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Abstract— We propose a new horizontal locomotion model
to describe the motion of an eight-legged bio-inspired minia-
ture robot. The model does not include compliance, and can
capture the kinematics of the observed locomotion behavior
that corresponds to an alternating tetrapod gait. We exploit
symmetries and synergies to reduce the eight-legged robot to a
mechanism that is composed by two switching four-bar linkages,
each representing the collective effect of a tetrapod in contact
with the ground. Notwithstanding its apparent simplicity, the
resulting model reproduces on average the motion of the robot.
In addition, by properly tuning a family of physically-relevant
parameters—including touchdown and sweep angles—different
motion primitives corresponding to circular and forward mo-
tion can be realized. This model represents a first step toward
developing reduced-order kinematic representations of legged
robots that can be used for motion planning and feedback
control purposes.

I. INTRODUCTION

A variety of small-scale crawling robots has been in-
troduced in the last decade in an effort to realize the
potential of such machines in applications involving search-
and-rescue missions, building inspection, remote or hostile
environment exploration, and others. This paper focuses on
a novel octopedal robot—the OctoRoACH, see Fig. 1—
designed with the purpose of investigating the principles that
govern reliable locomotion and proposing novel fabrication
techniques that enable system integration at small scales.

Robots in this vein include the HAMR2 hexapod [1],
which uses six piezo-electric actuators to drive its legs,
and the Sprawlita [2] and iSprawl [3] robots that employ
two actuators per leg and are capable of dynamic running
motions by actively changing the leg kinematics. A different
actuation approach based on a single motor governs the
motion of the DASH [4] and RoACH [5], [6] robots. Along
the same philosophy, DynaRoACH [7] extends the behaviors
of its precursors [5], [6] by efficiently implementing dynamic
maneuvers. However, its reliance on a single motor to control
its alternating tripod mechanism leads to instabilities when
turning at high yaw frequency on surfaces with moderate
friction. This has been the motivation for introducing the
eight-legged OctoRoACH platform [8].

This work focuses on modeling aspects. Motivated by re-
search in sprawled arthropods [9], [10], a variety of reduced-
order models have been proposed to explain the underlying
similarity of the center-of-mass (COM) motion in animals
and robots, despite their apparently diverse structural and
morphological characteristics [11]. The majority of modeling
efforts concentrates on simple spring-mass systems that rely
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Fig. 1. The OctoRoaCH robot, designed by A. O. Pullin [8] at the
University of California, Berkeley and manufactured by Motile Robotics,
Inc. The robot has a total mass of 35 gm, its body size is 130x60x30 mm
and the maximum speed it can reach is 0.5 m/s.

on a minimal set of variables and parameters to capture the
salient features of a targeted gait behavior. Examples include
the sagittal-plane Spring Loaded Inverted Pendulum (SLIP)
[12], [13], and the horizontal-plane Lateral Leg Spring (LLS)
models [14], [15]; see [16] for an extensive review.

In the context of hexapedal runners, the LLS model
has proven its efficacy in explaining lateral stabilization
[17], and in deriving turning strategies [18]. In its common
configuration, the LLS is a conservative mechanical system
composed by a rigid torso and two prismatic legs that
are modeled as massless springs. Each leg represents the
collective effect of a support tripod formed during stance by
the front and rear ipsilateral1 and the contralateral middle
legs that are in contact with the ground. Modeling octapedal
crawlers like the OctoRoACH has received less attention
in the relevant literature than hexapedal runners. Besides
eight-legged models for crabs [19], which typically employ a
metachronal tetrapod gait to move laterally in the horizontal
plane, no further analyses appear to be available.

In this paper we introduce a kinematic model capable of
capturing the motion of the OctoRoACH in the horizontal
plane. Motivated by the structure of the mechanism—see
[8] for a detailed description—the proposed model consists
of two switching four-bar mechanisms, each representing an
alternating tetrapod. Despite its simplicity, the mechanism
generates forward and circular motions that correspond on
average to the motion of the robot on the horizontal plane.

1Terminology: Ipsilateral means on the same side and contralateral means
on the other side.



Our goal is to use this model to develop motion planning and
feedback control algorithms that will enable the OctoRoACH
to operate as a member of a team that involves other—
possibly heterogeneous—robots.

We note here that first-order kinematic approximations
have been used in the past to derive control laws for
highly complex legged machines. For example, [20] employs
a nonholonomic unicycle as a representation of the six-
legged robot RHex [21] to propose controllers for outdoor
navigation guided by visual cues. The connection between
the highly complex RHex and a unicycle model was further
investigated in [22], where it was shown that a simplified
version of the three-dimensional Newton-Euler dynamics of
RHex can be reduced to such model when projected on the
horizontal plane.

The structure of this paper is as follows. Section II briefly
discusses the OctoRoACH and Section III introduces a model
that captures the kinematics of the motion of the robot.
Section IV analyzes the proposed model and Section V
describes its behavior through simulations and discusses its
ability to capture the motion of the robot. Lastly, Section VI
concludes the paper.

II. THE OCTOROACH

The OctoRoACH robot [8], shown in Fig. 1, is a miniature,
bio-inspired robot designed and manufactured in a collabo-
rative effort between the University of California, Berkeley
and Motile Robotics, Inc. Like its six-legged predecessor,
the Robotic Autonomous Crawling Hexapod (RoACH) [6],
it was developed to explore the use of small-scale legged
platforms as members of a team of robots that cooperate to
achieve their task.

The robot consists of a rectangular body and eight legs
that are organized so that ipsilateral legs are driven by a
single actuator. No explicit coupling between the two sides
is present, each of which is driven by a single DC brushed
motor via a two-stage gear transmission. Changing the gains
of the motors at each side results in either forward or
circular motions. The robot features onboard electronics for
communication and motor control, and a 300 mAh lithium
polymer (LiPo) battery powers the assembly; see [8] for a
detailed account of the robot’s design.

The leg drive kinematics combines a slider-crank linkage
responsible for leg abduction and adduction, and a parallel
four-bar mechanism responsible for leg protraction and re-
traction as shown in Fig. 2; a discussion of the mechanism
can be found in [8]. As a result of its mechanical structure,
the OctoRoACH implements a gait whose footfall pattern is
composed by two alternating tetrapods as shown in Fig. 3.
Such metachronal gaits have been studied in the context of
an octapedal arthropod (the Ghost Crab) in [19], and are in
direct analogy with the tripod gaits commonly employed by
a variety of six-legged animals and robots; see [16].

Figs. 4(a) and 4(b) present typical paths of the physical
robot, taken using a VICON motion capture system. The
uncertainty inherent with ground contact—especially at this
scale—manifests itself in the behavior of the robot, as is

Fig. 2. Leg kinematics: a) The slider-crank linkage, responsible for the
abduction and adduction motion (in and out motions from the sagittal plane)
of the legs and b) the parallel four-bar mechanism which enables protraction
and retraction of the legs. (Courtesy of A. O. Poullin; reproduced from [8]
with the author’s permission.)

readily seen in Figs. 4(a) and 4(b). Data in Fig. 4(a) corre-
spond to inputs that should theoretically produce forward
motion, and Fig. 4(b) to inputs that should in principle
generate counter-clockwise circular motion. Capturing this
type of uncertainty is part of ongoing research; the direction
we are following is the introduction of stochasticity, but
this falls outside the scope of the present paper. This paper
specifically, treats the ideal (deterministic) case, and proposes
a model that reproduces on average the robot’s motion.
Having a reasonable deterministic, and analytically tractable
model of the robot is viewed as a first step toward further
model refinements that include stochasticity.

III. THE PROPOSED MODEL

In this section, a reduced-order, horizontal motion repre-
sentation of the OctoRoACH is developed. Due to the robot’s
lightweight construction, we neglect dynamic effects and
focus on kinematic analysis. The proposed model depicted
at Fig. 5(a) consists of the robot’s torso and eight legs that
are modeled as non-deformable massless links attached at
the torso via hip joints. In accordance to the footfall pattern
of Fig. 3, the legs {1, 2, 3, 4} act in unison and form one
tetrapod, and similarly the legs {5, 6, 7, 8} form the other
tetrapod. Leg compliance along the horizontal direction is
negligible for the platform of Fig. 1, and is not included in
the model of Fig. 5(a). This is the main difference with the
LLS model [14], [15], in which legs are modeled as massless

Fig. 3. The foot fall pattern of the robot which is a tetrapod gait.
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Fig. 4. Experimental results showing COM paths of the physical platform. In both experiments, the time duration was 20s. For each test, the starting
point is shown with a red circle and the ending point with a green asterisk. (a) Motor gains that should produce forward motion. The dashed blue line
corresponds to motor gains {225, 225}, the solid magenta to {150, 150} and the dashed-dot black line to {100, 100}. (b) Motor gains that should produce
motion along a counter-clockwise circular path. All tests start at the same location and orientation and the motors gains are the same {25, 75}.

springs.
The configuration variables of this model consist of the

Cartesian position (x, y) of the geometric center G of the
platform’s body with respect to an inertial coordinate frame
O, and the angle θ between the longitudinal body-frame
axis and the vertical axis of the inertia frame; see Fig. 5(a).
Intuitively, the mechanism of Fig. 5(a) propels itself in the
horizontal plane through a “rowing” motion.

To reduce the model, we make use of symmetries and
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Fig. 5. (a) A kinematic octapedal model for the OctoRoACH in the
horizontal plane. (b) The abstracted model in which each of the two
tetrapods is replaced by a pair of legs: the tetrapod {1, 2, 3, 4} corresponds
to the legs {O1, O2} (right pair) and the tetrapod {5, 6, 7, 8} to the
legs {O3, O4} (left pair). Notice that when the right pair is active, the
mechanism defined by the links {O1A,AB,BO2} corresponds to a four-
bar linkage. Similarly, when the left pair is active, the mechanism defined
by the links {O3A,AB,BO4} corresponds to a four-bar linkage.

synergies that govern the motion of the legs. In particular,
the ipsilateral legs of each tetrapod touch the ground at the
same instant, rotate with the same angular velocity and move
in phase, maintaining the same angle with respect to the
longitudinal body-frame axis. For example, with reference to
Fig. 5(a), both legs in the pair {1, 3} form the same angle α
with respect to the body axis as the system moves forward,
corresponding to a coupled in-phase motion of these legs.
The complementary legs {2, 4} in the same tetrapod move
in the same way forming an angle β with the body axis,
which in general can be different from α. A similar motion
takes place when the other tetrapod is active.

Based on these observations, we can combine each pair
of ipsilateral legs in an active tetrapod into a single “virtual”
leg that induces the same displacement on the mechanism.
The virtual leg for each ipsilateral pair will be located at
a properly selected point along the body-frame longitudinal
axis. Note that the initial condition and the range of motion
of a virtual leg can be different compared to the angular
motion of the legs in the pair it replaces.

This abstraction leads to the four-legged kinematic model
depicted in Fig. 5(b). In this model, the contralateral virtual
legs, e.g. {O1, O2} for the right2 pair, represent the collective
effect of the tetrapod, e.g. {1, 2, 3, 4}, respectively. Notice
that contralateral legs in a pair of virtual legs can form
different angles and angular velocities with respect to the
longitudinal body-frame axis, e.g., θ1 6= θ2 and θ̇1 6= θ̇2
in general for {O1, O2} in Fig. 5(b). However, both pairs
(θ1, θ2) and (θ̇1, θ̇2), are coupled through the equations of
the closed-loop mechanism formed between points O1, A, B,

2Convention: With reference to Fig. 5(b), {O1, O2} is referred to as the
right pair since the right leg O2 is the leading leg.



and O2; see Fig. 6. This coupling is the subject of the section
that follows. It is only mentioned here that the resulting
motion corresponds to the motion produced by a switching
four-bar linkage.

IV. ANALYSIS OF THE ABSTRACTED MODEL

In this section, the kinematics of the mechanism intro-
duced in Section III is derived. In the analysis that follows,
a 50% duty cycle for the two pairs {O1, O2} and {O3, O4}
will be assumed. At any given time instant, only one pair is
in contact with the ground.

As mentioned in Section III, during each stance phase,
when a pair {Oi, Oi+1} is in contact with the ground,
the system corresponds to a four-bar mechanism [23]. The
motion of the four-bar linkage is determined by a single
degree of freedom, which we take to be the angle θ in
Fig. 6—all other variables (x, y, θ1, . . . , θ4) can be expressed
in terms of this angle θ. Switching between tetrapods gives
rise to a switched-mode system [24],

θ̇ = fα(θ), t ∈ [τi−1, τi], i = 1, . . . , N ∈ N (1)

where τi are switching times (time instants at the beginning
and end of duty cycles), i is the index of a switching instant,
α = {1, 2} is the modal index of the mode in which the
system is in (left or right pair on the ground), and fα is
the modal function that determines the kinematics of the
system during that phase. At switching times, the normal
time derivative is either replaced by the appropriate one side
derivative or can take the form of a differential inclusion.

The modal functions fα can be determined directly from
the vector-loop equations [23] of the four-bar mechanism
shown in Fig. 6. In the representation of Fig. 6, points O1

and O2 are considered fixed, implying that the angle φs is
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Fig. 6. Kinematic analysis of the four-bar mechanism that describes the
problem. a, d are parameters that define the size of the mechanism, O1, O2

and φs, after defined, remain fixed for the rest of the sweeping phase.

constant, while θ1 represents the independent variable. The
(position) vector-loop equation is

RAO1 +RO1O2 −RAB −RBO2 = 0. (2)

Using the exponential representation of the participating
vectors in (2), we obtain,

aej(π/2+θ1) + lej(φ1−π/2+θ1)

− dejπ/2 − aej(π/2−θ2) = 0. (3)

Then, by e±jθ = cos θ ± j sin θ through separating real and
imaginary parts we have

−a sin(θ1) + l sin(φ1 + θ1)− a sin(θ2) = 0

a cos(θ1) + l cos(φ1 + θ1)− d− a cos(θ2) = 0.
(4)

The geometry of the mechanism also implies

θ1 + φ1 + θ2 + φ2 = π if AB ∩O1O2 = ∅
θ1 + θ2 + φ1 = π + φ2 if AB ∩O1O2 6= ∅

(5)

depending on whether the line segments AB and O1O2

intersect. Equations (4)–(5) then describe a family of angles
parameterized through θ1. An explicit solution for θ1, is dif-
ficult to obtain due to the presence of trigonometric functions
in (4). Note however, that when taking time derivatives in
(4)–(5) the angular velocities will appear linearly, allowing
the direct determination of the modal functions in (1).

V. SIMULATION RESULTS

This section uses the mechanism described above to repro-
duce, on average, the forward and circular motion primitives
of the OctoRoACH. The parameters of the model are chosen
first. In Fig. 6, d is the distance between the two virtual
hip joints A and B; based on the physical robot’s body
we obtain d = 5 cm. On the other hand, the virtual leg
length, a, does not correspond directly to the robot and it
is determined by matching experimental data and simulation
results as a = 2 cm; this is similar to what was done in [17].

In the sequel, θtdi for i = 1, . . . , 4, denote the touchdown
angles of the virtual legs in the model of Fig. 6, θtdi ≥
0, and xG xOi the position coordinates of points G and
Oi, respectively. Let ψi denote the range (sweep angle) of
each θi, as the corresponding virtual leg rotates around its
hip point, from the configuration where it first touches the
ground—marked by θtdi —until it looses contact at lift-off;
note that ψi = π − θtdi represents a full sweep.

Due to symmetry, the motion of the left pair of virtual legs
is also given by (4) and (5)—one just needs to substitute
{θ1, θ2, φ1, φ2} for {θ3, θ4, φ3, φ4}. Table I describes the
steps required to numerically simulate the model (4)–(5),
under the assumption of a 50% duty cycle.

Fig. 7 depicts the evolution of angles θ1 and θ2, during
a single stride of the right leg pair starting at different
touchdown angles; the results refer to the full sweep case.
Clearly, a linear increase on θ1 has a nonlinear effect on
θ2 as expected based on the geometry of the mechanism.
Note however that the two angles agree at the beginning and
end of the stride, when full sweep motion is implemented.



TABLE I
SIMULATION PROCESS FOR ONE CYCLE

1. Give: θ,xG;
2. Give: θtd1 , θ

td
2 for the right pair;

3. Calculate and fix: xO1
,xO2

, l, φs;
4. Solve (4)–(5) as θ1 evolves;
5. Calculate θ,xG at end of stride;
6. Give: θtd3 , θ

td
4 for the left pair;

7. Calculate and fix: xO3 ,xO4 , l, φs;
8. Solve (4)–(5) as θ3 evolves;
9. Calculate θ,xG at end of stride.

Finally, it is remarked that increasing the touchdown angles
θtd1 = θtd2 , reduces the range of motion of the legs during a
full sweep; see Fig. 7.
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Fig. 7. Evolution of θ1 and θ2 for full stride for different values of the
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θtd1 = θtd2 = π/4 and the blue for θtd1 = θtd2 = π/3.

A. Reproducing forward motion

To reproduce a forward motion of the robot, all legs oper-
ate in a full sweep mode. In Fig. 8, the simulated trajectory
of point G is plotted for different touchdown angles, and for
the case of a full sweep under a 50% duty cycle. The results
show that the alternating tetrapod gait can generate forward
motion in the proposed kinematic model. All the paths that
have been produced exhibit oscillations along the x direction,
which in some cases are more pronounced depending on the
touchdown angles. Fig. 8(a) indicates that, as the touchdown
angle increases, the total length traveled decreases and the
amplitude of the oscillation observed also decreases. The
experimental results presented in Fig. 4(a), although very
noisy, confirm the oscillatory motion predicted by the model.

As mentioned above, the amplitude of the oscillation and
the total length of the path traversed are related: increasing
the touchdown angles reduces both the length of the path
and the amplitude of the corresponding oscillations. Fig. 9
also illustrates this fact. The different curves in Fig. 9 are
associated with different values of touchdown angles, and
show that the oscillation in the yaw angle θ as a function
of the distance traveled along the y inertial frame axis.
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Fig. 8. (a) Forward motion for different touchdown angles. (b) Magnified
view to capture the oscillations observed during the motion. Three cases
are shown: the dashed (red) path corresponds to θtdi = π/6, the dashed-dot
(black) to θtdi = π/4 and the solid (blue) to θtdi = π/3, i = 1, . . . , 4.

Clearly, larger touchdown angles—in full sweep mode—
result to smaller sweep angles, which are directly related to
the displacement for geometric center G of the robot’s body.
Intuitively, the situation corresponds to rowing with shorter
strokes.

B. Reproducing circular paths

The model offers several parameters that can be adjusted
to produce different motion profiles; principal among them
are the touchdown angles, the sweep angles, and the duty
cycle. A particular combination of parameters that produces
circular motion in this model corresponds to only one virtual
leg pair used for propulsion, while the other, when it is on
the ground, is assumed to be stationary and merely provides
support. In this case, (1) still describes the switching between
the two modes, where one of them corresponds to a modal
function fα that is set to zero.

Fig. 10 shows the path of point G, for different touchdown
angle settings, and under the assumption that only the right
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Fig. 9. Evolution of the orientation (yaw) angle θ as a function of the
distance traveled along the inertial y-axis. The different curves correspond
to simulation with different values of angles θtdi . The figure suggests that
an increase on θtdi leads to more oscillatory behavior (larger amplitude with
smaller frequency) in terms of θ.
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Fig. 10. Circular paths for different touchdown and sweep angles. The solid
red line corresponds to θtd1 = θtd2 = π/6, the black line to θtd1 = θtd2 =
π/4 and the blue one to θtd1 = θtd2 = π/3. Fixing θtd1 = θtd2 = π/6,
the red (smallest) solid curve is produced when ψ = π/6, the dashed red
curve when ψ = π/3 and the dashed dotted one when ψ = π/2.

pair of legs is moving, while the left pair, when active,
only provides support. The initial position is the same for
all cases. We notice that the radius of the circular path
increases as the touchdown angle or, equivalently, the sweep
angle increases. As a result, sharper turns can be achieved
by decreasing the touchdown angles; that is, with smaller
“steps” the mechanism can achieve smaller turning radii.

VI. CONCLUSIONS AND FUTURE WORK

The horizontal motion of an eight-legged arthropod robot,
the OctoRoACH, can be represented by a new kinematic
model with stick legs. Motivated by the transmission system
of the robot, a switching four-bar mechanism that implements
an alternating tetrapod gait is introduced and analyzed.
The proposed model offers a number of parameters that
can be independently adjusted to produce different motion
primitives, including forward and circular motion, in a way
that reproduces the deterministic behavior of the platform.
Ongoing work seeks to extend this model to capture the
inherent stochasticity in the behavior of the robot, as charac-
teristically seen in the path plots of Figs. 4(a) and 4(b). In the
context of the OctoRoACH, a large part of the uncertainty is
introduced through inexact ground contact and a stochastic
model that captures this effect will be more appropriate to
describe the experimentally observed behavior of the robot.
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