
Probabilistic Validation of a Stochastic Kinematic Model
for an Eight-legged Robot

Konstantinos Karydis, Ioannis Poulakakis and Herbert G. Tanner

Abstract— The paper suggests a new method for statistically
validating, and selecting the parameters of a model for a
miniature eight-legged robot. It is based on a novel adaptation
of concepts and techniques originally developed in the context
of robust control design using randomized algorithms. The
proposed approach is data driven and offers probabilistic
guarantees of model fidelity and descriptive capacity, checking
models against experimental data. In principle, this method
applies to a large class of physical processes, the available
models of which may be in a variety of forms including sets of
differential equations.

I. INTRODUCTION

The OctoRoACH depicted in Fig. 1 represents an instance
of a paradigm for the design of bio-inspired, expendable,
small-scale sensor platforms [1]. It is a highly-articulated
mechanism produced through a relatively low-precision man-
ufacturing process, and made of material with uncertain
mechanical properties. As such, it resists accurate charac-
terizations in the form of a deterministic dynamical model.
On the other hand, state-of-the-art control methodologies
for navigation, motion planning and cooperative behavior
assume the availability of some low-dimensional model,
typically in the form of a differential equation. However,
the lack of knowledge of the actual dynamics of this robot,
combined with the apparent stochastic behavior suggested by
available experimental data, hinder the development of such
task-specific controllers.

The complexity of this miniature robot, together with the
observed variability between different available prototypes,
render a direct approach to modeling based on first principles
impractical, and raise questions about the accuracy and
generality of the model. Even when the components of
the design are represented in a simplified way (e.g., the
torso as a single rigid body) attempts to construct accurate,
three-dimensional, numerical simulations have had limited
success [2]; instead, only two-dimensional sagittal plane
MATLABTM models have been developed. On the other hand,
motion planning methods for multi-legged vehicles such as
the RHex [3], assume1 a unicycle model [5], and, similarly
to the large body of work on wheeled platforms, apply it to
describe the horizontal-plane motion.

A variety of bio-inspired models has been proposed in
the relevant literature to capture the salient features of
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Fig. 1. The OctoRoACH robot, designed at the University of California,
Berkeley as part of the MAST CTA.

legged systems as they move through their environment [6].
Among them, spring-mass systems, including the Spring
Loaded Inverted Pendulum (SLIP) [7], [8] and the Lateral
Leg Spring (LLS) [9], [10] models have demonstrated the
ability to predict the center-of-mass dynamics in the sagittal
and horizontal planes of fast-moving robots (and animals)
of various structures and morphologies. These models are
dynamic, involving forces and accelerations, and do not
fit well within the framework of many motion planning
methods, which typically assume kinematic models. In order
to make these planning tools relevant to legged platforms
of small size, such as the OctoRoACH, we propose low-
dimensional kinematic abstractions that are based on avail-
able experimental data.

From a general perspective, extracting meaningful system
representations of physical processes based on input-output
measurements lies within the field of system identification,
and several methods are available to this end. For example,
one method is to use available data to obtain a Linear Time
Invariant (LTI) system model [11]. If nonlinear models are
desired, then randomized methods can be employed to select
nonlinear terms in ODE models as in [12]. More traditional
methods, but perhaps less amenable to analysis, include
Volterra series [13]–[15], or neural networks [16]–[18].

Although such approaches can in principle be applied in
the context of the problem considered here, their potential
in deriving suitable model representations is limited for a
number of reasons. In more detail, linear system models,
such as those in [11], represent local approximations of
the dynamics around specific operating points. On the other
hand, Volterra series and neural network representations
lack the clarity and compactness of ODE models. Most
important, none of these approaches can offer models that
admit physically meaningful interpretations as in models
derived based on first principles.

In our previous work [19], we introduced a reduced-order
nonlinear abstraction for approximating the kinematics of



the OctoRoACH on the horizontal plane. This model re-
produces straight-line and circular paths that resemble those
observed in experiments with the OctoRoACH. Furthermore,
it permits physical interpretations of its parameters, and
couples them in an intuitive fashion to the motion of the
robot. In that work, however, no formal justification—only
mechanical intuition—has been provided in support of the
proposed model. Furthermore, the approach in [19] cannot
accommodate random effects that inevitably influence the
robot’s motion, and are further amplified due to its small
size and low manufacturing cost.

The present paper attempts to fill the perceived gap be-
tween the physical process realized by the actual mechanism
of Fig. 1 when in straight-line motion, and its suggested
kinematic abstraction studied in [19]. Our approach is data
driven in the sense that it does not depend on the specific
type of system representation; rather, it depends on the
experimental data of the physical process being modeled.
We borrow concepts from the fields of robustness analysis
[20], [21] and control synthesis [22]–[24] using randomized
methods, and we adapt them to data-driven model validation
and parameter estimation. These are instances of a more
general problem, where the descriptive capacity and the
fidelity of a model need to be quantified based on data.

Generally, randomized algorithms have long been em-
ployed to tackle several control problems where analytic
solutions are impractical [25], [26], and, given sufficient
structure [27], have found many applications beyond control
systems [22], [28]. The underlying mathematical foundation
for these methods is provided by statistical learning theory
[27], [29]–[31]. Early mathematical results [32] are brought
to bear [22], [23], [33] to determine a sufficient number of
samples in a Monte Carlo approach to estimate empirical
means, which in most cases—although with some important
caveats [21], [33]—yields fairly reasonable sample sizes.
This same Monte Carlo approach is used here to estimate
the probability that a particular model instantiation satisfies
the performance specifications.

Specifically, our approach hinges on checking stochasti-
cally parameterized models against a large body of experi-
mental data. A Monte Carlo simulation is used to estimate
the probability that a random instantiation of the model—that
is, a solution produced by the model by randomly selecting
the values of its parameters from a given distribution—is
statistically consistent with our specifications, given available
experimental data. As it turns out, through this process, we
can tune the model’s parameters to some nominal values so
that the behavior of the model captures the one observed in
experiments as closely as possible, while the probability of
violating the specifications remains below a given threshold.

The rest of the paper is organized as follows. Section II
first gives an overview of the model developed in [19],
and then suggests nominal values for its parameters, de-
rived based on experimental data collected for the case
of straight-line motion. Section III extends the determin-
istic model to a stochastic one by introducing uncertainty
into the robot’s touchdown and liftoff angles. Section IV

presents an approach to probabilistically validate models
against experimental data of the process they are supposed to
describe, and Section V presents the results of the application
of the proposed method on the stochastic model of the
OctoRoACH. Section VI concludes the paper.

II. A MODEL FOR THE OCTOROACH

A. A Deterministic Kinematic Model

The OctoRoACH consists of a rectangular body with eight
legs, designed in a way that ipsilateral2 legs are driven by a
single motor. The robot implements a gait that is composed
of two alternating tetrapods. In particular, the legs {1, 2, 3, 4}
act in unison and form one tetrapod, and similarly the legs
{5, 6, 7, 8} form the other tetrapod, as shown in Fig. 2.

This mechanically induced synergy among the robot’s legs
motivated the kinematic approximation depicted in Fig. 3(a)
which can be further reduced to the switching four-bar
mechanism shown in Fig. 3(b). Note that, despite its simple
kinematic nature, this model is capable of reproducing the
planar straight-line motion of the robot in its nominal alter-
nating tetrapod gait and it captures the meandering motion
of the geometric center G, see Fig. 3, as it travels along a
straight line parallel to the y axis. More details about this
reduced-order model of the OctoRoACH can be found in our
previous work [19].

Average straight-line motion along the y direction is
produced assuming a 50% duty cycle for the two alternating

2Terminology: Ipsilateral means on the same side and contralateral means
on the other side.
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Fig. 2. Foot fall pattern of the OctoRoACH robot
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Fig. 3. (a) An eight-legged model for the OctoRoACH. By design, the
legs are coupled in pairs, as indicated by the angles α and β. Thus, they
form two tetrapods, the first of which consists of the legs {1, 2, 3, 4} while
the second contains {5, 6, 7, 8}. (b) The proposed abstraction that serves as
our deterministic model. Due to the coupling, each tetrapod is reduced to
a pair of legs – the tetrapod {1, 2, 3, 4} corresponds to the legs {O1, O2}
(right pair) and the tetrapod {5, 6, 7, 8} to the legs {O3, O4} (left pair).
When in contact with the ground, each pair forms a four-bar mechanism.



pairs of virtual legs, named “right” and “left,” marked
with solid and dashed lines in Fig. 3(b), respectively. Each
abstract pair corresponds to one tetrapod, and because of the
symmetry resulting from the equal duty cycle assumption,
it suffices to analyze one of the two. The same assumption
suggests that only a single pair is in contact with the ground
at any given time instant.

Figure 4 presents the kinematic analysis of the right pair.
With the notation of Fig. 4, the vector-loop equation [34],

RAO1 + RO1O2 −RAB −RBO2 = 0 (1)

can be expressed in complex number notation as

lej(π−φ1) + aRe
j(q1−φ1) − dej(π/2) − lej(φ2) = 0 (2)

which is equivalent to

−l cos(φ1) + aR cos(q1 − φ1)− l cos(φ2) = 0

l sin(φ1) + aR sin(q1 − φ1)− d− l sin(φ2) = 0 .
(3)

Differentiation of (2) results in

l cos(φ1)φ̇1 + aR cos(q1 − φ1)(q̇1 − φ̇1)− l cos(φ2)φ̇2 = 0

l sin(φ1)φ̇1 − aR sin(q1 − φ1)(q̇1 − φ̇1) + l sin(φ2)φ̇2 = 0 .
(4)

Note that the system has one degree of freedom, and its
configuration is fully specified by numerically solving (3)
for q1 and φ2 given a value of φ1. The velocity of the
platform can be obtained by solving (4) in a similar fashion;
no numerical integration is needed.

The left pair is analyzed in a completely analogous
way. In the place of φ1, φ2, q1, φ̇1, φ̇2, q̇1 and aR, we now
have φ3, φ4, q3, φ̇3, φ̇4, q̇3, and aL, respectively. The resulting
equations have exactly the same form.

Both legs in each pair are thought to touch and lift off
the ground at specific angles, which we call touchdown and
liftoff angles and are denoted by φtdi and φloi , i = 1, . . . , 4,
respectively. A sweep angle ψi is defined as the difference
between the maximum and the minimum value for each φi,
that is,

ψi = |φtdi |+ |φloi |, (5)

and thus quantifies the range of values for each φi. Although
a variety of different combinations of touchdown, liftoff, and
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Fig. 4. Analysis of the mechanism. d is the distance between the hip points
and l the leg length. The angle θ is used to denote the orientation of the
model with respect to some global frame of reference.

sweep angles can be used to produce very similar paths,
it is not clear at this stage which particular combination
enables the model to match better the available collection
of experimental data. As ongoing work indicates, these
parameter values are crucial in determining the nature and
characteristics (path curvature) of motion paths produced by
the model.

B. Parameter Identification from Experimental Data

We generate a collection of planar position measurement
data, through experiments in which the robot is configured
to move (ideally) along a straight line. The data is obtained
with the use of a VICONTM motion capture system at a rate of
50Hz. The inputs to the robot are the gains of the two motors
that actuate its legs, one for each side, and are both set equal
to 40. Each run had a duration of 10 cycles, and we collected
data from a total of 500 paths. The measured states are the
planar position of the geometric center of the robot and its
orientation. Tabulating measured states is impractical due to
the size of the data, and for illustration purposes Fig. 5(a)
depicts a random sample of 30 paths, while Fig. 5(b) shows
average statistics for the whole collection.

All experiments were conducted on a rubber floor mat
surface; in future work we plan to explore other terrain types
as well. The initial position and orientation of the robot
were manually set inside a designated area. The initial pose
errors that are produced through this inexact procedure can
be bounded using data statistics; we calculate the sample
mean and standard deviation for the initial position along
the x and y directions, as well as the same statistics for the
initial orientation. These results are summarized in Table I.
Furthermore, notice that these error bounds accommodate for
measurement noise as well.

TABLE I
INITIAL POSE ERROR STATISTICS

Measurement Mean Variance

Position along x-axis [cm]: 0.053 0.083
Position along y-axis [cm]: 0.286 0.153
Orientation [deg]: 79.66 20.30

The model parameters to be estimated are included in

ζ = [l, φtd,n1 , φtd,n2 , φtd,n3 , φtd,n4 ], (6)

where the superscript n stands for “nominal,” while td is used
to indicate that these angles are the tetrapod’s touchdown
angles. The domain of the parameter vector ζ is a subset of
R+ × S4. One may choose to identify a larger set of model
parameters—including, for instance, the distance d between
the hip points; this particular set is however sufficient to give
the model granularity needed. The value of the parameter d
is set to be equal to 13 cm, which is the length of the torso
of the actual platform. The liftoff angles were assumed to be

φlo,nR = −min{φtd,n1 , φtd,n2 } (7)

and
φlo,nL = −min{φtd,n3 , φtd,n4 }, (8)
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Fig. 5. Experimental results for a duration of 10 cycles in mid-low speed.
(a) 30 randomly selected paths of the platform. The red dashed curve is the
average out of the whole data set of 500 observed paths (compare with the
solid black curve on 5(b)). The black thick solid line corresponds to the
output of the model using values for its parameters from Table II. (b) The
statistics of the complete data set with 500 paths: the average is shown in
the black solid curve; the dashed red circles mark a two-standard deviation
region around each average position, and the solid magenta closed curve
shows a confidence region at a 95% level, assuming a Student distribution.
We need to design the stochastic model in such a way that its realizations
cover the region subscribed.

because the duty cycle is assumed to be 50%; intuitively, all
the legs that belong in the same tetrapod lift off the ground
simultaneously.

Given a set of paths realized by the robot, the parameter
vector ζ can then be selected through the solution of a least-
squares optimization problem,

min
ζ∈Z
‖p(ζ)− wave‖2 (9)

where p(ζ) denotes the path generated by the model corre-
sponding to a particular value of the parameter vector ζ, and
wave is the average path derived with data from all position
trajectories observed experimentally. The solution, ζn pro-
duces the model output shown in Fig. 5(a). The numerical
values of the components of ζn are given in Table II. These
values allow the deterministic model to capture on average
the behavior of the system shown in Fig. 5(a). Clearly,
though, the deterministic model cannot express the variability
between different experimentally observed paths.

TABLE II
NOMINAL MODEL PARAMETERS

d l φtd,n1 φtd,n2 φtd,n3 φtd,n4 φlo,nR φlo,nL

(cm) (cm) (deg) (deg) (deg) (deg) (deg) (deg)

13 2.1 45.3 39.6 39.9 47.0 -39.6 -39.9

III. INFUSING STOCHASTICITY

The position measurements indicate that individual paths
can be considered as realizations of a stochastic process
that describes the motion of the system. Let W denote the

collection of all these realizations, and w an element in
that collection; intuitively w represents a single path of the
robot. Our objective is to capture the stochastic nature of the
process by modifying the model constructed in the previous
section.

To achieve this, we infuse stochasticity in the touchdown
and liftoff angles of each tetrapod, i.e., to the parameter array

ξ = [φtd1 , φ
td
2 , φ

td
3 , φ

td
4 , φ

lo
R, φ

lo
L ], (10)

with ξ ∈ Ξ. The justification for this choice of parameters
comes from the fact that the interaction of the robot’s legs
with the ground is inherently uncertain.

Insight from [19] suggests that certain combinations of
the touchdown and liftoff angles in ξ are more likely to
produce straight-line paths. In our stochastic modeling, these
combinations of touchdown and liftoff angles define the
average value—i.e., the peak—of a multivariate normal3

distribution. Hence, we assume that ξ is a realization of

ξ̃ = ηn +

[
σ1I4×4 0

0 σ2I2×2

]
· Y, (11)

where Y is a six-dimensional random vector with statisti-
cally independent components, each drawn from a normal
distribution of zero mean and unit variance, and

ηn = [φtd,n1 , φtd,n2 , φtd,n3 , φtd,n4 , φlo,nR , φlo,nL ] (12)

is a constant average that contains the values of the touch-
down and liftoff angles that produce straight-line paths with
higher probability; these values are taken from Table II. In
(11), σ2

1 , σ
2
2 correspond to the variances of the touchdown

and liftoff angles, respectively. It is emphasized here that
the variances σ2

1 , σ
2
2 are the only unknown parameters in our

stochastic model. The following section shows how these
values can be computed through a process that validates the
combined model (3)–(11) against the experimental data.

IV. PROBABILISTIC MODEL VALIDATION

In the context of this paper, a model is valid when it is
expressive enough to produce the whole range of behaviors
observed in experiments, and its outputs follow the statistics
of these behaviors at a given confidence level. In other words,
we are interested in verifying whether the paths produced by
(3)–(11) can cover the region outlined in Fig. 5(b), with the
probability of a path produced by the model falling outside a
desired confidence region being below a certain specification
threshold. This threshold should not be too small since this
would suggest that the model is too conservative.

In our analysis, whether a model instantiation4 is represen-
tative of the behavior of the robot is captured by a binary de-
cision function g : Ξ×W → {0, 1}. Practically, this function
accepts an instantiation of the model parameterized by some

3To provide more intuition, note if we had assumed a uniform distribution,
that would have meant that any combination of parameters ξ is equally likely
to produce a straight-line motion, which is clearly not true.

4Here, the term “model instantiation” refers to the computation of a
solution of our parameterized model at a randomly selected value of the
parameter vector according to the normal distribution (11).



realization ξ of (11), and a collection of elements from W
which is called multisample, wk = {w(1), w(2), . . . , w(k)},
k ∈ N+, and returns 0 only if the output of the model is
within a prespecified confidence interval at level γ ∈ (0, 1),
evaluated based on the experimental data collected. For k <
30, we assume a Student distribution for the distribution of
paths within a multisample, and take γ = 0.95. The outline
of the sketched region in Fig. 5(b) represents the boundaries
within which a path produced by a given model instantiation
would result in g(ξ,wk) = 0.

To maximally cover the support of 1 − g, we attempt to
maximize the random component in (11) to the extent that
the probability that the decision function g reports 1 for a
random instantiation of model parameters is less or equal
to a positive constant ρ. Minimizing σ1, σ2 instead would
certainly meet this later requirement, but would produce an
overly conservative model with paths around the known av-
erage, and without the ability to fully express the variability
we observe in the data. In that case, the outcome would be
the already known deterministic model (3)–(4).

The probability that g = 1 for a random model instan-
tiation is described in the context of randomized robust
control synthesis [21], [24] as the probability of violation of a
specification constraint. Here, we adapt the definition of this
probability to the context of the problem as follows. Given
σ1, σ2 in (11), then for a parameter vector ξ ∈ Ξ generated
accordingly and multisamples wk = {w(1), w(2), . . . , w(k)}
of size k ∈ N+ drawn from a collection of experimental
dataW , the probability of violation for the decision function
g : Ξ×W → {0, 1} is defined as

Ek(σ1, σ2) , PrW{w ∈ W : g(ξ,wk) = 1, ξ ∈ Ξ} , (13)

where PrW is a probability measure over W .
In general, the probability of violation is difficult to be

evaluated analytically, and one typically resorts to approxi-
mating it using an empirical average [21]; i.e.,

Êk(σ1, σ2) =
1

n

n∑
i=1

g(ξi,w
(i)
k ) , n ∈ N+ , (14)

where ξi are values generated by (11), and w
(i)
k are i.i.d.

multisamples drawn fromW . Then the performance (fidelity)
specification for the model is expressed using the empirical
average of the probability of violation as Êk(σ1, σ2) ≤ ρ.

A constrained optimization problem can thus be formu-
lated, the solution of which corresponds to the least con-
servative stochastic approximation of the physical process,
for which the probability of violation of the performance
specification for the model remains below ρ:

max
σ1,σ2

Êk(σ1, σ2), subject to Êk(σ1, σ2) ≤ ρ .

However, there is a natural monotonic relationship between
σ1, σ2 and Ek(σ1, σ2), since the larger the variance in (11),
the higher the probability of violation. Therefore, the above
problem can be reduced to

max(σ1 + σ2), subject to Êk(σ1, σ2) ≤ ρ . (15)

Based on the same monotonic relationship between σi and
Ek(σ1, σ2), the solution is expected at the (upper) boundary
of the feasible set for σi.

We are thus seeking for the values of σi for which
Êk(σ1, σ2)→ ρ−. These can be found using a simple Monte
Carlo simulation. Selecting an accuracy parameter ε > 0 we
progressively increase σi so that the empirical mean satisfies
Êk(σ1, σ2) < ρ− ε with confidence 1− δ. Based on [35], it
suffices to select n as follows

n ≥ 1

2ε2
log

(
2

δ

)
(16)

to approximate Ek(σ1, σ2) with Êk(σ1, σ2) at this accuracy
and confidence. Note that since each ξi needs to be paired
with a statistically independent multisample wk, one even-
tually needs to collect data from n · k different experiments.
However, the same body of experimental data can be used
for each different choice of σi.

V. RESULTS

To illustrate the methodology we solve (15) for the case
of the OctoRoACH with a collection W of experimental
measurements from 500 paths. The upper bound for the
probability of violation is selected at ρ = 0.35, and the
parameters in (16) are ε = 0.15 and δ = 0.27. Then (16)
suggests a sample of size n = 45. We thus create 45 mutually
disjoint multisamples of size k = 11, by randomly grouping
different paths in W . Since k < 30, the statistics of each
multisample is assumed to follow the Student distribution,
and we select confidence intervals at a level γ = 0.95.

The solution of this problem suggests values of standard
deviations, σ1 and σ2, (shown in Table III) which result
in a parameterization of the model (3)–(11) that maximally
covers the range of observed experimental values. These are
denoted σmax

1 , σmax
2 , with the superscript reflecting the fact

that the maximum of Êk(σ1, σ2) occurs for some maximum
values of σ1 and σ2 that still keep the empirical average
below the threshold ρ. However, the particular pair of values
(σ1, σ2) that maximize Êk is not obvious and this is the
question that the algorithm answers.

TABLE III
PROBABLY NEAR MAXIMUM MODEL UNCERTAINTY

σmax
1 σmax

2

0.12 0.15

Figure 6 suggests that the model parameterized based on
the values from Tables II-III produces paths that are within
the desired confidence region. This test includes 45 different
(random) instantiations of the model (3)–(11) with the chosen
values for the parameters.

VI. CONCLUSIONS

This work contributes to the development of a method that
can be used to assess the fidelity of a model, and its capacity
to capture a targeted physical process through available
experimental data. We show that probabilistic guarantees
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Fig. 6. Output of the stochastic model, tuned using Monte Carlo simulation.
The 45 model instantiations, shown in blue, correspond to the values σmax

i
of Table III and are plotted over the average (in thick black) of the whole
data collection. The 95% confidence level still allows a few paths to go
outside the marked (in magenta) confidence region.

of model fidelity can be derived using techniques adapted
from the field of robust control design using randomized
algorithms. The proposed procedure is independent of the
type and structure of the model considered, and it offers a
systematic way to adjust the model parameters in order to
maximize its expressiveness. This new method is applied to
identify a stochastic kinematic model of the miniature robot
OctoRoACH.

REFERENCES

[1] A. Pullin, N. Kohut, D. Zarrouk, and R. Fearing, “Dynamic turning
of 13 cm robot comparing tail and differential drive,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
Saint Paul, MN, May 2012, pp. 5086–5093.

[2] Z. Lian, “Study of reinforcement learning methods to enable automatic
tuning of state of the art legged robots,” Electrical Engineering and
Computer Sciences, University of California at Berkeley, Tech. Rep.
UCB/EECS-2012-127, May 2012.

[3] U. Saranli, M. Bühler, and D. E. Koditschek, “RHex: A Simple and
Highly Mobile Hexapod Robot,” The International Journal of Robotics
Research, vol. 20, no. 7, pp. 616–31, Jul. 2001.

[4] D. Panagou and H. Tanner, “Modeling of a Hexapod Robot; Kinematic
Equivalence to a Unicycle,” University of Delaware, Tech. Rep.
UDMETR-2009-001, 2009.

[5] G. A. Lopes and D. E. Koditschek, “Visual Servoing for Nonholonom-
ically Constrained Three Degree of Freedom Kinematic Systems,” The
International Journal of Robotics Research, vol. 26, no. 7, pp. 715–
736, 2007.

[6] P. Holmes, R. J. Full, D. E. Koditschek, and J. Guckenheimer, “The
Dynamics of Legged Locomotion: Models, Analyses, and Challenges,”
SIAM Review, vol. 48, no. 2, pp. 207–304, 2006.

[7] W. J. Schwind, “Spring Loaded Inverted Pendulum Running: A Plant
Model,” Ph.D. dissertation, University of Michigan, 1998.

[8] I. Poulakakis and J. W. Grizzle, “Modeling and Control of the
Monopedal Running Robot Thumper,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Kobe, Japan,
2009, pp. 3327–3334.

[9] J. Schmitt and P. Holmes, “Mechanical models for insect locomotion:
dynamics and stability in the horizontal plane I. Theory,” Biological
Cybernetics, vol. 83, no. 6, pp. 501–515, Nov. 2000.

[10] ——, “Mechanical models for insect locomotion: dynamics and stabil-
ity in the horizontal plane - II. Application,” Biological Cybernetics,
vol. 83, no. 6, pp. 517–527, Nov. 2000.

[11] L. Ljung, “From data to model: a guided tour,” in Proceedings of
the IEEE International Conference on Control, vol. 1, Mar. 1994, pp.
422–430.

[12] M. Schmidt and H. Lipson, “Distilling free-form natural laws from
experimental data,” Science, vol. 324, pp. 81–85, Apr. 2009.

[13] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems.
Malabar, FL: Krieger Publishing, 2006.

[14] W. Rugh, Nonlinear System Theory: The Volterra/Wiener Approach,
ser. Johns Hopkins Series in Information Sciences and Systems.
Baltimore, MD: Johns Hopkins University Press, 1981.

[15] T. Ogunfunmi, Adaptive Nonlinear System Identification: The Volterra
and Wiener Model Approaches, ser. Signal and Communication Tech-
nology. New York, NY: Springer-Verlag, 2007.

[16] S. Haykin, Neural Networks: A Comprehensive Foundation. Upper
Saddle River, NJ: Prentice-Hall, 1999.

[17] M. Ibnkahla, “Statistical analysis of neural network modeling and
identification of nonlinear systems with memory,” IEEE Transactions
on Signal Processing, vol. 50, no. 6, pp. 1508–1517, Jun. 2002.

[18] S. Billings and H.-L. Wei, “A new class of wavelet networks for non-
linear system identification,” IEEE Transactions on Neural Networks,
vol. 16, no. 4, pp. 862–873, Jul. 2005.

[19] K. Karydis, I. Poulakakis, and H. G. Tanner, “A switching kinematic
model for an octapedal robot,” in Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, Vilamoura,
Algarve, Portugal, Oct. 2012, pp. 507–512.

[20] L. Ray and R. Stengel, “A monte Carlo approach to the analysis of
control system robustness,” Automatica, vol. 29, no. 1, pp. 229–236,
Jan. 1993.

[21] T. Alamo, R. Tempo, and E. Camacho, “Randomized strategies for
probabilistic solutions of uncertain feasibility and optimization prob-
lems,” IEEE Transactions on Automatic Control, vol. 54, no. 11, pp.
2545–2559, Nov. 2009.

[22] M. Vidyasagar, A Theory of Learning and Generalization: With
Applications to Neural Networks and Control Systems. London, UK:
Springer Verlag, 1997.

[23] ——, “Statistical learning theory and randomized algorithms for
control,” Control Systems Magazine, vol. 18, no. 6, pp. 69–85, Dec.
1998.

[24] G. Calafiore, F. Dabbene, and R. Tempo, “Research on probabilistic
methods for control system design,” Automatica, vol. 47, no. 7, pp.
1279–1293, Jul. 2011.

[25] V. Blondel and J. Tsitsiklis, “NP-hardness of some linear control
design problems,” SIAM Journal of Control and Optimization, vol. 35,
no. 6, pp. 2118–2127, Nov. 1997.

[26] ——, “A survey of computational complexity results in system and
control,” Automatica, vol. 36, no. 9, pp. 1249–1274, Sep. 2000.

[27] V. N. Vapnik and A. Chervonenkis, “On the uniform convergence
of relative frequencies of events to their probabilities,” Theory of
Probability and its Applications, vol. 16, no. 2, pp. 264–280, 1971.

[28] E. D. Sontag, “VC dimension of neural networks,” in Neural Networks
and Machine Learning, C. Bishop, Ed. Springer, Berlin, 1998, pp.
69–95.

[29] R. Dudley, “Central limit theorems for empirical measures,” The
Annals of Mathematical Statistics, vol. 6, pp. 899–929, 1978.

[30] V. N. Vapnik, Statistical Learning Theory. New York, NY: Wiley,
1998.

[31] S. Mendelson, “A few notes on statistical learning theory,” in Advanced
Lectures in Machine Learning, S. Mendelson and E. J. Smola, Eds.
Springer Verlag, 2003, vol. 2600, pp. 1–40.

[32] H. Chernoff, “A measure of asymptotic efficiency for tests of a hypoth-
esis based on the sum of observations,” The Annals of Mathematical
Statistics, vol. 23, no. 4, pp. 493–507, Dec. 1952.

[33] V. Koltchinskii, C. Abdallah, M. Ariola, P. Dorato, and D. Panchenko,
“Statistical learning control of uncertain systems: it is better than it
seems,” University of New Mexico, Tech. Rep. EECE-TR-00-001,
2000.

[34] R. Norton, Design of Machinery. New York, NY: McGraw Hill, 2008.
[35] M. Vidyasagar, “Randomized algorithms for robust controller synthe-

sis using statistical learning theory,” Automatica, vol. 37, no. 10, pp.
1515–1528, Oct. 2001.


