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Abstract

The paper presents a receding horizon planning and control strategy for quadrotor-type micro aerial vehicle (MAV)s
to navigate reactively and intercept a moving target in a cluttered unknown and dynamic environment. Leveraging a
lightweight short-range sensor that generates a point-cloud within a relatively narrow and short field of view (Fov), and
an ssb-MobileNet based Deep neural network running on board the MAv, the proposed motion planning and control
strategy produces safe and dynamically feasible MAV trajectories within the sensor FOv, which the vehicle uses to
autonomously navigate, pursue, and intercept its moving target. This task is completed without reliance on a global
planner or prior information about the environment or the moving target. The effectiveness of the reported planner is
demonstrated numerically and experimentally in cluttered indoor and outdoor environments featuring maximum speeds

of up to 4.5-5 m/s.
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1 Introduction

Overview

The work reported in this paper is motivated in part by
application problems in the field of nuclear nonproliferation.
In this context, there can be instances where one needs to
quickly detect weak radiation sources that could be in transit
through generally unknown, and sometimes GPS-denied
environments. With MAVs being now a widely available and
accessible technology, and with the possibility of mounting
lightweight (albeit still of low efficiency) commercial off the
shelf (COTS) radiation detectors on them, such a detection
task is now possible using aerial means.

The approach to such problems advocated here utilizes an
algorithmic pipeline that combines reactive receding horizon
navigation with target tracking for MAVs, a visual-inertial
(VI) state estimation algorithm, a SSD-MobileNetV2 based
visual target identification and tracking, and a fast likelihood
ratio-based binary decision making algorithm. Reactive
planning is achieved through a new model predictive
control (MPC)-type motion planner that fully incorporates
the nonlinear vehicle dynamics of the MAV (cf. Tanner
and Piovesan (2010)) and utilizes real-time sensor data in
the form of a point-cloud generated by an onboard RGB-D
camera, to select a (probabilistically optimal) safe path
toward the target within the field of view. The reactive
planner solves a multi-objective optimal control problem in
real time, and thus balances detection accuracy and decision-
making speed against platform flight agility limitations. The
product of this optimization is a dynamically compatible
minimum snap trajectory that fits along the kinematic
reference path. Then a nonlinear geometric controller on the
MAV tracks this trajectory in a receding horizon fashion.
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Figure 1. Custom-built quadrotor capable of on-board
planning, control, state estimation, ssd-mobilenet based target
tracking motion planning and radiation measurement tracking
the Jackal (ground-vehicle).

The planning and control architecture is implemented
using low-cost COTS hardware, limited-range sensors, and
computation devices with average capabilities. With these
resources, the system has demonstrated speeds up to 4.5 m/s
in cluttered indoor as well as outdoor environments. In
the experimental results reported in this paper, the planner
enables the MAV to intercept to static or dynamic ground
targets. Such interception maneuvers have been shown
to increase the likelihood of correct identification of the
presence of a radioactive source on the target (Sun and
Tanner 2015). In cases where the local information is
insufficient to construct a feasible trajectory to the goal,
the planner is designed to safely stop the vehicle. The
features and capabilities of the reported reactive planning and
control architecture is demonstrated in case studies of mobile
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radiation detection, in which MAvs autonomously determine
whether radiation sources are present on a ground vehicle
moving in cluttered environments (Fig. 1).

Background and Related Work

A quadrotor-type MAV is an inexpensive, lightweight, and
agile sensor platform, suitable for many applications in areas
including surveillance, aerial photography and mapping,
precision agriculture, construction and defense. Although
MAVs with various degrees of autonomy have been deployed
in these application domains, the prevailing assumption is
that the environment is at least partially known, so that
a motion plan can be generated a priori and then used
for steering the vehicle to a desired goal. To plan its
motion in unknown environments, however, a robotic vehicle
needs to construct and update a (local) environment map
online; recent MAV literature addresses this problem using an
onboard perception stack (Oleynikova et al. 2017; Hornung
et al. 2013).

Perception-Based Reactive Navigation As long as vehicle
dynamic constraints are respected, safe MAV navigation and
aggressive maneuvering is possible by combining a reference
trajectory generation process that splices together time poly-
nomials between waypoint poses (keyframes) (Mellinger and
Kumar 2011; Richter et al. 2016); a differential-geometric
quadrotor point stabilization or tracking controller (Lee et al.
2010) then is utilized to transition between these keyframes.
While platform-specific constraints on vehicle dynamics
can be identified by experimental testing, ensuring safety
during operation requires either complete prior knowledge
of the environment, or some way of acquiring the missing
information in real time through onboard sensing; both
options involve several nontrivial and open research ques-
tions (Cadena et al. 2016).

Early work on online obstacle avoidance focused
on building a new, or updating a prior, map of the
environment. In this context, a continuous-time trajectory
optimization using octomap (Hornung et al. 2013) is
employed (Oleynikova et al. 2016), utilizing a local planner
to re-generate a safe trajectory that assigns collision costs
based on a (computationally expensive) Euclidean signed
distance field (ESDF) map. In unknown environments, Gao
and Shen (2016) construct a navigation approach utilizing
online planning to produce a point-cloud map of the
environment using a Velodyne 3D LiDAR, and use the map
to find safe corridors through which their MAV plans it
motion. To navigate to destinations outside the sensor range,
a sequence of predefined waypoints is needed. Landry et al.
(2016) assume knowledge of obstacle location and geometry,
and locally decompose the available free space into convex
polyhedra to generate safe paths for the vehicle. Variants of
such approaches (Liu et al. 2017) consider the workspace
represented as a 3D grid map with uniform voxels, which are
used to create a convex safe flight corridor (SFC).

More recent reactive motion planning algorithms specifi-
cally for aerial vehicles include lightweight egospace-based
algorithms extended to a quadrotor’s configuration dynam-
ics (Fragoso et al. 2018), or reactively sample safe trajec-
tories in the field of view of the quadrotor, and decouple
local obstacle avoidance from global guidance using a global
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planner (Ryll et al. 2019). Sikang Liu et al. (2016) report
on an impressive receding horizon-based approach to (local)
planning that involves only limited onboard sensing, and
which utilizes a local uniform resolution volumetric occu-
pancy grid map and a cost map to find and navigate to safe
frontier points (local goals that are closest to the global goal).

All aforementioned approaches either require some type
of prior information and a global planner that generates a
sequence of waypoints, or rely on (MAV payload-taxing)
high-range sensors. They are particularly effective for
navigating to static configurations; if, however, the MAV
destination changes over time, or if the generation of a
prior map is impossible, they cannot guarantee a priori the
existence of a SFC, or ensure that intermediate waypoints will
be within sensor range.

Yet even within a reactive navigation framework, some
convergence guarantees can still be provided (Yadav and
Tanner 2021a) based on appropriate extensions of the nav-
igation function approach (Rimon and Koditschek 1992).
Recent advances in such techniques have independently
demonstrated success in online calculation of convergent
vector fields using limited range onboard sensors (Vasilopou-
los et al. 2020; Arslan and Koditschek 2019), where
unknown obstacles are detected online using a deep neural
network (DNN) trained on the predefined class of object
geometries. Such approaches have been successfully tested
on fully actuated or differential drive robots at relatively low
speeds; their applicability to fast moving MAVs with under-
actuated higher order dynamics remains to be demonstrated.

Target Tracking While the area of simultaneous localization,
mapping, and moving object tracking (SLAMMOT) has
been the focus of recent research efforts (Wang et al.
2007; Chojnacki and Indelman 2018), there are few
implementations involving active visual-inertial target
tracking approach (Chen et al. 2016) that have demonstrated
impressive performance using a quadrotor. Conceptually
closer to the one reported in this paper, is the aerial
target tracking work of Thomas et al. (2017) who
demonstrate tracking of a spherical rolling target. That
approach employed a geometric technique similar to visual
servoing for tracking the target combined with a receding
horizon strategy that penalizes velocity and position errors.
Alternatively, if the environment is known, a reactive motion
planning scheme can utilize multi-objective optimization for
obstacle avoidance and target tracking (Penin et al. 2018).
These approaches assume that the target is either known,
detected via some type of a tag, or it can be localized
using some form of visual servoing (which depends on
the shape of the target). Alternative means of target
detection include approaches based on convolution neural
networks (CNNs), which have gained popularity in active
quadrotor motion planning and target tracking with the
advent of computationally efficient networks such as single
shot detector (SSD) (Liu et al. 2016), you only look
once (YOLO) (Redmon et al. 2016), and their variants,
and seem particularly effective at high sensor speeds. For
instance, DroNet architectures (Loquercio et al. 2018) are
utilized in Drone Racing involving dynamically changing
environments (Loquercio et al. 2020). In another related
application of forest trail navigation, a multi-column DNN
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is used to predict the turns in the trail and guide the
quadrotor (Giusti et al. 2016), although that particular
perception and control stack runs remotely on a laptop.
Smolyanskiy et al. (2017) utilize a YOLO network but runs
the planning and perception stack onboard the quadrotor on
an NVIDIA TX1. A human gaze-driven quadrotor navigation
utilizing a SSD network running on an NVIDIA TX2 features
eye-tracking glasses along with a camera and an inertial
measurement unit (IMU), which are combined to estimate the
position of the human with respect to the quadrotor and steer
the MAV (Yuan et al. 2019).

As far as the state of the art in experimental
implementations is concerned, recent literature reports
quadrotor navigation results at impressively high speeds (Liu
et al. 2017; Mohta et al 2018; Ryll et al. 2019); yet
most of the systems either involve a global planner (Ryll
et al. 2019), or employ high-end and expensive sensors
with extended range—e.g., Velodyne VLP-16 or Hokuyo
UST-20LX LiIDAR mounted on a gimbal to provide 270°
FOV Liu et al. (2017); Mohta et al (2018), which can
offer significantly more advanced perception capabilities
compared to a 69.4° x 42.5° FOV sensor utilized in this work.
In addition, the top speeds reported by Ryll et al. (2019)
were achieved in open areas and with average flight speeds
of 2.4 m/s. In the absence of a global planner, however, a
planner with myopic vision cannot arbitrarily increase the
speed in anticipation of an unseen obstacle. Moreover, the
majority of experimental results reported relate to the case of
converging to static final configurations.

Thus existing robotics literature on MAVs covers either
safe and agile point-to-point navigation in unknown
environments, or autonomously tracking moving target, but
there is scarce, if any, work on the combined problem. In
addition, the signal and data processing component, that is,
what will be done with the measurement data once they have
been collected, is typically an afterthought; not much effort
is directed to designing the measurement process so that it
serves the needs of decision-making based on these data.

Paper Organization and Contributions

In the context of active sensing, this paper makes technical
contributions to optimal sensor motion planning for active
sensing. The innovations include techniques for adjustment
of the optimization cost function, to manage balancing
between competing mission objectives and fine-tune the
aggressiveness of sensor maneuvers, and for parameterizing
reference MAV trajectories in ways suitable for target
tracking and receding horizon optimization. At a higher
level, the approach of this paper is different in the sense that
autonomy components of motion planning, safe navigation,
target tracking and decision-making are integrated and co-
designed to operate in concert with each other to yield
significant performance improvements to fast aerial detection
of weak radioactivity. This yields the first real-time, sensor-
based reactive navigation and motion planning methodology
applicable to problem instances involving either static or
moving navigation goals. From an application standpoint, the
planning and control architecture for aerial interception and
target tracking is thus unique because:

Prepared using sagej.cls

1. it is applicable to cases with both static and moving
goal configurations;

2. it generates trajectories in a new way by efficiently
solving a multi-objective optimal control problem;

3. it is experimentally tested indoors and outdoors with
MAV speeds of up to 4.5-5 m/s; and

4. it is demonstrated to be capable of solving a
challenging radiation detection problem.

2 Overview of the Architecture

The block diagram of Fig. 2 shows the flow of information
within the motion planning, state estimation, and platform
control architecture. Starting with the RGB-D camera, a
point-cloud is produced and then used to frame the obstacle-
free portion of the workspace. On board state estimation
is performed through a visual-inertial MSCKF navigation
stack (Open-VINS (Geneva et al. 2020)). Given the free
workspace and the state estimates, the receding horizon
planner (i) generates a candidate minimum snap trajectory
from the current position of the robot to each of the free
points in the field of view based on Pontryagin’s minimum
principle; (ii) selects the point in the FOV closest to the
target (henceforth referred to as the infermediate point);
(iii) assigns a cost to each trajectory as a weighted sum
of the trajectory’s proximity to obstacles and the proximity
of the trajectory’s end point to the intermediate point; and
finally, (iv) selects the trajectory with the least such cost
as the reference trajectory for the MAV to follow. The end
point of this selected minimum-snap reference trajectory
is referred to as the local goal. An initial segment of the
reference trajectory that ends at the local goal is presented
to a differential-geometric tracking controller, which initiates
steering of the MAV to the designated local goal point within
the FOV. In a typical receding horizon fashion, before the end
of that initial segment is reached, the MAV uses an updated
set of point-cloud data to generate a new reference trajectory,
starting from a point on the current trajectory associated with
the end of some designated control time horizon. Once in the
neighborhood of this point, the MAV transitions smoothly to
tracking of the new reference trajectory. This constitutes a
planning cycle of duration dt. The planning, and concurrent
trajectory tracking, cycle repeats until the final destination is
reached —when the latter is static.

If the destination is a moving target, an SSD MobileNet-v2
based target tracker calculates the relative positions between
the target and the MAV, which the planner utilizes to generate
intercepting trajectories.

3 Radiation Detection Preliminaries
Application Case Study Background

The robotics application that motivated this work was
detecting” weak mobile sources of radiation using aerial
mobile sensors. One possibility for realizing an inexpensive

*Note that the detection here refers to determining whether or not a known
target carries a certain amount of radioactive material; it should not be
confused with object detection in computer vision literature.
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Figure 2. Block diagram of the motion planning and control
architecture.The arrows indicate the direction of information
flow. The dashed lines indicate that the input to the planner is
either a user specified static goal or relative position of the
target obtained from ssD-MobileNet.

fully autonomous aerial radiation detector is to utilize a
quadrotor MAV, mount a COTS radiation counter, and allow
it to maneuver itself in ways that allow it to determine as
quickly as possible whether or not its given moving target
is radioactive or not. While a network of static detectors
can also be deployed to the detection, due to the strong
(inverse square law) dependence of the process intensity on
the distance between sensor and source (Nemzek et al. 2004),
the static network will experience a dramatic decrease of its
signal-to-noise-ratio (SNR) that will significantly reduce its
detection accuracy and speed.

Detecting a mobile radioactive source based on a series
of discrete events associated with the arrival of particles
or gamma rays (indistinguishable from each other), can
be formulated as an inhomogeneous likelihood ratio test
(LRT) within the Neyman-Pearson framework (Pahlajani
et al. 2014). In this framework, analytical (Chernoff) bounds
on error probabilities can be derived in terms of relative
sensor-source distance and used as proxies for the otherwise
intractable true detection error probabilities (Pahlajani et al.
2014), to facilitate the design of optimal control laws that
maximize detection performance in terms of speed and
accuracy (Sun and Tanner 2015; Yadav and Tanner 2019).

Neyman-Pearson based Radiation Detection

A sensor measurement event—for the case of a Gieger-
Muller (GM) detector, for instance—is associated with the
discrete random process where a gamma-ray (from the
source or background) hits the sensitive area of the detector
and records a “count.” This is mathematically modeled in
a probabilistic setup (Pahlajani et al. 2014; Sun and Tanner
2015) as follows. Assume that there is a counting process N
for ¢t € [0,T], on a measurable space (£2,.% ). In this context,
N, essentially represents the number of times gamma-rays
have hit the radiation counter located at position = € R?, up
to (and including) time ¢ € [0, T]. This counting process is
assumed to be a Poisson process (Snyder 1975). The sensor
position z is known over the whole interval [0, T'].

The detector can make two competing hypotheses, Hj and
H,, each expressing an opinion as to whether its cumulative
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count rate can be attributed to the presence of a radiation
source of intensity a (in counts per unit time, i.e., counts per
second (CPS)), located at a possibly time-varying position
y € R? which will be referred to as the target. Hypothesis
Hj asserts that the target is benign, while hypothesis H;
claims that the target carries a source of intensity. The
two hypotheses Hy and H; correspond, respectively, to two
distinct probability measures Py and P; on (£2,.%#). With
respect to measure Py, the process V; is a Poisson process
with intensity §(t), i.e., the intensity of naturally occurring
background radiation; with respect to P;, however, the same
process is Poisson with intensity [(t) + v(t), where v(t)
represents the intensity of the source (whenever present) as
perceived by the sensor at time ¢. The functions 5(t) and v/(t)
defined on [0, T] are assumed to be bounded, continuous and
strictly positive (Pahlajani et al. 2014).

Function v(t) should implicitly reflect the inverse square
law dependence of the source intensity perceived by
the sensor on the distance between the sensor and the
source (Nemzek et al. 2004). If x denotes the sensor’s
cross-section coefficient, one possibility for expressing the
detector’s perceived intensity is in the form:

Xa
= S Tt =@ W
A test for choosing between H( and H; faces the risk of
two types of errors. One of them is a false alarm, which
occurs when the outcome of the test is in favor of H; while
Hj is instead the correct hypothesis; the other is a missed
detection in which one sides with Hy when in fact H; is true.
In this setting, the optimal test for deciding between H and
Hj is an LRT obtained as follows (Pahlajani et al. 2014). Let
T, for n > 1 denote the n™ jump time of NV, (jumps occur
when the sensor registers a count), and with the convention
that [T0_, (1) = 1, let

T Ny
=exp | — v(s)ds 4
LT—€P< /0 ()d>nli[11+ﬁ(7'n)

be the likelihood ratio. Then for a specific fixed threshold
~v > 0, the test

@

Hy
Ly 2~ 3
Hy

is optimal in the (Neyman-Pearson) sense. This means that
(3) minimizes the probability of a missed detection under
a given upper bound constraint on the probability of false
alarm. With p(t) £ 1+ %, constants p € (0,1) and n £
log 7, and the quantity

T
A(p) é/o ()P —pu(s)+p—1] B(s)ds , (4

one can now extract analytical expressions for Chernoff
bounds on the probabilities of false alarm Pr and missed
detection Py, (Pahlajani et al. 2014).

If an upper limit oo > 0 is set on the bound on probability
of false alarm, then there exists a unique solution p* € [0, 1]
for which the tightest bound on the probability of missed
detection can be obtained. The exponent in the bound on the
probability of false alarm and missed detection, respectively,
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is (Pahlajani et al. 2014)

T
&r = / [p*u? logp —p? +1]Bds = —loga  (5)
0
Em =loga+ A (p*) | (©)
where the dependency of y and 3 on time is suppressed for
clarity, and derivative A’(p) = % is expressed as
) T
A (p) :/ [P log p —p+1]8ds . (7)
0

For the optimal p*, the A(p*) and detection threshold ~
are related in the form v = exp (A(p*)).

Problem Statement

Suppose now that the distance between target and sensor,
lly — ||, is regulated by a control input » via dynamics of
the form & = f(x,u); then v, and consequently u, depend
implicitly on w and an optimal control problem can be
formulated as follows:

Problem 1. Given current target and sensor locations y and
x, respectively, find a control input u that optimizes A (p*)
for a given upper limit o on the bound on the probability of
false alarm.

Irrespective of whether |[ly — || is deterministic or
stochastic, it can be shown that the optimal sensor
management strategy u for sensors is to close the distance
between source and sensor as quickly as possible (Sun and
Tanner 2015; Yadav and Tanner 2017).

4 Quadrotor Dynamics and Control

The MAV is modeled as a rigid body moving in SE(3). Let m
and J denote its mass and moment of inertia, respectively,
and denote x = (x,y,2)7 and v =x its 3D position and
velocity in the inertial frame. Let R be the rotation matrix
from the body-fixed frame to the inertial frame, and {2 be the
MAV’s angular velocity in the body-fixed frame. We denote
* the skew symmetry operation, and write the gravitational
acceleration vector and the unit vector along the inertial
vertical as g = (0,0,¢)T, and e3 = (0,0, 1)T, respectively.
The control inputs to the MAV are the (scalar) thrust f
and the (vector) moment M, both of which are considered
bounded. The former is bounded in the interval ( fiin, fmax)s
the constraint on the latter, is assumed to translate to a bound
on angular velocity ||Q|| < Quax. With these definitions and
assumptions in place, the MAV dynamics is described as

(8a)
(8b)

mv=fRe3—mg
JO+OxIJQ=M.

X =V,
R=RQ,

The control law for this system is designed based on

a (differential) geometric method (Lee et al. 2010). To
examine the particular control design employed here in
more detail, consider a smooth position reference trajectory
x4(t) € R3. Based on this one can construct (Lee et al. 2010)
a desired rotation matrix Rq and angular velocity {2, that
are consistent with the reference trajectory x4(t). The desired

yaw angle v of the MAV is used to construct the desired MAV
direction vector in the form by4 = (cos ¢, sin, 0)T.
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The tracking errors in position e,, velocity e,, orientation
eR, and angular rate eq, are expressed as

e =X —Xq ey =X — Xq (9a)

1
€r = §(R£R — RTRd) eq = Q- RTRde . (9b)

Picking positive control gains k,, k,, kg and kq, the

control inputs can now be constructed as

(10a)
(10b)

f: _kxex_kvev"'_mg"‘rmida
M = krer + kgeq + Q2 x JQ ,

allowing one to achieve exponentially stable tracking
behavior for initial attitude error less than 7/2 (cf. Lee et al.
(2010)).

5 Reactive Receding Horizon Planning

Representing the Free Space

Let V € R? denote the visible space within the FOV of the
RGB-D sensor. This FOV area contained in V is assumed to
take the shape of a solid pyramid sector with its apex attached
to the base frame of the sensor, with the depth direction of
the sensor being aligned with the local = (heading) frame
axis of the MAV. The base of the FOV pyramid is outlined
by the maximum range R, of the sensor, while the side
boundaries (polar and azimuth angles of the sector) are
determined by the maximal viewing angles in the FOV of
the sensor along the local y and z directions. Denote ¢,
and ¢, those maximum viewing angles of the sensor at
its apex along the local y and z directions, respectively.
The motion planning process also takse as input a user-
specified minimum range for perception, Ri,. Assuming
now that the apex of the FOV pyramid is at local frame
coordinates (0, 0,0)T, any point within the FOV of the sensor
can be expressed in the polar coordinates as (r, 6, ¢)T where
Rmin S r S Rmax, _¢y S 9 S ¢y and _(bz S %2 S ¢z~ By
selecting a resolution ér on the range and d6 on the viewing
angles in both direction, the field of view of the sensor can be
discretized and represented as an ensemble of points. Each
point in this ensemble represents a potential desired next
location for the MAV, should a feasible path to this location
exist.

Reference Trajectory Generation

The center of gravity (COG) of the MAV is designated as the
initial point of any candidate reference trajectory. Using the
(constant) transformation between COG and sensor frame (at
the FOV apex), the coordinates of all the points and rays can
be expressed relative to body-fixed COG frame of the vehicle.

Given the ensemble of points within the field of view,
a minimum snap trajectory to each of these point is
constructed. Note that the dynamics of a quadrotor MAV
enjoys differential flatness properties (Mellinger and Kumar
2011), which ensure that all inputs and states can be written
as functions of four (flat) outputs and their derivatives. The
flat outputs are the Cartesian MAV position and its yaw angle,
which can be brought together in a vector (x, ). Note that
yaw 1) is decoupled from x and can be steered independently.

The derivatives of x that are of interest are velocity
v =X, acceleration a =%, and jerk j= X. In the flat
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output space, the MAV position dynamics can therefore be
assumed to match those of a quadruple integrator with state
vector p(t) = (xT(¢),vT(t),aT(t),jT(t))". The objective of
the receding horizon planner now is to generate smooth
trajectories pjy] and pjy 1), defined over the course of two
consecutive planning cycles each of duration é¢ and indexed
Nand N +1,

_ T
pin (L, t+6t) = (XQ[N]: VAN AN Jg[N])

8, t+26t) = (xT T T i7 !
P (E+0t, 14261) = Xan) VaNa) Qava) dava) ) o

which always remain within F and satisfy the boundary con-
dition pyyy(t + 0t) = piv41)(t + 0t), while being dynami-
cally feasible, i.e., fmin < f < fmax and [|Q]] < Qmax-

Let T be the free trajectory terminal time (which will
henseforth be referred to as the planning horizon) and denote
po= (xJ,voT,20T,joT) . pr = (xrT,vrT,arT,jr7)" the
trajectory boundary conditions at t = 0 and ¢t = T, respec-
tively. Then let u(t) = di;ﬁt) denote snap, and treat it as
the control input for the flat space dynamics. For a relative
weight parameter k € R, the free terminal time optimal
control problem the solution of which are the desired ref-
erence trajectories, is formulated as:

min [ (k+ 3 [ju(t)][*) dt
() = v(t), ¥(t) =a(t), a(t) =j(t), j(t) = u(t)
p(0) =po, p(T) =pT .

subject to

1D
The cost function of the optimal control problem (11) is
a linear combination of two performance factors: (i) the
incremental cost associated with the terminal time (time
optimality), captured by the constant integrand term; and
(i1) the incremental cost that penalizes the cumulative
magnitude of snap u along the trajectory. By tuning k,
one can adjust how aggressive the reference trajectory
obtained is. Smaller values for k£ place a smaller penalty on
tracking time and therefore result to slower motion. GAZEBO
simulation data at various k and speeds had been collected to
fit a relation between the maximum speed along a candidate
trajectory and parameter k. This relation comes out to be
an interpolated curve of the form vcandidate = @ kY8 and
has been found to work well in practical scenarios to guide
the selection of the cost weight k& based on the maximum
robot speed afforded for the mission at hand. The cost weight
k is particular to the candidate trajectory and varies for
the different candidate trajectories in the ensemble, since
the maximum speed afforded along a candidate trajectory
Veandidate itself varies in proportion to the ratio of the
candidate trajectory’s length to the length of the longest
candidate trajectory. This leads to smaller trajectories having
lower top speeds, making the MAV automatically slow down
in the vicinity of dense obstacles.

Denoting ¢ the time elapsed since the start of the whole
planned maneuver, d the vehicle’s remaining distance to
its goal, r being the distance of the point in the ensemble
from the camera focal point, vy,.x the desired maximum
MAV speed, and k; and k; being positive tuning parameters,
we define the velocity profile along the reference trajectory
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through the function

Vcandidate = €rf (kt t) erf (kd d) (R,:

) vmax Y
ax

which now specifies Vcandidate and allows the direct
determination of the weighing factor k£ in (11). Compared
to alternative trapezoid velocity profiles (Mellinger and
Kumar 2011), (12) produces a velocity profile for the
entire remaining quadrotor trajectory that is also effective in
scenarios involving moving target interception, in which the
vehicle needs to adjust its speed to match that of its target
while at the vicinity of the latter. A more detailed discussion
of the effect of this velocity profile on tracking dynamic
targets follows in the section on target tracking.

(12)

To solve (11) one can utilize Pontryagin’s Minimum
principle (Athans and Falb 1966, Chapter 6) as follows. Let
Ax» Avs Aq and ) be the costate vectors. Each such vector has
three components, one for each spatial direction z, y, and z.
Let (-,-) denote the standard inner product between of two
vectors, and express the Hamiltonian H for this problem as

H =+ Sl 4+ o)+ (v,2) + (i) + O3 0)
13)
The optimal solution is derived from the condition
H(x*, u*, A*, ) < H(x*,u, A*,t), which, since the Hamito-
nian is quadratic in the control inputs, leads to

Ug )\Jw
OH
u, = )\jz
The costate dynamics now is
\ _ _OH _ y _ _OH _
MA=—-5.=0 A=—5 = A
, _ _OH _ \._— _OH _
Aa=—57 =N )\jf—a—jff)\a.

Fortunately, this problem affords independent solution
along each direction (z, y and z being independent flat
outputs). Each costate vector consists of three costates
corresponding to the z, y and z direction, respectively, i.e.,
M = { Az, Apy, Apz b If now ¢ = (cg0, - - - , ¢p7) denotes an
8 x 1 vector of constant coefficients for the x direction, the
costate dynamics along with the system dynamics (11) in x
direction can be resolved as follows:

)'\pw =0= /\px = Cgp7

)\va: = —Cg7 = Avav = —Cyrt + Cyo -

Recursively putting ), into the equation of )., and then
Aaz into the equation of A, and using (14) along with the
system dynamics in (11), yields the optimal solution along
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in z direction:

)\px = Cg7
Avw = —Cprt + Cy6
42
>\ax =Ce73 — Cz6l + Cz5
3 t?
Ur = Cz7g — Cx63 + Ca5t — Cy4
. 4 3 2
Jo = Ca:7gj - Cwﬁﬁ + cx5§ - Ca;4t + Cz3
_ t° t 3 t? :
Ay = Cm7ﬁ - CrGﬂ + Cm5€ - Cm4§ + CCESt (15)
+CQ;2
_ t° t° t 3 t2
Vg = Cz7w55 — Ca615g + Ca55g — Cadg T Ca3 g
+Cm2t + Cz1

4
— Cx4 24

t3 t2
+Cm3€ + 0225 + cwlt + Cz0 -

t” t8 5
Xz = CaT5040 — Ca6735 T C25130

The other two directions feature identical polynomials.

The optimal trajectory, therefore, is a 7" order polynomial
in time. Enforcing the boundary conditions at £t = 0 gives
Cz0 = Pz0> Cx1 = Vz0, Cz2 = az0 and c.3 :.jJJO, while the
remaining coefficients, c,4 through c,7, are obtained from
the boundary conditions att = T:

-1

LA L IS o
5040 720 120 24 1 2y, 1: T3
Cat 16 75 14 _73 PzT—(Pz0+tVa0T+5220T)+ 5izoT
2;1;6 — 7250 120 Tg 5, VIT—(VIO—Q—aon-‘-%jIOT?)
x5 — — .
Caa 1% = o azT— (220 +izo0T)
T4 73 T2 T JaT—Jz0

24 6 2

expressing the optimal trajectory coefficients as a function of
the (yet unknown) free terminal time T.

The free terminal time T can be determined as follows.
With the ¢, trajectory coefficients are explicitly expressed in
terms of T, one substitutes and writes the control input at the
terminal time as

840(pm0 - me) 360v40 60a,0 4jz0

T4 + T3 T2 + T
(control inputs at T in y and z are similarly obtained).
Velocity, acceleration and jerk at time T are all set to zero,
while the transversality condition (Athans and Falb 1966) at
T requires H(T) = 0. Combining these conditions, with (14)
results to

Uy =

1
k+§WﬂE+Qnmﬁ=0=$MﬂF=2k.

This is essentially an 8" degree polynomial equation which
can now produce T. Indeed, if for the sake of brevity we set

ll £ 840(1710 _pzT) my £ 360 Vzo T £ 60 azo O1 é4.]10

(work similarly for y and z using indices 2 and 3,
respectively), and then substitute back we obtain the
polynomial equation

3 3
— kTS +> 02 TO+2 nio; T°
=0 =0
3 3
—+ Z(nf —+ 2m107) T4 +2 Z(ZZOZ + min,-) T3
1=0 =0

3 3 3
+ ) (mP 4 2m) T24+2Y) lm T+ =0 .
=0 i=0 i=0

(16)
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This equation can be efficiently solved numerically, returning
three pairs of complex conjugate roots and a single pair of
real roots, of which one is negative and the other is positive—
the only acceptable root.

The vehicle’s yaw angle 1 is dynamically decoupled
from its position. A reference trajectory for yaw can be
constructed in a similar way, given that the relative degree
of flat output v is two. In the flat output space, therefore, the
yaw dynamics can be expressed as as a double integrator. Let
us define the yaw state vector U = (1, ))T, treating w = )
as the virtual control input for this dynamical subsystem.
For the yaw trajectory we have boundary conditions on
both sides, denoted W(0) = ¥q £ (v, 1) and (T) =
Ut 2 (y7, 1/)T) The reference yaw trajectory is obtained as
Pontryagin’s Minimum Principle solution of

min 1 fOT w(s)?ds
subject to
S (17)
U= (,9), ¥(t) =w(t)
\P(O) = \1107 \Il(T) \I’T ’

which is a 3 order polynomial of the form

V() =0+t +yt + st

with coefficients given as

Yo = o - % (6(10;5%) _ 2(¢T¢2¢0)>
71 = 1o vy =1 (6(1/}1';1/10) _ 12(1&;3—%))

Figure 3 shows a sample evolution of the cost functional in
(11) for some particular set of boundary conditions. The cost
associated with the terminal time (dotted curve) increases
while the integral of the snap (dashed curve) reduces with
time. The vertical line represents the positive real root T of
(16) which minimizes the total cost (solid curve).

goood4 000 Time Cost
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Figure 3. Temporal evolution of the optimization cost functional
over time, showing how the variation of its two affine cost
components contribute to its final value and yield a convex
curve with respect to time.

In the context of the particular case study considered here,
the best radiation detection performance has been shown to
be achieved when the robot closes the distance between its
sensor and the source as fast as possible (Sun and Tanner
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2015; Yadav and Tanner 2019). This implies that aggressive
reference trajectories are preferable, motivating us to select
k based on the maximum speed limitations of the MAV.
With this in mind, the methodology outlined above can
thus provide motion plans that would be (a) feasible given
the dynamic constraints of the vehicle, (b) as aggressive
as possible, and (c) high-performance in terms of radiation
detection accuracy.

While the reference trajectory is dynamically feasible by
design, its conformity to actuation constraints is verified
after its generation (Mueller et al. 2015) (see Fig. 4). Here,
we have actuation (upper) bounds on the magnitude of
the input thrust f =mlla —g| and on the square of the
sum of roll and pitch angular velocities in terms of jerk
and thrust, lilI?/f?. These actuation constraints stem from
(a) equipment limitations, and (b) the maximum deceleration
that the vehicle can undergo during an emergency stopping
maneuver. In the reactive navigation architecture described
here, emergency stopping maneuvers are engaged when the
MAV cannot find a safe path in its free workspace. In such
a scenario, the vehicle traverses the collision-free portion of
the reference trajectory from the previous planning cycle and
then comes to a stop. Boundary conditions of zero velocity,
acceleration and jerk for the candidate trajectories at time
T ensure that any trajectory selected as reference is able
to bring the quadrotor to a complete halt if the emergency
stop is triggered. The linear velocity constraint is imposed
in order to reduce motion blur which would otherwise affect
the robot’s visual inertial odometry (VIO). Contrary to posing
the actuation constraints as hard constraints in the optimal
control problem (11), computational efficiency reasons
motivate an implementation where constraint satisfaction is
verified a posteriori (Fig. 4) at various sampling points of a
candidate trajectory. Candidate trajectories failing these tests
are discarded.

Point from the
ensemble
Select k based
on max speed

Generate the
desired
trajector

T=T+09T
Final Trajectory

No

Figure 4. The decision block diagram for the reference
trajectory generation process. If the actuation limit check fails,
the terminal time T is increased slightly by some §T and the
trajectory is regenerated.

Local Goal and Collision Costs

Once the ensemble of candidate reference trajectories is
generated, the candidate trajectories that intersect with any
obstacle is excluded from the ensemble. The methodology
is motivated from earlier work of Yadav and Tanner (2020),
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and has been modified to suit the new trajectory generation
methodology.

The obstacle point cloud P is first converted into a KD-
Tree and each trajectory is discretized and represented in
the form of a finite (size n) sequence of points. Thereafter
a query is run to find points of the KD-tree that lies within
a ball of radius r from each of these points on the candidate
trajectory. Parameter r is chosen so that it can fully enclose
the quadrotor, with a suitable—based on how conservative
with respect to the practical risk collision due to uncertainty
or disturbances—safety margin. A candidate trajectory is
said to be intersecting with an obstacle if any point (among
the n points in which it is discretized) on it has any point
of KD-tree within this ball of radius 7; such a trajectory is
excluded from the ensemble.

Among the collision-free candidate trajectories, the
optimal one should strike an acceptable balance between
safety (against collision), and speed of convergence to
the goal point. An illustration of the subsequent process
of selecting this optimal reference trajectory is given
in Fig. 5 (for details on the associated computational
requirements, see Section 7). In lieu of a global planner
which would otherwise sketch a complete path from initial
to final configurations, the reactive local planner defines
an intermediate point as the point in the (collision free)
ensemble closest to the final goal (denoted IP in Fig. 5a. It
then assigns a cost to each trajectory, in the form of a linear
weighted sum of two cost components: the first component
is based on the distance of each trajectory end-point to the
intermediate point, normalized over the maximum distance;
the second component is a normalized collision cost that
captures how close the trajectory comes to P.

Denote the total number of collision-free trajectories and
the Euclidean distance between the end point of the i
trajectory and the intermediate point, p and d;, respectively.
Set dmax = max; d;, and let # > 7 be an additional safety
margin (over the radius around detected obstacles). The
minimum distance p; of trajectory ¢ to obstacles is found by
quering a KD-Tree over P and minimizing over the query
response. With these data at hand, the collision cost for
trajectory ¢ is found as

et _[(pi=r)® 7%
F T TP =P

if p,—r <7
Ceoll; = .
otherwise .

The collision cost function normalizes the cost of each
trajectory into the [0,1] interval. Thus any trajectory that
touches a ball around its nearest obstacle is assigned a
collision cost of 1, while any trajectory that lies at least
r-away from every obstacle incurs zero cost. All other
trajectories are assigned costs within the (0, 1) interval. The
end point of the trajectory with the lowest total cost becomes
the local goal (i.e., within the FOV) for the planner (marked
with a green dot in Fig. 5¢).

Selecting positive weights ki, ko € (0,1), the cost
contributions of trajectory ¢ € {0,...,p} due to its
proximity to the intermediate point and obstacles are
combined into an aggregate cost expression

d;
+ k2 ceott; -

dmax

Ci:kl
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Figure 5. Assigning costs to collision-free trajectories. The trajectories with high costs are plotted as darker green lines. The
trajectory with minimum total cost is selected as the final trajectory through which the robot traverses. The corresponding end point

is the local goal.

The trajectory with the least such cost is selected as the
reference trajectory between the robot’s current position and
the local goal.

The MAV tracks a small portion of the reference trajectory,
hereafter referred to as the control horizon. The length of
the control horizon is dependent on the vehicle’s speed,
its computational capabilities, and its sensor update rate.
Each time the MAV receives a sensor update, it generates
a new reference trajectory (segment) and appends it to the
end of the segment it is currently tracking. By design, the
transition between subsequent reference trajectory segments
is smooth. The process in between sensor updates constitutes
a replanning cycle. This process is illustrated in Fig. 7 which
shows different trajectories generated from the starting
point until the end point. The complete implementation for
planning, control and state estimation is open-source."

6 Target Tracking
Object Detection based on Ssb-MobileNetV2

The motivating application for this work is the detection
of weak radiological material on moving ground vehicles,
and for this to be achieved via aerial means of sensing and
measurement in a timely manner, the MAVs need to get
close to their target as quickly as possible. To this end, the
methodology of Section 5 is extended to dynamic target
interception and tracking scenarios. Necessary extensions
include the capability of the MAV to autonomously detect
its target within its FOV, and estimate its target’s relative
position and speed based on visual means. Contrary to
Section 3 where the term detection referred to determining
whether or not a given target is radioactive, the term
“detection” in this section refers to detecting the given
ground robot within the image. For this task an open source
implementation of MobileNetV2 (Sandler et al. 2018) deep
neural network in TensorFlow (Abadi et al. 2016) is utilized
and combined with SSD (Liu et al. 2016) for object detection.

This implementation of SSD-MobileNetV2 has been
trained on the standard COCO dataset. The desired neural
network is then trained via transfer learning on a dataset of
approximately 500 images of the Jackal mobile robot from
Clearpath Robotics (Fig. 6a). These images were collected
from an Intel RealSense D435 camera onboard the MAV in
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different indoor and outdoor environments, under different
lightening conditions and varying background. The network
utilizes a 300 x 300 fixed image resizer to increase the
inference speed. Adam optimizer was used with initial
learning rate of 2 x 10~% and subsequently 10~%, 8 x 10~°
and 4 x 1075 after 4500, 7000 and 10000 steps, respectively,
for a total 2 x 10* steps. All other parameters are kept to
their default values. The network is trained on NVIDIA GTX
1060 GPU and the trained model is subsequently converted
into a TensorRT model to run fast inference on NVIDIA
Jetson-Nano GPU onboard the MAV.

Target 3D Position Estimation

Given a bounding box obtained from the DNN, the onboard
RGB-D sensor data allow direct measurement of relative
position of the target with respect to the quadrotor. First,
all SIFT features are extracted for two consecutive detection
boxes and matched using a FLANN-based matcher utilizing a
Lowe’s ratio test (Lowe 2004), and a ransac (RANSAC) based
outlier rejection was implemented. Utilizing the disparity
image from the RGB-D sensor, the (u,v) position of all the
inliers (i.e. the features on the target) in the focal plane can
be converted to 3D position of the feature with respect to
the camera by utilizing the disparity map. The average of
these 3D positions provides an aggregate measurement of
relative position of the target with respect to the MAV. This
aggregate relative position measurement is used by a Kalman
filter, which based on a constant-acceleration motion model
for the target, returns 3D position estimates of the target with
respect to the MAV’s COG and feeds it to the motion planning
algorithm. The entire target position estimation workflow is
showcased in Fig. 6b.

The effectiveness of the velocity profile prescribed in (12)
is pronounced in the case of intercepting a moving target.
Note that in case of a static navigation end goal, the first
factor (the time-dependent erf) increases slowly from O and
converges to 1, while the second term (distance-dependent
erf) starts from 1 and converges to 0; this steers the MAV
so that it starts at lower speed, progresses to near maximum
allowed speeds during most of the navigation maneuver, and

Thttps://github.com/indsy 123/quad_navigation_and_target_tracking
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(a) Detection+Feature Matching

FLANN based
Feature Matching
RANSAC Outlier
Rejection

Detection Box

SSD MobileNet V2

Inliers

f : 3D Relative
Disparity Position of the
Box
Position Measurements

Kalman Filter

Final Relative Positions to
the Trajectory Planner

(b) Workflow

Figure 6. a) The mobile target in the experimental study. The detection box is shown in green while the image matching between
two successive images is shown in the inset. b) Workflow of the target tracker operating at 15 Hz.

Figure 7. Receding horizon planning in a cylindrical obstacle Poisson forest.

then smoothly slows down near its goal, thus mimicking
a trapezoidal velocity profile. In contrast, in the case of
moving target interception the distance-dependent erf in (12)
converges instead to a fixed strictly positive value, allowing
the MAV align its velocity with that of the target and maintain
a fixed distance to it.

7 Implementation Results
Numerical Testing

The reported planning and control framework was first
tested in simulations based on the ROTORS package (Furrer
et al. 2016), within a Poisson forest-like environment with
obstacle densities of 18 and 36 obstacles in a 100 m?
area. A typical RVIZ visualization of the resulting algorithm
execution is shown in Fig. 7. As the MAV flies from right to
left, the figure marks in green color the different trajectories
generated within each planning cycle, while the FOvV grid
point ensemble is shown in white toward the end of the
vehicle’s path. Figure 8 shows the probability of mission
success as a function of MAV speed at two different obstacle
densities (cf. Karaman and Frazzoli (2012)).

Experimental Testing

The custom-build MAVs used for experimental testing shown
in Fig. 9 are based on a DJI Flamewheel F450 frame.
Computationally, one of them features an on board Intel
NUC Core 17-8650U quad core cPU@1.9 GHzx4 while
the other has an Intel NUC Core i5-7300U dual core
CPU@2.6 GHzx2. Both uses 16GB RAM, 128GB SSD and
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Figure 8. Mission (target interception with collision avoidance)
success probability in Poisson forests as a function of obstacle
density and MAV speed. Solid line corresponds to left axis (0.18
obstacle/m?) while dashed line corresponds to right.

Figure 9. A pair of quadrotors fitted with COTS GM counters.
The one on the left carries a GM-10 counter (Blackcat Systems)
, While the one on the right features a GM-90 (more sensitive)
GM counter from the same product line.
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a Pixhawk flight controller that is given the desired thrust
magnitude and rate commands, which are then tracked
using an onboard body rate controller. A point cloud is
generated by an Intel RealSense-D435 depth RGB-D camera
(640x480 pixel, 30 Hz) while the RealSense-T265 VI-
sensor (2 848x800 pixel 30 Hz cameras with a 200 Hz
IMU) is used for inertial odometry. This lightweight sensor
package provides reliable depth information for up to 5 m.
A voxel filter reduces the density of the generated point
cloud to a uniform size of 0.125 m, which is considered
adequate for typical obstacle avoidance purposes. Open-
VINS provides state estimation and real time odometry at
30 Hz. Ultimately, the pipeline’s computational bottleneck is
the inference script that can only be run at 15 Hz on the CPU
of the intel NUC, and therefore the entire receding horizon
planning and target tracking software is constrained at 15 Hz.

Over five different runs, each of overall trajectory
length of 25 m, in both indoor and outdoor environments
the 95% quartile of execution time is well below 0.02
seconds (Fig. 10). The total number of candidate trajectories
generated in each planning cycles can vary depending upon
the hardware capabilities and replaning frequency and were
varied between 50 to 300 in experimental setup. The input
pointcloud after voxel filtering contained around 800-1400
points. The execution times are almost half of those obtained
on those systems in earlier studies (Yadav and Tanner
2020) that uses an optimization based trajectory generation
methodology. In this configuration, the MAV flies safely
among moderately dense outdoor obstacle environments at
speeds of 4.5-5 m/s. These speeds surpass or are comparable
to those reported in recent literature (Gao and Shen 2016;
Sikang Liu et al. 2016; Fragoso et al. 2018) without using
any high-end and expensive sensors and their achievement is
attributed to the ability to replan faster.
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Figure 10. Replanning execution time for the quadrotor with
NUcC Core i7-8650U cPu@1.9 GHz x4 processor, averaged over
five different experimental runs. The box corresponds to 5-95
quartile while the median is marked red.

The video attachment that accompanies this paper features
a number of experiments, the first two of which show the
MAV to navigate at speeds of 2 m/s and 4.5 m/s in an outdoor
environment for a total of 40m and 60m respectively.
The video showcases first and third person views of the
cluttered scene traversed by the MAV, alongside an RVIZ
representation of generated trajectories amongst the sensed
obstacles. The octomap featured in the video is provided for
illustration purposes only to mark obstacle locations along
the path of the vehicle, and is not used for planning. The third
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experiment included in the video attachment demonstrates
the MAV’s capability to avoid moving obstacles in its
field of view, while the fourth showcases receding horizon
navigation with combined obstacle and target tracking
abilities. The latter utilizes a neural network with feature
matching between two subsequent images.

The approach presented have some similarities with the
motion primitive based planning approaches (Likhachev and
Ferguson 2009) in which the feasible path is searched within
the workspace using predefined motion primitives. Unlike
such methods, the presented approach does not require
a pre-computed lookup table to determine the primitives.
Other motion primitive based approaches that do not require
precomputation of lookup tables (Liu et al. 2017) are
effective when the entire trajectory is searched a priori,
but suffers from performance degradation when used in a
receding horizon fashion (replanning at 3Hz at a maximum
speed of up to 3m/s). None of these approaches allow the
dynamic adjustment of speeds in the vicinity of the target
that was made possible in our approach by formulation
trajectory generation problem as multi-objective optimal
control problem and dynamically adjusting the relative
weight parameter % in (11).

Ultimately, the MAV’s speed will be limited primarily by
the computational capabilities and the need to implement
a safe emergency stop in the absence of an effective
motion plan—a possibility which cannot be eliminated in
purely reactive and local planning methods. Since purely
reactive approaches are supposed to rely exclusively on local
information, convergence to the navigation goal cannot be
guaranteed for all possible scenarios. (The reported reactive
planning architecture can however be integrated with an
exact global planner, and overcome these limitations at
the price of using global information (Yadav and Tanner
2021b).) This investigation naturally exposes the limits of
purely reactive motion planning approaches. It is expected
that knowledge of those limits, can guide the development
of hybrid (local & global (Yadav and Tanner 2019)) MAV
motion planning methodologies destined for deployment
in environments where uncertainty is reasonably well
characterized, in order to complement each other and operate
robustly in real-world scenarios.

While on one hand the separation of sensing from
trajectory generation (as in the presented approach) can
induce latencies, their co-design using powerfull on board
computation and the incorporation of pre-trained neural
networks for trajectory generation can further boost vehicle
speeds to impressive levels (Loquercio et al. 2021). To reach
speeds up to 10 m/s, however, one would also require a very
favorable power-to-weight ratio (e.g. ~4.0 (Loquercio et al.
2021)), which may be challenging to maintain depending
on the mission-mandated sensor payload. In this paper,
the MAVs featured a power-to-weight ratio in the 1.55-
1.75 range. Besides an effort to achieve a more favorable
power-to-weight ratio, we postulate that additional speed
improvements can be achieved with the use of event
cameras (Falanga et al. 2020).

Radlation Detection

The radiation detection algorithm is based on a Neyman-
Pearson based, fixed time interval binary hypothesis test
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(refer to Pahlajani et al. (2014) for a more detailed
exposition). At the heart of the test is a likelihood ratio
of a statistic L (2) calculated based on the history of
relative distance between the airborne radiation sensor and
the hypothesized source in addition to the aggregated counts
over the sensor’s (predetermined) integration time interval 7'.
This likelihood ratio is compared against a fixed threshold
value v that also depends on the relative distance and
the acceptable bound on the probability of false alarm
Pra. The optimal value of p* is obtained by solving (5)
and then the threshold is calculated by evaluating (7)
at p*. The remaining parameters for this test, including
background naturally occurring (background) radiation rate
and sensor characteristics, are determined by computational
and experimental calibration processes.

Our detection tests involve a sequence of controlled
experiments in which the efficiency of the radiation sensors
and the variation of its expected count rate as a function
of its distance to the source is estimated. The MAVs
featured in Fig. 9 were deployed in both indoor and outdoor
experiments, where their task was to locate and intercept
a ground target (the remotely controlled ClearPath Robotics
Jackal in Fig. 1) moving along an unspecified path with
unknown but bounded speed. The ground robot carried an
approximately 8 pCi radioactivity source which the MAVs
had to detect.

Each experiment involved the MAV tracking the ground
vehicle for certain time 7'. To minimize radiation exposure
risk, Monte Carlo simulations using GAZEBO have been
performed to compliment the experimental validation. The
counts were generated using thinning algorithm in the
simulations (Pasupathy 2009). These simulations were used
for the estimation of the minimum length 7" of the time
interval for radiation measurement collection that is more
likely to yield a confident and accurate classification of
the target relative to its radioactivity. This overall process
suggested a sensor integration window set at 7' = 100
seconds for the GM-10 counter (at the median of the
distribution with 5% and 95% percentiles estimated at 71 and
136 seconds, respectively), for a radiation source of activity
around 8.2 pCi. During that fixed time interval, the distance
between sensor and source should be at most within 3-2.5
m, otherwise the source emissions completely blend into the
background, rendering detection extremely unlikely given
the MAV’s operating time constraints imposed by on-board
power. For that same source and range to sensor, the GM-
90 counter appeared to need approximately 7' = 70 seconds,
with a 5% and 95% percentiles at 65 and 96 seconds,
respectively.

The receding horizon planning and control strategy of
Section 5 ensures that the MAV closes this distance as fast
as possible, thus enabling the onboard Geiger counters to
collect informative measurements. The MAV has to maintain
a certain minimum distance from the target to keep it in its
camera’s limited FOV; as a result, the relative distance should
not be arbitrarily reduced. Variations in the relative distance
between sensor and source can be attributed to motion
perturbations, as the (remotely operated) target performs
avoidance maneuvers. Although generally robust, the neural
network does not furnish guarantees against false target
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identification, and this can contribute to relative distance
estimate outliers (see e.g. Fig. 11, around the 85" second).
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Figure 11. Detection parameters for GM-10 sensor as a
function of decision time 7. Bound on probability of false alarm:
dashed blue; bound on the probability of missed detection:
dashed green; ratio log L7 /y: solid red; sensor-source distance:
solid magenta.

Figure 11 presents the results of one radiation detection
experiment conducted in an indoor environment (an
abandoned warehouse) using the MAV that has GM-10
counter. It shows the evolution of the estimate of the relative
distance d between the MAV and the ground robot as the latter
moves with unknown and time-varying speed. The relative
distance is estimated in real time via the target tracking
pipeline described in the section on target tracking. The
dashed curves in Fig. 11 indicate the evolution of Chernoff
bounds on the probability of false alarm, Pra, and probability
of missed detection Py (Pahlajani et al. 2014). The bound
on the probability of false alarm appears to drop below the
acceptable upper limit after approximately 50 seconds from
the start of the experimental run, after which the bound on
the probability of missed detection Py also starts to slowly
decrease monotonically—the latter is a decreasing function
of the sensor integration time and distance between sensor
and source (Pahlajani et al. 2014). The graph of the logarithm
of the likelihood ratio L7 over the detection threshold ~
over time is marked in red; this process is stochastic because
it depends directly on the arrival time of gamma rays on
the sensor. The initial segment of the red curve corresponds
to the initial time period during which the constraint on
Pr4 has not been satisfied and logL7/y has been kept
at 0. The experiment is concluded at 95.54 seconds and
the likelihood ratio Ly exceeds its threshold value at 89.8
seconds indicating the presence of the radiation source on
the ground target (marked with a black circle in the plot). The
likelihood ratio had actually crossed the threshold before that
time, but the experiment was continued because that event
was observed significantly earlier than the recommended
sensor integration window.

Figures 12a and 12b showcase two different runs where
the MAV featuring the GM-90 counter was utilized. The
experimental run of Fig. 12a shows an instance where
the MAV did not have enough time to detect the source.
This experiment was performed in the same indoor facility
as that used for the run of Fig. 11. Here, the radiation
sensor integration window is 56 seconds. The bound on
the probability of missed detection is then still around 0.6,
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Figure 12. Detection parameters for GM-90 sensor as a function of decision time 7. Bound on probability of false alarm: dashed
blue; bound on the probability of missed detection: dashed green; ratio log L7 /4: solid red; sensor-source distance: solid magenta.
a) Detection time interval 56 seconds. b) Detection time interval 206 seconds.

comparable to the conditions under which the detection of
Fig. 11 was achieved, but this 7" is below the 5% percentile
for the recommended exposure time.

Figure 12b depicts the results of a longer chase by the
MAV carrying the GM-90 counter conducted outdoors. This
time, the integration window was extended to more than
200 seconds. In addition to the effect of sensor integration
window length on detection accuracy, Fig. 12b shows more
clearly the evolution of the bounds on the decision test’s error
probabilities Pra and Py. At the time of decision, the bound
on the probability of miss, Py is almost zero, indicating very
high probability for accurate decision-making. Although the
statistic log LT /y crosses becomes positive for the first time
shortly after 70 seconds, at that time the bound Py is around
0.3. It is of interest that towards the end of the integration
window, the statistic log L7 /y decreases, most likely due to
the target being able to open up its distance with respect
to the pursuing MAV—which by that time was experiencing
a drop in its power reserves; same trend can be noticed in
Fig. 12a.

The accompanying video attachment includes two
experiments of target tracking with radiation detection
(experiments #5 and #6). These are cases where the Jackal
robot is steered manually while carrying an 8.2 uCi source.
The plot at the bottom left of the video represents graphically
the evolution of the detection parameters as depicted in
Figs. 11 and 12b. To reduce the size of the video file, only
selected portions of these experimental runs are included and
the video is accelerated at four times the normal speed.

8 Conclusions

The challenges that a completely autonomous MAV equipped
with short-ranged sensors faces when tasked to navigate in
a completely unknown and cluttered environment are more
pronounced when the complete data and signal processing
(such as radiation detection) pipeline needs to be run
onboard, and the motion of the vehicle can have adverse
effect on the quality and quantity of the data. Under these
conditions, a motion planner that aims at operating the robot
within a reasonable safety envelope has to strike a balance
between safety, platform limitations, and mission-informed

Prepared using sagej.cls

active sensing. In this context, an adaptive, purely reactive
receding horizon motion planning and control strategy has
been developed that co-designs the planning, safe navigation,
target tracking and decision-making components. Not only
can such a navigation strategy be remarkably effective
even in the absence of global environment and platform
information precludes formal completeness guarantees, but it
can also can be integrated with an exact global planner when
prior knowledge permits, to furnish formal performance
guarantees. The work thus pushes the envelope on what
is achievable with purely reactive but deliberate MAV
navigation in cluttered environments, particularly at the low-
end of the technology and sensor sophistication spectrum.
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