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Abstract

We develop a control scheme to coordinate a group of mobile sensors for
radiation mapping of a given planar polygon region. The control algorithm
is based on the concept of information surfing, where navigation is done by
means of following information gradients, taking into account sensing perfor-
mance as well as dynamics of the observed process. The control scheme steers
mobile sensors to locations at which they maximize the information content of
their measurement data. The resulting controllers depend on both time, sen-
sor measurements and local robot configurations, and the approach exploits
the asymptotic properties of mutual information to offer an invariance-type
stability result for a time-varying distributed cooperative system.

1 Motivation

This work is motivated by the emerging threat of contamination from a mali-
cious attack or accidental release of radioactive material, as well as by prob-
lems related to nuclear forensics and non proliferation. In the latter cases,
robots could investigate the possibility that fissile material has been pro-
cessed, by searching for small specks of nuclear material. Currently, searching
for radiation sources is usually done manually, by operators waving radiation
counters in front of them.

2 Problem Statement

The goal is to estimate the distribution of radiation levels over a given area of
interest, to a certain confidence level, using radiation measurements collected
in a distributed fashion by multiple mobile robots. This radiation map should
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be available as it is being constructed in real-time, and should be offered at
a confidence level that gradually improves with time. We need to design and
implement distributed control algorithms that steer the mobile robots into
completing this map.

3 Related Work

Existing control design methods for multiple mobile robot coordination apply
to problems ranging from topological mapping to active sensing and source
seeking, as well as reconfigurable sensor networks. Within these existing con-
trol designs, entropy-based metrics have become more commonplace as a way
to express estimate uncertainty or to aid in localizing target features.

3.1 Active sensing and source seeking approaches

The idea of active sensing has become an area of interest recently because of
its applications in environmental monitoring, search and rescue, and source
seeking problems. The approach is to use a mobile sensor platform that re-
acts “intelligently” to the sensed environment based on the measurements.
An early approach to this technique is found in [1], where Chung et. al use
a gradient decent algorithm to cooperatively estimate the state of dynamic
targets in an optimal fashion. In [2] Yang et. al extend the work of [1] by
making the control algorithm implemented in a distributed fashion. This is
achieved by constructing a dynamic average consensus estimator and using a
one-hop neighbor for communication.

Active sensing is not limited to target estimation. In [3], Zhang et. al
address a source seeking problem for an autonomous vehicle modeled as a
nonholonomic unicycle. In [4, 5, 6] the problem of source seeking is addressed
when direct gradient information of the measured quantity is unavailable.
Pang and Farrell [4] address chemical plume source localization by construct-
ing a source likelihood map based on Bayesian inference methods. Mesquita
et. al [5] induces source seeking behavior without direct gradient information
by mimicking E. Coli bacteria. Lastly Mayhew et. al [6] propose a hybrid
control strategy to locate a radiation source utilizing only radiation intensity
measurements, however they do not consider the statistics of nuclear mea-
surement.

3.2 Entropy-based metrics in robotic control

Entropy-based metrics quantifying uncertainty or information gain have been
utilized in robotic exploration, localization and mapping. Moorehead [7] uses
entropy, among other utility measures, to evaluate the benefit of visiting dif-
ferent locations in the context of exploration. However, that entropy describes



Distributed Robotic Radiation Mapping 3

the uncertainty over a certain location being reachable; it is not directly as-
sociated with the quality of the model nor is it linked with the statistics of
measurement. Mutual information is used as a metric of significance of differ-
ent discrete locations containing features or targets of interest, in an applica-
tion where mobile robots and unmanned aerial vehicles (uavs) localize target
features in their environment [8]. Each vehicle takes local actions that reduce
estimate uncertainty the most by following mutual information gradients. The
Fisher information is another metric used to describe control actions for gen-
eral information acquisition tasks [9] as well as motion coordination tasks
[10].

The most closely related work to the one presented here is probably the
one of Sujan and Dubowksy [11], who derive a metric for determining optimal
sensing poses for mobile robot agents that create a detailed three dimensional
model of their environment. The metric used is based on Shannon’s entropy.
The main difference between [11] and our approach is that the underlying
statistics are completely different. Here, radiation measurement statistics re-
sults in closed loop controllers which are both state and time dependent,
making the stability analysis considerably more difficult.

3.3 Sensor network deployment

In [12], Popa et. al employ potential fields to reconfigure a mobile sensor
network. Through these artificial potentials, the spatial distribution of the
network can be regulated. Cortes, Martinez, and Bullo [13, 14], use gradient
climbing algorithms to distribute sensor platforms in a geometrically optimal
fashion over a given polygonal area. The area is divided up among the agents
using Voronoi partitions. Hussein and Stipanovic [15] use another gradient
climbing method for control of the sensor network, which does not partition
the area among the team members, thus reducing computational overhead.

Scalable approaches to flocking and formation control rely on decentral-
ized control schemes. Lindhe et. al [16] use a navigation function with Voronoi
partitions to move the group of agents from one region to another goal region
in the area while keeping formation. The navigation function allows for obsta-
cle avoidance, and only neighboring agents position information is needed to
compute the control actions. Yamaguchi [17] addresses a type of pursuit eva-
sion game, where the group of robots try to keep a formation and enclose the
evader. Coordination is achieved with no communication between robots and
the control law uses position rules to coordinate the group around the target.
Fredslund and Mataric [18] allow robots to fall into formation by selecting a
leader of the group and having each agent maintain a certain position and
orientation with respect to its neighbor. Minimal communication is required
by each agent to verify that its neighbors are participating in the formation
task.

In hazardous environments mobile robots can maneuver, take measure-
ments, and build a map without human intervention. Utilizing large numbers
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of mobile robots speeds up the map building task and makes the map available
faster. Mobile robots can be equipped with a variety of sensors, so both topo-
logical (obstacles and freespace) and spatial distribution maps can be created.
Spatial distributions of interest include temperature, gas, as well as radiation.

3.4 Spatial distributions and topological maps

Most of the recent work in the area of mapping focuses on obtaining a detailed
topological or metric map of the environment in which the robots are deployed.
Accurate two-dimensional and three-dimensional maps are constructed for
static [19] and dynamic environments [20]. To build detailed metric maps,
laser-range finders [21] or sonar sensors [22, 23] are typically used. These sen-
sors report objects in line of sight at relatively long ranges. Thus establishing
line of sight between sensors and environmental features is a critical aspect of
topological mapping.

Mapping spatial distributions can provide insight to the short or long term
effects of variation in temperature, pressure, water current, and may warn
against threats from pollutants. In [24], Lilienthal and Duckett create maps of
gas concentrations by maneuvering a robot over a predefined path that covers
the entire area. An approach to search for ocean features is found in [25] where
Orgen et. al use virtual bodies and artificial potentials to coordinate multiple
robots into gradient climbing, in order to locate and track ocean features such
as fronts and eddies. Singh et. al [26], use active learning techniques to map
water currents in a freshwater lake to understand the hydrodynamics present
in Lake Wingra.

Some attempts to automate nuclear search appear in [27, 28], using a
strategy based on the classical sequential testing theory [29]. This strategy,
however, is a detection strategy, not a mapping technique. It only gives a
positive or negative response to the question of whether a source of a particular
strength is present at that location. It gives no information on background
radiation levels of the area. Using traditional sequential testing theory for
radiation mapping would involve setting a number of different thresholds, one
set for each anticipated radiation level. The area has to be scanned each time
a certain level needs to be confirmed. This approach is far from time-optimal,
and the required completion time increases very fast with the desired map
resolution.

Even as a detection tool, for which the technique is optimal in terms of
completion time, there is an important caveat. The algorithm is sensitive to
the assumption on the strength of the source that is to be detected.

To overcome the shortcomings of [27, 28] an algorithm is developed in [30]
to calculate and update, in real-time, the belief about local radiation levels,
thus creating a radiation map of the area in question. The variance of the
local radiation distribution level is used as a metric to assess the accuracy of
the radiation map.
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4 Technical Approach

Low-rate counting of radiation from nuclear decay is described by the Poisson
statistics. On the other hand, the expected number of source counts µ to be
registered by a moving sensor drops dramatically as a function of the distance
µ = χ ·α

∫ t

0
1

r2(τ) dτ , where χ is the cross sectional area of the sensor, α is the

activity of the source measured, and r(t) is the instantaneous distance of the
source to the sensor. The probability density function (pdf) associated with
the random variable expressing the total number of counts recorded by the
moving sensor c as f (c) = f (c|α, χ, r(t)), and can be updated recursively using
Bayes rule. The most conservative assumption regarding f(α) prior is to take
it as being uniformly distributed between two values α1 (background) and α2

(a strong source). For this problem, the mutual information of a measurement,
I when the latter is viewed as a channel from the environment to the robot
is given as I(A; C) = h(A) − h(A|C), where A and C are random variables
expressing radiation intensity and sensor counts, respectively, and h(·) denotes
entropy. Following [14], we define an objective function

W(P ) =

∫

Vi(P )

f(‖q − pi‖)I(q, pi, t) dq, (1)

where f(‖q − pi‖) is a smooth (sensor performance) sigmoid function, iden-
tically equal to one over the footprint of the radiation sensor (Fig. 1) and
decreasing by (at least) the inverse square of the distance from the sensor
[31].1

5 Results

Our approach then traces the steps of [14], with one significant difference:
in (1), the “density function” I(q, pi, t) is both configuration and time depen-
dent, and invariance-type arguments cannot be made. In this work, we exploit
the asymptotic properties of the mutual information associated with nuclear
measurement:

Lemma 1 ([32]). If I(q, pi, t) be the mutual information of nuclear measure-

ment, then limt→∞
∂I(q,pi,t)

∂t
= 0.

Using this lemma we can recover local stability (integrals are evaluated over
Voronoi cells following [14]):

Proposition 1. Consider the gradient field defined by:

1 Unless the solid angle around the source remains constant, snr actually scales
proportionally to R

4!
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Fig. 1. A small radiation sensor (NaI scintillator), covered with copper tape to re-
duce noise, and interfaced with a Khepera II robot for low-count radiation detection.

ṗi =

∫

Vi(P )

∂f(‖q − pi‖)

∂pi

I(q, pi, t)dq

+

∫

Vi(P )

f(‖q − pi‖)
∂I(q, pi, t)

∂pi

dq. (2)

This system stabilizes at configurations that (locally) maximizes the informa-
tion flow from each sensor, as expressed by the product I(q, pi , t)f(‖q − pi‖),
for i = 1, . . . , n.

Proof. Take 1
W(P ) to be a Lyapunov-like function candidate V(P ). Then,

V̇(P ) = −
[

∫

Vi(P )

∂f(‖q − pi‖)

∂pi

I(q, pi, t)dq

+

∫

Vi(P )

f(‖q − pi‖)
∂I(q, pi, t)

∂pi

dq
]2

+

∫

Vi(P )

f(‖q − pi‖)
∂I(q, pi, t)

∂t
dq.

Now assume that the system does not stabilize at the configurations men-
tioned. Then Lemma 1 suggests there exists a finite time T when one can find

an ǫ > 0 such that
∣

∣

∣

∂(I(q,pi,t)f(‖q−pi‖)
∂pi

∣

∣

∣
> ǫ ∀t > T. It follows that
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[

∫

Vi(P )

∣

∣

∣

∣

∂f(‖q − pi‖)

∂pi

I(q, pi, t)

∣

∣

∣

∣

dq

+

∫

Vi(P )

∣

∣

∣

∣

f(‖q − pi‖)
∂I(q, pi, t)

∂pi

∣

∣

∣

∣

dq
]2

>

∫

Vi(P )

ǫ2dq.

Once we define the constant W3(ǫ) ,
∫

Vi(P )
ǫ2dq and the function β(t) ,

∫

Vi(P )
f(‖q − pi‖)

∂I(q,pi,t)
∂t

dq then the derivative of V can be bounded as fol-

lows V̇(P ) ≤ −W3(ǫ)+β(t) ≤ −(1−θ)W3(ǫ)−θW3(ǫ)+β(t), where 0 < θ < 1.

Knowing that limt→∞
∂I(q,pi,t)

∂t
= 0, and noticing that the integration in β(t)

is over position, we conclude that limt→∞

∫

Vi(P ) f(‖q − pi‖)
∂I(q,pi,t)

∂t
dq = 0.

Since W3 is a strictly positive number there exists a time τ such that
−θW3(ǫ) + β(t) ≤ 0 ∀ t > τ. After time τ , V̇(P ) ≤ −(1 − θ)W3(ǫ) , γ̇(t).
Noting that γ̇(t) only depends on ǫ, we can get γ(t) = γ(0)−(1−θ)W3(ǫ)t. The
Comparison Lemma suggests that V(P ) ≤ γ(t) = γ(0) − (1 − θ)W3(ǫ)t. This
in turn implies that there exists a finite time when V(P ) < 0; contradiction,
since by construction V(P ) ≥ 0.

6 Experiments

Rather than experimenting with actual radioactive material2 we use a light
source to emulate radiation emission intensity (Fig. 2). Each robot takes its
light intensity measurement and passes it through a Poisson distribution filter
as the mean count rate at that particular cell. This filter returns a randomly
distributed number from a Poisson distribution taken with a mean of the
measured light intensity.

6.1 Algorithm Implementation Issues

The radiation map is supposed to be obtained by applying a Bayesian update
for t ranging from the time of algorithm initialization until current time. The
Bayesian update then gives the distribution of radiation activity mean value
at each location r(t), conditioned upon the measurements and the robots
motion. There are, however, several reasons why the direct application of the
Bayesian update may be impractical.

One issue is the numerical instability that may be observed when calcu-
lating the derivatives of mutual information, I, for large t. This phenomenon
is due to the expression of this derivative involving incomplete gamma func-
tions, which are evaluated over long time periods (implying large values for

2 Preliminary experiments with a 10 nCi Na-22 radiation source, using the Khepera
platform of Fig. 1 have been conducted by the first author at Los Alamos National
Laboratory facilities.
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Fig. 2. The experimental test bed with two mobile robots, each carrying a cricket
beacon. The origin of the coordinate system is at the near right corner of the plat-
form, and the light (simulating radiation) source in the far left corner at position
(6,6). A red light was utilized because ir sensors are more sensitive to the red light
wavelength.

c). In such cases, the incomplete gamma functions evaluate to very large num-
bers, sometimes causing numerical overflow. For this reason, we resort to a
“receding horizon” type of approach, where we calculate these derivatives for
an appropriately short time interval, update the radiation prior, reinitialize
the algorithm and repeat with the new initial conditions.

However, once such an approach is adopted a second issue arises: the ex-
pressions for the marginal distributions and the mutual information deriva-
tives are based on the assumption that the initial radiation prior is uni-
form. This assumption enables one to obtain closed form expressions for these
derivatives, and subsequently for the control law. If f(α) is updated in real
time, the radiation prior is no longer uniform when initializing the algorithm
at the next step of the “receding horizon” method. One approach is to evalu-
ate the derivatives numerically; another, which we opt for, is to discretize the
radiation and mutual information maps in the form of a three-dimensional
bar chart, where each cell is assigned to a uniform distribution, but the dis-
tribution is different among different cells. The map can then be updated cell
by cell, since within each cell a uniform prior is assumed.
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6.2 Radiation Map Construction

The area over which radiation is mapped is discretized into a m× n cell grid.
Without knowing the type of radiation source in the given area, we assume
that each cell in the area could contain a radioactive source of activity α,
which could vary between α1 and α2.

At time step t = 0, each robot stays for five time periods in the cell that
it occupies and calculates the total number of the radiation counts collected
during this period. This is done because too small sensor integration times may
yield very large variations in count measurements, and temporarily increase
uncertainty.

With each new set of count measurements cij over a cell (i, j), the aver-
age of the total number of counts collected over that cell over the collective
integration time, is updated as follows

c̄+
ij =

c̄ij · (Mij − 1) + cij

Mij

,

where Mij is the number of time periods a robot has spent in cell (i, j), and c̄+
ij

is the updated average. Over time, the average number of counts collected in
each cell approaches the true average according to the Law of Large Numbers.

This average c̄ij corresponds to the mean of the distribution that would
have been obtained by the Bayesian update. To enable the next iteration of
the algorithm in a “receding horizon” fashion, we update f(α) in each cell by
approximating with a uniform one, over the interval [α1, α2] as follows

α+
1 = c̄ij − δij (3a)

α+
2 = c̄ij + δij (3b)

δij , min {|c̄ij − α1|, |c̄ij − α2|} .

To speed up the map construction at the initial phases, we consider the
(remote, for the case of weak radioactivity) possibility that counts collected
by robots over particular cells may have been a result of radiation from neigh-
boring cells. In this case, the radiation intensity of these neighboring cells is
adjusted according to

cij =

n
∑

k=1

c̄k

fk(‖q − pk‖)

χdij(k)
) (4)

where ck is number of counts collected (remotely) by robot k, χ the radiation
sensor cross-section, fk(‖q − pk‖) is robot’s k sensing performance function,

and the function di,j(k) ,
∫ t

0
1

‖qi,j−pk(t)‖2 dt reflects the fact that the likelihood

of registering counts from remote radiation sources drops with the square of
the distance to the source. Since (4) suggests that registering c counts from
remote locations implies that the assumed source at these locations radiates
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intensively, the resulting cij estimate is compared with the current belief αij

about the radiation intensity at (i, j), using the Bayesian update

Fαij
=

f(α) · f(c̄+
ij |αij , χ, r(t))

fc(c̄
+
ij)

· σ, (5)

where Fαij
plays the role of our confidence on this new projected radiation

count c̄+
ij initiated at location (i, j). The process of updating the intensity

in cell (i, j) is now conditioned upon whether this number of counts is more
likely to have been produced by a source of the assumed intensity, or from a
source with a candidate intensity of

α′
ij =

1
α2−α1

· αij + Fαij
· cij

1
α2−α1

+ Fαij

.

If (5), when evaluated for α′
ij instead of αij , yields an value that is larger than

Fαij
, then the distribution in (i, j) is updated through (3) using c̄ij = α′

ij ;
otherwise, the existing estimate is kept.

As the search progresses the system is able to narrow down the possi-
ble source activities in each cell: the difference between α1 and α2 becomes
smaller. Our metric for the completion of the task is based on the range of
possible radiation source activities in each cell. We take an average difference
between α1 and α2 over the entire area to measure how well our estimated ra-
diation map represents the actual radiation distribution in the area. When the
average difference between α1 and α2 is below a threshold of 1.5 counts/sec
the algorithm terminates.

6.3 Experimental Snapshots

The area over which radiation is mapped is discretized into a 6 × 6 cell grid,
and a uniform distribution between α1 = 1 and α2 = 10 counts/sec is as-
sumed each cell’s radiation intensity α. Localization of the robots is done
through odometry and triangulation using distance measurements from Cross-
bow Crickets attached on each one of the robots shown in Fig. 2.

Fig. 3 shows the change in the information map and the updated radia-
tion intensity map after two updates (each update takes five seconds). The
completed radiation intensity map is shown in Fig. 4 and is obtained after 17
updates.

In the setting described here, the algorithm is implemented in a centralized
fashion, so issues related to keeping, communicating, and updating the mutual
information map that needs to be shared among robots are not addressed.
The control architecture allows decentralization, up to map maintenance and
sharing. The latter task depends on available communication bandwidth and
local memory storage.
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Fig. 3. Map estimate after two updates.
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Fig. 4. Map estimate after 17 updates.

However during experimental testing, issues arose with wireless localiza-
tion information from the Crossbow Crickets attached to the robots interfering
with wireless transmissions of radiation information from the robots to the
central computer. This was due to the close frequency ranges of the wireless
devices. To overcome these interference issues, an overhead camera system
is being developed to localize the robots during experimentation which will
replace the Crossbow Cricket sensors.

7 Conclusion

Radiation map construction is demonstrated on an experimental testbed, sim-
ulating radiation intensity with light intensity and sampling from Poisson
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distributions generally accepted to describe the statistics of nuclear measure-
ment. The algorithm is shown to be a useful tool in assessing nuclear contam-
inations and situations of nuclear forensics.
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