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Abstract

We develop a control scheme for a group of mobile sensors to map

radiation over a given planar polygonal region. The advantage of this

methodology is that it provides quick situational awareness regarding

radiation levels, which is being updated and refined in real-time as

more measurements become available. The control algorithm is based

on the concept of information surfing, where navigation is done by fol-

lowing information gradients, taking into account sensing performance

and the dynamics of the observed process. It is tailored to cases of weak

radioactivity, where source signals may be buried in background. We

steer mobile sensors to locations which are critical points of a function

that quantifies the information content of the measured signal, while
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the time-asymptotic properties of the selected information metric fa-

cilitate the stability of the group motion. Information surfing allows

for reactive mobile sensor network behavior and adaptation to envi-

ronmental changes, as well as human retasking. Computer simulations

and experiments are conducted to verify the asymptotic behavior of

the robot group, and its distributed sensing and mapping capabilities.
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1 Motivation

This work is motivated by the emerging threat of contamination from a ma-

licious attack or accidental release of radioactive material. In such a case,

a radiation map can be a valuable tool for rescue, response, and cleanup

efforts. Although our focus is on an unexpected release of nuclear contam-

inants, our methods can also be applied to a wide range of other problems

such as nuclear forensics and non proliferation, where robots could investi-

gate the possibility that fissile material has been processed, by searching for

small specks of that material.

Existing technology in radiation detection is not well suited for the type

of scenario described. Currently, searching for radiation sources is usually

either done manually, by operators waving radiation counters in front of

them as they walk, or by stationary portal monitors. The latter technology

is used to detect radioactive sources in cargo or shipping containers at places

such as ports of entry.

Handheld radiation detectors do not provide any visual or statistical

data map of the area in question. If human operators are used in the nuclear

forensics problem, it is unlikely that their counters register any measurement



at all, coming from a small amount of radioactive material or shielded special

nuclear material (snm). Portal monitor systems on the other hand, while

able to address the problem of scanning cargo for radioactive sources, lack

the mobility needed when measurements are taken over a large area.

2 Related Research

Existing control design methods for multiple mobile robot coordination ap-

ply to problems ranging from topological mapping to formation and flocking

tasks, as well as reconfigurable sensor networks.

2.1 Sensor network deployment

Reference [1] employs potential fields to reconfigure a mobile sensor network.

In [2] and [3] a gradient climbing algorithm is used to distribute sensor

platforms in a geometrically optimal fashion over a given polygonal area.

In [4], another gradient climbing method is used for the control of a sensor

network that does not split the area among the team members. The authors

of [5] extend the coverage algorithm of [3] to account for tracking of moving

targets. Their approach involves time-varying coverage functions —similarly

to this paper— but the stability analysis follows a completely different route,

since it does not involve information theory.

Scalable mobile sensor coordination requires decentralized control

schemes, similar in nature to those that have recently developed for flocking

and formation control. In [6] a navigation function with Voronoi partitions

is used to move the group of agents from one region to another goal region

in the area while keeping formation. Reference [7] addresses a type of

pursuit evasion game, where the group of robots tries to keep a formation



and enclose the evader. In [8], robots fall into formation by selecting a

leader of the group and having each agent maintain a certain position and

orientation with respect to its neighbor.

In hazardous environments mobile robots could maneuver, take mea-

surements, and build a map without human intervention. Utilizing large

numbers of mobile robots speeds up the map building task and makes the

map available faster. Mobile robots can be equipped with a variety of sen-

sors, so both topological (obstacles vs. free space) and spatial distribution

maps can be created. Spatial distributions of interest include temperature,

gas, as well as radiation.

2.2 Active sensing and source seeking

The idea of active sensing has been explored recently in relation to its appli-

cations in environmental monitoring, search and rescue, and source seeking

problems. In one of the early approaches [9] a gradient descent algorithm

is used to cooperatively estimate the state of dynamic targets in an optimal

fashion. The work in [10] extends [9] by implementing the control algorithm

in a distributed fashion.

Active sensing is not limited to target estimation. In [11], a source

seeking problem for an autonomous vehicle modeled as a nonholonomic uni-

cycle is addressed, whereas [12–14] look into the problem of source seeking

when direct gradient information of the measured quantity is unavailable.

Reference [12] tackles chemical plume source localization by constructing

a source likelihood map based on Bayesian inference methods. The work

in [13] induces source seeking behavior without direct gradient information

by mimicking E. Coli bacteria. Finally, the authors of [14] propose a hy-



brid control strategy to locate a radiation source utilizing radiation intensity

measurements only. Their work concentrates on control design, and does not

include the statistics of radiation measurement.

2.3 Spatial distributions and topological maps

Most of the recent work in the area of mapping focuses on obtaining a

detailed topological or metric map of the environment in which the robots

are deployed. Accurate two-dimensional and three-dimensional maps are

constructed for static [15] and dynamic environments [16]. To build detailed

metric maps, laser-range finders [17] or sonar sensors [18, 19] are typically

used. Establishing line of sight between sensors and environmental features

is a critical aspect of topological mapping.

Mapping spatial distributions can provide insight to the short or long

term effects of variation in temperature, pressure, water current, and may

warn against threats from pollutants. In [20] gas concentrations maps are

created by maneuvering a robot over a predefined path that covers the entire

area. An approach to search for ocean features is proposed in [21], using

virtual bodies and artificial potentials to coordinate multiple robots into

gradient climbing, in order to locate and track ocean features such as fronts

and eddies. In [22] active learning techniques are used to map water currents

to understand the hydrodynamics present in Lake Wingra.

2.4 Entropy-based approaches in sensor networks

Entropy-based metrics quantifying uncertainty or information gain are not

new, and have been used in robotic exploration, localization and mapping.

In [23] entropy is used among other utility measures, to evaluate the benefit



of visiting different locations in the context of exploration. However, that

entropy describes the uncertainty over a certain location being reachable;

it is not directly associated with the quality of the model nor is it linked

with the statistics of measurement. Mutual information is used as a metric

of significance of different discrete locations containing features or targets

of interest, in an application where mobile robots and unmanned aerial ve-

hicles (uavs) localize target features in their environment [24]. The Fisher

information is another metric used to describe control actions for general

information acquisition tasks [25] as well as motion coordination tasks [26].

The most closely related work to the one presented here is probably

that of [27] and [28]. In [27] the authors derive an entropy-based metric

for determining optimal sensing poses for mobile robot agents that create a

detailed three dimensional model of their environment. The main difference

between [27] and our approach is that the underlying statistics are com-

pletely different. Here, radiation measurement statistics results in closed

loop controllers which are both state and time dependent, making the sta-

bility analysis considerably more difficult.

In [28] the problem of maximizing information while minimizing commu-

nication cost between wireless sensor nodes is addressed in an area coverage

setting. Although similar to our approach, [28] proposes a “one time” so-

lution for a static sensor coverage problem, whereas we are addressing a

dynamic sensor coverage problem.

3 Nuclear Search and Mapping

Sequential nuclear search allows one to quickly verify the existence of micro-

scopic specks of radioactive material. When a ray of radiation emitted from



a source reaches a sensor, the latter is said to register a count. Radiation

intensity is measured in counts per second, assuming that all emitted rays

are detected and registered. Low-rate counting of radiation from nuclear

decay is described by the Poisson statistics. Classical sequential testing the-

ory [29] suggests the stopping rules, that is, when one knows with certain

confidence that a source exists at a given point.

In [30] and [31] a procedure to automate nuclear search using a strategy

based on the classical sequential testing theory in [29] is described. This

strategy, however, is a detection strategy, not a mapping technique. Even

as a detection tool, for which the technique is optimal in terms of completion

time, there is an important caveat. The algorithm is sensitive to the assumed

strength of the source that is to be detected. If the source intensity is

underestimated, the method will give a false negative by default.

The authors in [32] develop an algorithm which calculates and updates,

in real-time, the belief about local radiation levels, thus creating a radia-

tion map of the area in question. The variance of the local radiation level

distribution is used as a metric to assess the accuracy of the radiation map.

Two methods for navigating to obtain the radiation measurements are devel-

oped, the sequential-based Bayesian search and the gradient-based Bayesian

search. Both methods use Bayes rule to update the radiation distribution

over the area, but differ in the approach to navigation.

4 Modeling Radiation Distributions

Low-rate counting of radiation from nuclear decay is described by a homo-

geneous Poisson stochastic process. The probability to register n counts in



t seconds, from a source emitting an average of µ counts per second is:

P (n, t) =
(µ · t)n

n!
e−(µ·t)

In [33] the radiation measurement mechanism of stationary sensor receiving

counts from a moving source is modeled. Similarly, we analyze the case of

a stationary source detected by a moving sensor, and express the expected

number of source counts per second µ as:

µ = χ · α
∫ t

0

1
r2(τ)

dτ (1)

where χ is the cross sectional area of the sensor, α is the activity of the

source measured, and r(t) is the instantaneous distance of the source to

the sensor. Poisson statistics suggests a probability density function (pdf)

associated with the random variable expressing the total number of counts

c recorded by the moving sensor to be of the form:

f(c) =
(µ)c

c!
· e−(µ) (2)

where µ is given by (1). In fact, the expected number of counts per second µ

in (1) is conditioned on the source having activity α, the cross sectional area

of the sensor being χ, and the distance between the source and sensor being

r(t). Therefore the pdf associated with c is actually f (c) = f (c|α, χ, r(t)).

4.1 Radiation Maps

Bayes’ rule allows us to update our knowledge of the distribution of radiation

based on new radiation measurements taken by the mobile robot sensors as:

f(α|c, χ, r(t)) =
f(α) · f(c|α, χ, r(t))

fc(c)
· σ (3)

In the above, f(α) is the pdf of a source with activity α being at location

p, f(c|α, χ, r(t)) is the pdf of registering c counts from a source of intensity



α with a sensor of cross sectional area χ positioned a distance r away from

p, fc(c) is the marginal density function (mdf) associated with registering

c counts from a source with activity α, and σ is a scaling constant. The

conditional pdf of α is what we call the radiation map.

Without any knowledge about the radiation distribution, we assume ini-

tially that radiation levels are distributed uniformly, from source activity α1

to a source activity α2. Using the uniform distribution allows us to search

and map radiation levels from an arbitrary source with activity between a

background radiation level of α1, and a nuclear material of activity α2. In

general, f(α) is a function of position too (in the case of a uniform distribu-

tion, position is irrelevant). The pdf expressing our initial guess about the

source activity can now be expressed as:

f(α) =


1

α2−α1
, if α1 < α < α2

0, otherwise

If prior knowledge is known about the radiation distribution, f(α) can be

set accordingly. Function fc(c) is the marginal density function of f(c) and

is evaluated for the particular case as:

fc(c) =
∫ α2

α1

(χ · α
∫ t
0

1
r2(τ)

dτ)c

c!
· e−(χ·α

R t
0

1
r2(τ)

dτ)
dα

Equation (3) can be used in a recursive fashion to improve our model

of the radiation distribution. When new measurements are recorded, we

improve the radiation map by narrowing down on the source activity that

is producing the number of registered counts. The more accurate the prior

distribution the algorithm starts with, the faster the map is completed.

Although this development applies to a single radiation sensor, the radi-

ation mapping task can be accelerated by using multiple coordinated sensors



to distribute the work load.

4.2 Distributed Sensors

We think of our n mobile robot sensor platforms as pieces of a single “shat-

tered” sensor. We can now define the expected number of source counts per

second µ for a group of n distributed radiation sensors in the following way:

µ = χ · α
∫ t

0

1
mini ‖q − pi(τ)‖2

dτ (4)

where χ is the cross sectional area of the sensor, α is the activity of the

source measured, and mini ‖q − pi(τ)‖ is the minimum distance from all of

the sensors pi to a radiation source at location q. Notice the only difference

in (1) and (4) is the way we define distance between the source and sensor.

Defining the distance as the minimum distance between any robot sensor

platform pi and source location q also suggests how to allocate the mapping

task among the n robot sensor platforms.

Following [3], the area in which radiation is to be mapped Q is assumed

to be a simple convex polygon in R2 including its interior. Let P be a set of

n distinct points {p1, . . . , pn} that reside in the interior of Q. The Voronoi

Partition of Q, generated by P is the set of all points in Q such that all

points in the Voronoi cell Vi(P ) are closer to pi than any other point in Q:

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ , ∀pj ∈ P}

5 Radiation Measurement Uncertainty

Based on the number of counts registered by a radiation sensor, and the

measurement statistics, we derive the differential entropy and mutual infor-

mation associated with this radiation measurement. If a radiation sensor is



viewed as a channel between the world and the system, then mutual infor-

mation quantifies the information gained by each measurement.

Information theory defines the conditional differential entropy of con-

tinuous random variables A and C, associated with the transmitted signal,

(here: the radiation source activity α), and with the received signal, (here:

the number of counts registered by our sensors c), respectively, as follows:

h(A|C) = −
∫ α2

α1

f(α|c) · log2 f(α|c) dα (5)

It is known that continuous differential entropy cannot be directly as-

sociated with information gain or uncertainty —contrary to the discrete

case [34]. Mutual information I(X;Y ), however, which captures how knowl-

edge of random variable Y , reduces our uncertainty about the random vari-

able X, does carry over, and enjoys the following useful property:

Lemma 5.1 ( [35]). I(X;Y ) ≥ 0 with equality iff X and Y are independent.

For the problem at hand, mutual information is expressed as I(A;C) =

h(A)− h(A|C), where h(A) = (α2 −α1)
[

1
α2−α1

· log
(

1
α2−α1

) ]
, K , and K

is a constant. With h(A|C) as in (5), mutual information reduces to:

I(A;C) = K − h(A|C) (6)

Equation (6) expresses how knowing the number of radiation counts, reduces

our uncertainty regarding the presence of the source A.

6 How to Maximize Information Gain

6.1 Objective and assumptions

A performance function f : R+ → R is a non-increasing and piecewise differ-

entiable map with finite jump discontinuities [3]. We use the performance



function as a quantitative model of the signal-to-noise ratio (snr) of our

radiation sensor, which drops as the distance between sensor and source in-

creases [36]. Our performance function is a smooth function based on the

constructions in [37], which models an exponential decrease in signal quality

as the distance from the sensor increases, no useful signal beyond the sen-

sor’s detection range R, and ideal (perfect) sensing at the footprint of the

sensor given as a fraction ε of the range R:

f(‖q − pi‖) =



exp

„
−1

R2−‖q−pi‖2
«

exp

„
−1

R2−‖q−pi‖2
«

+exp

„
−1

‖q−pi‖2−ε2R2

« , εR<‖q−pi‖<R,

1 , 0≤‖q−pi‖≤εR,

0 , R≤‖q−pi‖

(7)

The sensor detection range, denoted R, is considered constant, and ‖q − pi‖

is the Euclidean distance from the sensor to the source. Function f is iden-

tically equal to one for part of the sensing range. This limit is determined

by the geometry of the particular sensor; in our case, a perfect reading can

be obtained along the whole length of the sensor, and not just at a par-

ticular point. Function f may be tuned, if needed, by introducing a scalar

coefficient in the numerator of the exponentials in the first branch of (7).

The authors in [3] maximize the sum of the all the functions Hi:

H(P ) =
n∑
i=1

∫
Vi(P )

f(‖q − pi‖)φ(q) dq

where f(‖q − pi‖) is the sensing performance function and φ(q) a density

function. To formulate the problem at hand, the static density function φ

is replaced with mutual information (6):

W(P ) =
n∑
i=1

∫
Vi(P )

f(‖q − pi‖)I(q, P, t) dq



where f(‖q − pi‖) is given in (7). We thus substitute a time and configu-

ration varying quantity I(q, P, t) for a static density function, φ(q). Due to

the dynamic nature of I(q, P, t), control and stability analysis are inherently

more difficult. Note that contrary to [5], the density function here (mutual

information) is also dependent on the robot group configuration. I(q, P, t)

is time dependent because the mutual information depends on the number

of radiation counts collected. Comparing equation (6) to equations (5), (3),

(2), and (1), we see that A = α(q) (distribution of sources) and C = c(t)

(radiation counts with respect to time). In the following section we exploit

the asymptotic properties of the mutual information to establish stability.

6.2 Control design

Assume that the kinematics of each robot i are:

ṗi = ui (8)

where ui is the control input, designed as:

ui =
∂W(P )
∂pi

=
[ ∫

Vi(P )

∂f(‖q − pi‖)
∂pi

I(q, P, t)dq

+
∫
Vi(P )

f(‖q − pi‖)
∂I(q, P, t)

∂pi
dq
]

(9)

The following Lemmas are important for establishing stability:

Lemma 6.1. Let I(q, P, t) be the mutual information of the (virtual) radi-

ation sensor information channel. Then, limt→∞
∂I(q,P,t)

∂t = 0.

Proof. See [38].

Lemma 6.2. If the mutual information of the (virtual) radiation sensor

information channel I(q, P, t) converges to a constant, then for the system

defined by (8)–(9), ṗi → 0 as t→∞ for all i = 1, . . . , n.



Proof. This follows directly from [3], because in the case where I(q, P, t)

becomes constant we are left with a static density function which has been

shown to converge.

The following proposition states that (8)-(9) stabilizes in configurations

where the information flow to the sensor from its environment is locally

maximized. The robots stop when no new information can be gained from

the environment.

Proposition 6.3. Consider the gradient field defined by (8) – (9). Then

the system stabilizes at configurations that are (locally) critical points

of the information flow from each robot, as expressed by the product

I(q, P, t)f(‖q − pi‖), for i = 1, . . . , n.

Proof. Notice that in the expression:

∂ I(q, P, t) f(‖q − pi‖)
∂pi

=
∂f(‖q − pi‖)

∂pi
I(q, P, t) + f(‖q − pi‖)

∂I(q, P, t)
∂pi

we have ∂f(‖q−pj‖)
∂pi

= 0, ∀ i 6= j , and ∂I(q,P,t)
∂pi

= 0, ∀ q /∈ Vi(P ). Define

W(P ) ,
∑n

i=1Wi(P ). Taking time derivatives:

Ẇ(P ) =
n∑
i=1

∂W(P )
∂pi

· ṗi +
∂W(P )
∂t

=
n∑
i=1

[∂W(P )
∂pi

]2
+
∂W(P )
∂t

=
n∑
i=1

∥∥∥∥∂Wi(P )
∂pi

∥∥∥∥2

+
∂W(P )
∂t

(10)

because ∂Wi
∂pj

= 0 for i 6= j.

We establish our main result by contradiction: assume that the system

does not stabilize to configurations where ∂I(q,P,t)f(‖q−pi‖)
∂pi

= 0. This partial

derivative is time varying because of I(q, P, t). If I(q, P, t) were to converge,

the partial derivative would also converge to a constant, which we assume is



not zero. However, since Lemma (6.1) establishes that limt→∞
∂I(q,P,t)

∂t = 0

there exists a time instant T for which there will be an ε > 0 such that∥∥∥∂I(q,P,t)f(‖q−pi‖)
∂pi

∥∥∥ > ε ∀t > T . Now note that (10) can be written:

Ẇ(P ) =
n∑
i=1

∥∥∥∥∂Wi(P )
∂pi

∥∥∥∥2

+
∂W(P )
∂t

=
n∑
i=1

(∫
Vi

∥∥∥∥∂I(q, P, t)f(‖q − pi‖)
∂pi

∥∥∥∥ dq
)2

+
∂W(P )
∂t

since the assumed statement that
∥∥∥∂I(q,P,t)f(‖q−pi‖)

∂pi

∥∥∥ > ε for t > T , implies

that ∂I(q,P,t)f(‖q−pi‖)
∂pi

maintains a constant sign after that time; without be-

ing able to cross zero, it has to be either constantly positive or constantly

negative, and thus equality is preserved when the norm is taken inside the

integral. It follows that:

Ẇ(P ) >
∫
Vi

ε2 dq +
n∑
i=1

∫
Vi(P )

f(‖q − pi‖)
∂I(q, P, t)

∂t
dq

If we define the following functions:

W3(ε) ,
∫
Vi(P )

ε2dq (positive constant) ,

β(t) ,
n∑
i=1

∫
Vi(P )

f(‖q − pi‖)
∂I(q, P, t)

∂t
dq

we can write Ẇ(P ) > W3(ε)+β(t). For β(t), knowing that limt→∞
∂I(q,P,t)

∂t =

0, and noticing that the integration is over position only, we conclude that:

lim
t→∞

∫
Vi(P )

f(‖q − pi‖)
∂I(q, P, t)

∂t
dq = 0

Therefore, irrespectively of the sign of β(t), there will be a time instant

where |W3(ε)| > |β(t)|, thus Ẇ will be strictly positive, and bounded away

from zero. This states that W(P ) will grow monotonically after a certain

point in time with a nonvanishing rate of increase.



This is a contradiction because W(P ) is finite unless I(q, P, t) goes to

infinity, which can only happen when radiation activity can be directly and

accurately measured, not inferred from measured radiation counts.

7 Implementation Issues

The radiation map is supposed to be obtained by applying (3) over time.

Equation (3) gives the distribution of radiation activity, conditioned upon

the measurements and the robots motion. There are, however, several rea-

sons why the direct application of (3) may be impractical.

One issue is the numerical instability that can be observed when calcu-

lating the derivatives of mutual information in (6), due to the fact that the

expressions involve incomplete gamma functions, evaluated over long time

periods (implying large values for c). The incomplete gamma functions eval-

uate to very large numbers, sometimes causing numerical overflow. For this

reason, we resort to a receding horizon type of approach, where we calcu-

late these derivatives for an appropriately short time interval, update the

radiation prior, and then repeat with new initial conditions.

Once such an approach is adopted, a second issue arises: the expressions

for the marginal distributions and the mutual information derivatives are

based on the assumption that the initial radiation prior is uniform. This as-

sumption enables one to obtain closed form expressions for these derivatives,

and subsequently for the control law. If f(α) is updated in real time, the

radiation prior is no longer uniform when initializing the algorithm at the

next step of the “receding horizon” method. One option is to evaluate the

derivatives numerically; another, which we chose to take, is to discretize the

radiation and mutual information maps in the form of a three-dimensional



bar chart, where each cell is assigned to a uniform distribution, but the dis-

tribution is different among different cells. The map can then be updated

cell by cell, since within each cell a uniform prior is assumed.

8 Experiments

Rather than experimenting with actual radioactive material1 we use a light

source to emulate radiation emission intensity (Fig. 1(b)). Each robot takes

its light intensity measurement and passes it through a Poisson distribution

filter as the mean count rate at that particular cell. This filter returns

a randomly distributed number from a Poisson distribution taken with a

mean of the measured light intensity.

8.1 Experimental Snapshots

The area over which radiation is mapped is discretized into a 6 × 6 cell

grid, and a uniform distribution between α1 = 1 and α2 = 10 counts/sec

is assumed each cell’s radiation intensity α. Localization of the robots is

done through odometry and triangulation using distance measurements from

Crossbow Crickets placed on the robots (Fig. 1(b)).

Fig. 2 shows the change in the information map and the updated radi-

ation intensity map after two updates (each update takes 5 seconds). The

completed radiation intensity map is shown in Fig. 3 and is obtained after

17 updates.
1Preliminary experiments with a 10 nCi Na-22 radiation source, using the Khepera

platform of Fig. 1(a) have been conducted by the first author at Los Alamos National

Laboratory facilities.



(a) A small radiation sensor —

CsI(TI) scintillator— covered with

copper tape to reduce noise, and in-

terfaced with a Khepera II robot for

low-count radiation detection.

(b) The experimental test bed with two mo-

bile robots, each carrying a cricket beacon.

The origin of the coordinate system is at

the near right corner of the platform, and

the source in the far left corner.

Figure 1: The mobile radiation sensor platform developed for mapping and

the experimental testbed where the methodology was implemented. In our

experiments, the radiation source was simulated with a red light bulb, ex-

ploiting the sensitivity of the onboard ir sensors to red light wavelength.

9 Summary

We developed a control scheme for a team of mobile robots with radia-

tion sensing capabilities to build a radiation map in a distributed fashion,

as an automated means of obtaining situational awareness in possibly ra-

dioactive environments. Although our control scheme can be applied to

radiation “source seeking” type problems, the novelty in our approach is

that the robots prioritize their measurement collection based on the infor-

mation content of each prospective measurement. Robot controllers require

position information from neighboring robots and need to share the mutual
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Figure 2: Map estimate after two updates.
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Figure 3: Map estimate after 17 updates.

information map, which is being updated on-line. We established the sta-

bility of the closed loop, time varying system by exploiting the asymptotic

properties of the mutual information in radiation measurements.

Future research directions include incorporating multiple sensing behav-

iors by the robot team to further realize situational awareness. Multiple

types of environmental information may aid in the speed of rescue, response,



and clean up. Another avenue of future research is in the connectivity of the

robot team. We hope to incorporate some aspects of communication con-

straints to better model the real-time nature of the robot communication

network.
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