y, and ∆θ are determined by
(
φ̄td, φ̄lo), and

are given by the expressions in (2) or (3) depending on the active
pair (i.e. right or left, respectively).

If
(
x′[m+ 1], y′[m+ 1], θ′[m+ 1]

)ᵀ is the desired state at the
beginning of step m+1 based on the reference path, the predicted
path error at the beginning of step m+ 1 is

δx = xG[m+ 1]− x′[m+ 1]

δy = yG[m+ 1]− y′[m+ 1]

δθ = θ[m+ 1]− θ′[m+ 1] ,

and depends on
(
φ̄td, φ̄lo). If an SO(2) metric [16, Section 5.1.2]

ρθ(θ, θ
′) ,

√
(cos(θ)−cos(θ′)

)2
+ (sin(θ)−sin(θ′))2 is selected,

along with the Euclidean metric on R2, ρx(x,x′) ,
√
δx2 + δy2,

then a controller can be devised to pick
(
φ̄td, φ̄lo) from Table I in

order to minimize the metric

ρ(q, q′) =

√
[ρθ(θ, θ′)]

2 + αcl [ρx(x,x′)]2 . (5)

Coefficient αcl is a relative weight between heading and planar
distance discrepancies. Its value here is chosen empirically; it was
found that αcl = 0.015 offers a good trade-off in penalizing errors
in heading and planar distance.

Figure 5 depicts both the open– and closed-loop response of
the system in simulation for the case study of Fig. 3, for varying
degrees of infused uncertainty, and with noise generated according
to a zero-mean normal distribution. In each case we simulate the
system 100 times. Figures 5(a)-(b) depict the open-loop response
of the system under motion perturbations drawn from zero-mean
normal distributions with different variances. Figures 5(c)-(d) show
the response of the system for larger motion perturbations when the
path tracking control loop is closed. As expected, closing a local path
tracking loop drastically improves the chances of the system reaching
its destination without collisions (Fig. 5(c)). The figures also reveal
the robustness limits of the controller: beyond a certain threshold, and
with persistent noise excitation, none of the primitives of Table I can
close the gap between the current and desired state on the reference
path sufficiently fast (Fig. 5(d)). A second control loop, tasked with
compensating for that deficiency, is the subject of the next section.

C. Closing an Outer Control Loop

The outer control loop is closed using the reference path generator,
to plan paths in a receding-horizon fashion, with a period of δ < K
primitives. Essentially, the system’s low-level controller steers the
system as close to the initial path as possible for δ primitives, and
then the reference path is recomputed. The cycle is repeated until
either the goal is reached, or the system collides with obstacles.
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(d) σx = σy = 2 cm, σθ = 10o

(a) σx = σy = 0.25 cm, σθ = 2o

(c) σx = σy = 1 cm, σθ = 5o

(b) σx = σy = 0.75 cm, σθ = 5o

Fig. 5. Simulated response of the system commanded to follow a desired
path (thick red curve), when uncertainty affects its state at the end of every
step. (a) Open-loop response of the system with low magnitude of infused
uncertainty scores a 10% success rate. (b) As the magnitude of the infused
uncertainty grows, the success rate reduces to 2%. (c) Closed-loop response
of the system using the reported path tracking controller. When the magnitude
of the infused uncertainty is low, the controller enables the system to follow
the desired path, scoring a 100% success rate. (d) As the magnitude of the
infused uncertainty grows, the system may exit the region of attraction of the
controller and lose track of the desired path; the success rate reduces to 85%.

V. EXPERIMENTAL EVALUATION AND ASSESSMENT

This section reports on experiments conducted with the OctoRoACH

navigating in a two-dimensional constrained environment, using the
hierarchical control approach of Section IV.

START

GOAL

FOAM
OBSTACLES

RUBBER
MAT

Fig. 6. The physical environment realizing the case study of Fig. 3.

A. Experimental Setup

Figure 6 shows the physical environment of our case study. The
robot is placed manually in a designated START position, and the
goal is for the platform to reach a rectangular region marked GOAL.
A VICON motion capture system provides ground truth position
and orientation data. Control computations are performed in Python
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Fig. 7. Experimental results with the OctoRoACH. The desired path is marked with a thick curve in all cases. (a) Open-loop implementation of the desired
path. (b) Closed-loop response of the system using the reported path tracking controller. (c) The combination of local path tracking control with the prediction
phase. The path is refined every 2 primitives using the RRT; Fig. 9 shows this process for one sample path, highlighted here in blue (color version).

running on a host Linux laptop, while reference path generation is
done using MATLAB implementations of RRT on the same machine.
Software modules interface with the physical platform through ROS.
Control inputs (i.e. motor velocities) are sent to the robot at 3.33 Hz;
recall a primitive lasts 3 sec and consists of 10 model steps.

B. Results

The desired path shown in Fig. 3 is first executed in open-loop
fashion. The results of 15 such trials are shown in Fig. 7(a). The
robot is shown to collide with the obstacles soon after it starts
navigating. The response of the system under the effect of the step-by-
step path tracking controller of Section IV-B, which picks parameter
configurations from the available ones shown in Table I and maps this
selection to the respective motor velocities, is shown in Fig. 7(b) for a
total of 15 trials. In comparison to the open-loop case, longer portions
of the reference path are now realized. However, the persistence of
process noise in conjunction with the length of the reference path
prove to be beyond the capacity of the controller in all fifteen trials.

There is a marked improvement in the rate at which the platform
reaches the goal when the outer control loop is also closed. The path
is updated every δ = 2 primitives using the RRT planner, and the
process repeats until the target is reached, or the robot collides with
obstacles. Using this inner/outer closed-loop control scheme leads to
an 80% success rate. Figure 7(c) shows the results of applying this
control scheme, and Fig. 8 summarizes all path completion rates.

20 40 60 80 100

OL

CL

IO-CL

Fig. 8. Percentage of the reference path tracked. Whiskers indicate the
minimum and maximum success percentage over all trials and the points
mark the average success rate. OL: open-loop. CL: closed-loop (local path
tracker). IO-CL: inner/outer closed-loop (local path tracker with replanning).

Figure 9 illustrates in more detail how the inner/outer closed-loop
control scheme worked in a specific experimental trial, highlighted
in blue (color version) in Fig. 7. The tree that is constructed from
a robot state is shown in thin curves, while the thick curve marks

the reference path selected by the planner. Each instance in Fig. 9
illustrates a new reference path update, calculated after executing two
primitives (approximately 20 robot steps) along the current reference
path. On its way to goal, process noise may push the robot in
shaded regions (Figs. 9(g)-(h)). In these cases, the RRT is allowed to
generate new edges inside the augmented obstacle regions provided
that generated paths exit the shaded region after the first primitive.

C. Discussion

The inner/outer closed-loop control scheme proposed here enables
the OctoRoACH to achieve navigation tasks with high probability of
success. However, there are still cases (Fig. 7(c)) in which the robot
collides with its environment. These collisions could in principle
have been prevented by using a smaller control horizon δ, at the
expense of increasing the computational complexity of the navigation
task. Selecting the control horizon is an implementation issue in
similar receding-horizon schemes; it ultimately relates to the amount
of uncertainty and noise the system is subjected to.

Benchmark tests were conducted to identify the computational
time required by the proposed approach. It takes on average 1.01
sec for generating a path between the start and goal regions of
Fig. 6. This performance was benchmarked by running the RRT

planner 1000 times; the standard deviation is 0.29 sec. The local
controller that adjusts the robot control inputs based on our closed-
form state propagation equations executes fast: it updates the robot
control inputs in 5.87×10−4 sec on average with standard deviation
3.04× 10−4 sec. (The sample size in this test was N = 20745.) All
tests were run in Matlab R2012a on a Windows 10 machine with
a 2-core i5 − 33172 CPU @ 1.70GHz and 4 GB DDR3 RAM.
It is anticipated that a C / C++ implementation will bring these
computation times down.

Remark 3: It is worth mentioning that the employed SFM model
can be also used to capture the behavior of other, morphologically
distinct miniature legged robots [21]. In this light, the controller can
be employed for navigation of other miniature legged robots as well;
it is not specialized to the particular robot used in this study.

VI. CONCLUSIONS

Navigation at the miniature scale can be achieved by the hierarchi-
cal model-based approach for planning, navigation, and control. The
approach enables miniature legged robots to navigate in environments
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Fig. 9. Illustration of the two-stage path tracking control and prediction scheme when applied to the physical robot. (a) The initial path (thick curve) generated
by the RRT (cf. Fig. 3) is updated after the first 2 primitives of the plan have been executed, with the local path tracking controller being active. (b) The
updated path (thick curve) is followed for the first 2 primitives, and updated again by the solver. (c)-(j) The process repeats until the desired state is reached.

populated with obstacles, by tracking on-line generated reference
paths in the presence of noise. At the core of the approach is the
Switching Four-Bar Mechanism (SFM), a kinematic model for quasi-
static miniature legged locomotion in the horizontal plane. The SFM

is used to develop low-level control, and mid-to-high-level navigation
strategies, which are implemented and evaluated experimentally on
the OctoRoACH in navigation tasks when crawling at low speeds.
Because of the persistence of process noise in conjunction with the
length of the reference path, the low-level controller is supplemented
by a second control loop, wrapped around the reference path gener-
ator, that works in a receding-horizon fashion.
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