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Development and Testing of an Aerial Radiation
Detection System

Indrajeet Yadav, Member, IEEE , Herbert G. Tanner, Senior Member, IEEE

Abstract— This paper reports on the design and implementation
of an airborne radiation detection system together with its asso-
ciated signal processing and decision-making algorithms. This
system is envisioned as the building block of an aerial radiation
sensor network and it is specifically designed to detect weak
radiological signatures in transit. The whole system is developed
based on low-cost commercial off the shelf (COTS) components,
and through a series of detailed experiments and Monte-Carlo
tests, the paper shows how it can be deployed in time-critical
application scenarios, where the time allocated to detect the source is limited. Performance metrics for the detection
algorithms utilized in the system indicate that the reported technology can offer a significant improvement on the
detection speeds compared to alternative techniques utilizing the same hardware resources.

Index Terms— Mobility Enabled Aerial Radiation Detection, Radiation Sensor Calibration and Benchmarking.

I. INTRODUCTION

REMOTE detection based on radiation counters is par-
ticularly challenging for at least two reasons. First,

those counters pick up not only the source’s radioactiv-
ity —assuming that one is present in their vicinity— but
also ubiquitous, naturally occurring (background) radiation
signals; from an inexpensive counter’s (not spectrometer’s)
perspective, the two signals are of identical nature and indis-
tinguishable once superimposed. The second reason relates to
attenuation: although a kilogram of Highly Enriched Uranium
(HEU) can emit as many as 4× 107 gamma rays per second
[2], shielding and attenuation over distance can limit the
effective detection range to a few feet, and require detection
times that can range from several minutes to hours. To put
these in perspective, the gamma-ray emission of nuclear
missiles containing HEU becomes comparable to background
just 25 cm away from the warhead [18]. The problem
is exacerbated by the motion of the signal source or the
sensor. Not only does the mathematical model of the physical
phenomenon change (becoming time-inhomogeneous), but
now detectors have limited time to decide before the target
disappears from sight: the sensors are faced with a problem of
detecting in a matter of seconds, a weak time-varying signal,
buried inside another signal of the same nature.

The measurement mechanism is mathematically modeled
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as a stochastic process, using the Poisson distribution to
approximate the statistics of count arrivals at the sensor. Most
advanced algorithms for the detection of nuclear material
in motion expect to utilize a distributed network of static
sensors. The data from the sensors are eventually fused, and
based on the derived statistics different features of interest of
the target in question can be estimated [8], [13], [14]. Due
to the strong dependence of the Poisson process intensity
on the distance between sensor and source (inverse square
law [8]), one way to increase the signal-to-noise-ratio (SNR)
is to exploit sensor mobility: move the sensors as close
to the source as possible. Based on this idea, threat-based
coverage over a given search area has been shown to increase
by allowing limited sensor mobility [6]. Mobile sensors
have also been steered through an information gain-driven
search [4], [16], although such approaches work well mainly
for high intensity radioactive sources.

Pahalajani et al. [9], [19] demonstrate that actively and
dynamically steering mobile sensors for detecting weak (or
heavily shielded) radiological material can result in signifi-
cant improvement in detection performance. This is due to
the fact that such motion control action allows them to rapidly
close the distance to the source, boost their SNR, and thus
acquire more informative data which eventually increases the
accuracy of the decision-making. The aforementioned work
focuses on developing the necessary signal processing theory,
but stops short of demonstrating its benefits with some proof-
of-concept experimental sensing testbed.

Different sensor mobility modalities can be utilized in such
a framework; this paper focuses on aerial means of radiation
measurement. Agility, affordability, and currently available
onboard computation capability make modern multi-rotor
unmanned aerial vehicles (UAVs) an attractive choice for
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such an application. There is some work and recent literature
on UAV-based radiation detection for detecting radioisotopes.
A California-based start-up [1], for example, introduced the
Flycam-UAV which is a pilot (human)-operated drone that
can detect alpha, beta and gamma particles along with some
other chemical compounds. Alternatively, one can possibly
mount on a UAV some low-cost radiation detector [3] or
mapping [5] systems. Still, whether the focus is on sensor
performance improvement, human operator deployment skill
enhancement, or sensor motion strategy optimization, little at-
tention is being paid to developing detection systems that can
operate autonomously and can perform with minimal or no
human intervention. Some work along this direction includes
a real-time 3D gamma-ray and neutron mapping system that
fuses the data from Cs2LiLa(Br,Cl)6:Ce (CLLBC) scintillators
with a 3D Light Detection and Ranging (LiDAR) Sensor
to localize gamma-ray/neutron source(s) in the presence of
other heavy gamma sources [11]. A similar system focused
on localization of sources from non-directional radiation
detectors by integrating a multi-class object detection and 3D
tracking with radiation detection models [7]. Essentially the
idea was to fit/determine the time-dependent count rate that a
detector is expected to encounter beforehand, and then track
the objects over time and then based on the counts observed
at the sensor. These approaches, however, deploy heavy and
sophisticated sensors or detect high intensity sources (see
Section VI for comparison).

Although simulation data have demonstrated the potential
for performance increase [24], to this day there is little
experimental evidence of competitive detection performance
obtained with autonomous low-cost COTS aerial radiation
sensor modules. This paper attempts to close this gap. In the
case study considered, the objective is to steer DIY quadrotors
fitted with inexpensive COTS radiation counters to determine
in an expedited fashion whether or not a given moving target
is radioactive. Specifically, the contributions of the work
reported in this paper include:
• The detailed design and combined experimental/Monte-

Carlo simulation-based approach to calibrate and bench-
mark a fully autonomous micro aerial vehicles (MAV)
sensor system that facilitates the detection of mildly
radioactive source of known intensity.

• The development of open-source ROS drivers for COTS
Gieger-Muller (GM) counters along with their detailed
calibration results; and

• Experimental application of efficient detection algo-
rithms accompanied with results from field deployment.

II. RADIATION DETECTION

Radiation sensor measurement is captured mathematically
by a discrete random process, according to which when
a gamma-ray (from the source or background) hits the
sensitive area of the sensor, a “count” is recorded. In a
probabilistic setup this is mathematically modeled as a time-
inhomogeneous Poisson process [9], [19]. To set the stage
for the description of this mathematical model, we need
some preliminary constructs. To this end, imagine that on a

measurable space (Ω,F ), there is a counting process Nt, for
t ∈ [0, T ], which represents the number of counts recorded at
the sensor located at position x ∈ R3, up to (and including)
time t ∈ [0, T ].

The decision-maker is faced with two competing hypothe-
ses: H0 expresses the opinion that the cumulative count rate
can be attributed solely to naturally occurring background,
and therefore the target of observation, located at a possibly
time-varying position xt ∈ R3, is benign; H1, expresses
the opinion that the cumulative rate should be attributed
to the combined effect of background and the presence of
a radiation source of intensity a counts per unit time on
the target. The general (binary) hypothesis testing approach
can be illustrated in Fig. 1. The leftmost (blue) bell curve
indicates the Probability Density Function (PDF) under the
hypothesis H0 while the rightmost (red) bell curve indicates
the PDF under hypothesis H1. A judiciously selected value
τ marks a decision threshold that strikes a balance between
the risk of two decision errors: a false alarm (Type I error)
with probability PFA quantified by the area under the right
tail of left curve on the right of the threshold, and a missed
detection (Type II error) with probability PM quantified by
the area under the left tail of the right curve on the left
of the threshold. In a Type I error, the test concludes that
the data is consistent with the rightmost (red) curve (H1)
whereas in reality it is associated with the right tail of the
leftmost (blue) curve (H0). In a Type II error, the data is
assumed to be coming from the leftmost (blue) curve (H0)
where in fact is coming from the rightmost (red) curve
(H1). With the possible exception where the curves represent
normal distributions, analytical computation of these error
probabilities is intractable.

What follows in this section is a description of an approach
to bound the actual (intractable) probabilities PM and PFA

using Chernoff bounds, which then become surrogates for
the calculation of the optimal threshold. More details on these
theoretical underpinnings can be found elsewhere [9].

Fig. 1: The two competing hypotheses relative to the threshold picked for
decision-making. The blue curve expressesH0 while the red curve represents
H1. The filled blue area on the right side of the threshold τ illustrates
the probability for a false alarm PFA while the filled red area indicate the
probability of miss PM .

In essence, the two hypotheses H0 and H1 correspond,
respectively, to two distinct probability measures P0 and P1
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on (Ω,F ). With respect to measure P0, the process Nt is a
Poisson process with intensity β(t) (this is the intensity of
naturally occurring background radiation), while with respect
to P1 the same process is Poisson with intensity β(t) + ν(t),
where ν(t) is the intensity of the source as perceived by the
sensor at time t. Functions β(t) and ν(t) defined on [0, T ] are
assumed to be bounded, continuous and strictly positive [9].

Function ν(t) captures implicitly the dependence of the
sensor-perceived source intensity on the (time-varying) dis-
tance between the sensor and source. We utilize a functional
representation of this dependence that is based on an inverse
square law [8] relationship between range and perceived
intensity. If χ denotes the sensor’s cross-section coefficient, a
denotes the source intensity, x(t) and xt(t) are the (absolute)
time-varying positions of the sensor and the target, the
perceived intensity at the sensor can be expressed as

ν(t) =
χa

2χ+ ‖x(t)− xt(t)‖2
, (1)

where the coefficient 2 in front of χ captures the fact that up
to half of the effective surface of an omni-directional sensor
can face a single source at any given time instance.

A test for choosing between H0 and H1 is considered
an event B1. The occurrence of event B1 is ascertained
on the basis of sensor observations over [0, T ], and has the
following significance: for an outcome ω, if ω ∈ B1, decide
H1; otherwise, that is if ω ∈ B0 , Ω \ B1, decide H0. For
such a test, two types of errors can occur. A false alarm
occurs if ω ∈ B1 with H0 being the correct hypothesis; this
occurs with probability P0(B1). A missed detection occurs
with probability P1(Ω \ B1), if ω ∈ B0 while H1 is true.
In this setting, the optimal test for deciding between H0 and
H1 is a likelihood ratio test (LRT) obtained as follows [9].
Let τn for n ≥ 1 denote the nth jump time of Nt (when
the sensor registers a count), and with the convention that∏0
n=1(·) = 1, let the likelihood ratio LT be [20]

LT = exp

(
−
∫ T

0

ν(s) ds

)
Nt∏
n=1

(
1 +

ν(τn)

β(τn)

)
. (2)

Assume that P1 is absolutely continuous with P0, and that
H0 and H1 are equiprobable [17]. Then for a specific fixed
threshold γ > 0, the test

LT
H1

≷
H0

γ (3)

is optimal in the (Neyman-Pearson) sense, meaning that if A2

is any other test whose probability of false alarm P0(A2) ≤
P0(LT ≥ γ), then the probability of a miss(ed detection)
for (3) is at least as low as that for A2, i.e. P1(LT < γ) ≤
P1(Ω \ A2). With µ(t) , 1 + ν(t)

β(t) , constants p ∈ (0, 1) and
η , log γ, and

Λ(p) ,
∫ T

0

[
µ(s)p − p µ(s) + p− 1

]
β(s) ds , (4)

one can express Chernoff bounds on the probability of false
alarm PFA and missed detection PM as [9]

PFA ≤ exp
(

infp>0[Λ(p)− p η ]
)

PM ≤ exp
(
infp<1[Λ(p) + (1− p)η]

)
.

If an upper limit α > 0 is set on the bound on probability
of false alarm, then there exists a unique solution p∗ ∈ [0, 1]
to exp

(
infp<1[Λ(p) + (1− p)η]

)
= α for which the tightest

bound on the probability of missed detection is obtained, and
the exponent in the bound on the probability of false alarm
and missed detection, respectively, is [9]

EFA =

∫ T

0

[p∗µ(s)p
∗

logµ(s)− µ(s)p
∗

+ 1]β(s) ds

= − logα (5)

EM = logα+ Λ
′
(p∗) , (6)

where the derivative Λ′(p) is expressed as (cf. [20, §2.4])

Λ
′
(p) =

∫ T

0

[µ(s)p logµ(s)− µ(s) + 1]β(s) ds . (7)

Suppose that the distance between target and sensor,
‖x(t) − xt(t)‖, is regulated by a control input u; then ν,
and consequently µ, depend implicitly on u. Based on this
observation, an optimal control problem can be formulated
as follows:

Find the u that optimizes Λ
′
(p∗) for a given upper limit

α on the bound on the probability of false alarm.
Irrespective of whether ‖x(t) − xt(t)‖ is deterministic or

stochastic, it can be shown that the optimal sensor manage-
ment strategy u for sensors is to close the distance between
source and sensor as quickly as possible [19], [22].

III. AERIAL SENSOR DESIGN

The term Aerial Radiation Sensor is used for the custom-
build MAVs fitted with GM counters (see Abstract graphical).
The quadrotors are based on a DJI Flamewheel F450 frame.
Computationally, one of them features an on board Intel NUC
Core i7-8650U quad core CPU@1.9 GHz×4 while the other
has an Intel NUC Core i5-7300U dual core CPU@2.6 GHz×2.
Both uses 16GB RAM, 128GB SSD and a Pixhawk flight
controller that is given the desired thrust magnitude and rate
commands, which are then tracked using an onboard body
rate controller. An Intel RealSense-D435 RGB-D camera
(640×480 pixel, 30 Hz) provides pointcloud information as
well as images for target detection, while the RealSense-
T265 VI-sensor (2 848×800 pixel 30 Hz cameras with
a 200 Hz IMU) is used for inertial odometry and local
navigation. This lightweight sensor package provides reliable
depth information for up to 5 m.

One of the quadrotors (left) is fitted with a GM-10 sen-
sor while the other carries a GM-90 sensor. Both quadro-
tors utilize an open-source state estimation library called
Open-VINS to get the real-time visual-inertial (VI) odom-
etry at 30 Hz. Based on these estimates of vehicle state,
a custom onboard nonlinear receding horizon flight con-
troller performs point-to-point navigation or target intercep-
tion and tracking [23]. The ROS drivers for the sensors
can be found at https://github.com/indsy123/
Radiation_sensor_drivers.

https://github.com/indsy123/Radiation_sensor_drivers
https://github.com/indsy123/Radiation_sensor_drivers
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IV. AERIAL RADIATION SENSOR CALIBRATION

This section describes the calibration procedure for the
two Gieger-Muller (GM) counters (GM-10 and GM-90 from
Blackcat Systems).1 The calibration procedure first verifies
that the mathematical model for (1) accurately captures the
the sensor-perceived source intensity. Once this is confirmed,
the next step is the determination of the sensor cross-section
parameter χ, followed by the estimation of the recommended
sensor integration time for a source of particular intensity.

Explicit verification of (1) is warranted on the basis that the
model has been derived considering the solid angle subtended
by the sensor on to the source, without considering explicitly
the intrinsic efficiency of the sensor. The intrinsic efficiency
is the ratio of the number of particles detected by the sensor
to the number of particles incident on it. In order to include
this factor, it is anticipated that the first-principles model (1)
may need modification.

A combination of 12 weak gamma sources (3 Cs-137
sources of 1µCi radioactivity, 3 Co-60 sources of 1µCi
each, 4 Sr-90 sources of 0.1µCi each, and 2 Ra-226 sources
of 0.9µCi) collectively giving around 8.2µCi were used
for the bench-marking the sensors and during the testing.
To determine the sensor cross-section coefficient χ and the
intensity of the source a as they appear in (1), the counts
obtained by the GM counters were recorded for a total of
200 seconds, keeping the radiation source at various fixed
distances from the sensor.

Figure 2 shows the results of this experiment for the GM-
10 counter. The dashed red curve shows the power function
fit on the number of counts observed by the sensor due
to its vicinity to the 8.2µCi source. The equation of this
curve is 63.51×‖x(t)−xt(t)‖−0.88. In order to account for
the unknown intrinsic efficiency we replace the exponent of
the squared distance in (1) with a parameter ε > 0 to be
experimentally determined:

ν(t) =
χa

2χ+ ‖x(t)− xt(t)‖ε
. (8)

The value of exponent ε is now determined for each sensor
experimentally. For the GM-10 counter, the value for this pa-
rameter that offers the best fit turn out to be ε = −0.88. With
this parameter, (8) matches reasonably the experimentally
observations for the GM-10 counter marked by the dashed
green curve in Fig.-2(a). Given ε, the values for χ and a are
now determined as follows.

Notice that in (8), as ‖x(t) − xt(t)‖ → 0, ν → a/2.
Parameter a is determined assuming that the source strength
should be double the count rate when the source is incident
to (touching) the sensor—the reasoning being that the sensor
then captures half of the source’s emissions. Since 1µCi =
37000 decays/second, the source strength is thus estimated at
a = 8.2 ·37000 = 3.034×105 counts per second (CPS). With
a fixed, χ can be determined using a set of n independent
measurements as

χ =

∑n
i=1 ‖x− xti‖ε

a
∑n
i=1

1
νi
− 2n

,

1http://www.blackcatsystems.com/GM/products/GM10GeigerCounter.html

a process that yields a value for χ equal to 1.22× 10−6 m2.
The small value of χ is justified given that it also captures
the (low) efficiency of the sensor. Background activity for
the GM-10 counter is similarly estimated at 0.15 CPS.

Similar results for the GM-90 counter are shown in
Fig. 2(b). The background count rate for this sensor is
measured at 1.0 CPS and the sensor cross-section coefficient
χ is estimated at 4.0 × 10−6 m2. The power function fit
(red line) for this sensor is expressed in the form 510.812×
‖x(t) − xt(t)‖−1.01 and for this sensor the best fit for the
exponent of ‖x(t)− xt(t)‖ in (8) is found to be ε = 1.0.

These plots also indicate that the radioactivity from this
source blends completely into the background at about 2.5 m
away from the source and therefore the sensors have to be
within this range to the source to maintain a reasonable
chance of successful detection within a fixed time window.

Reasonable values for this fixed time window T in (2)
are set for each sensor through a process of Monte-Carlo
simulations using GAZEBO. A simulated model of a quadrotor
was used to intercept a moving target while maintaining a
distance of 2.5 ± 0.25 m from it. The detection algorithm
described in Section II is executed in each Monte-Carlo run.
The detection test itself is a Neyman-Pearson fixed time
interval binary hypothesis test (refer to [9] for a more detailed
exposition). At the heart of the test is a likelihood ratio based
on a statistic LT (see (2)) calculated based on the history of
relative distance between the airborne radiation sensor and
the hypothesized source, in addition to the aggregated counts
over the sensor’s (predetermined) integration time interval T .
This likelihood ratio is compared against a fixed threshold
value γ that also depends on the relative distance and the
acceptable bound on the probability of false alarm PFA. The
optimal value of p∗ is obtained by solving (5) and then the
threshold is calculated by evaluating (7) at p∗. The bound
on probability of false alarm for these tests was set to 0.1.2

The natural process of gamma emission is simulated using
the thinning algorithm [10], using the calibration parameters
for the sensors obtained above. With this setup, the output of
the thinning algorithm in terms of counts generated matches
the experimental observations with the combined source.

The scenario with GM-10 parameters was repeated a total
of 100 times, 50 times each with and without the presence
of the simulated source. The total run time was set to
T = 168 seconds. Fig. 3(a) shows the likelihood ratio LT
and detection threshold γ on a log-log scale. Green dots
correspond to the outcome of the LRT when the source was
present and the red squares correspond to the decision made
based on the test when there was no source. The straight
line represents the threshold boundary separating a decision
supporting H0 (LT < γ) from a decision supporting H1

(LT > γ). The simulated sensor failed to detect the source 5
times out of a total of 50, providing a Monte-Carlo estimate

2This value may seem high at first glance, but one needs to take into
account that in a Neyman-Pearson test the two competing hypotheses are
supposed to be equiprobable. When in practice the prior probability of a
target to be radioactive is much smaller than 0.5, the probability of false
alarm adjusts accordingly.
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(a) GM-10 counter (b) GM-90 counter

Fig. 2: Variation of Number of Counts with the Distance. (a) Results for GM-10. Red dots show the counts observed at a specific distance from the source.
Black dashed curve depicts the background. Dashed red curve is the fitted power curve while Green curve is obtained by determining the values of a and
χ from the data and using equation (8).(b) Similar results for GM-90.

for the probability of missed detection at 0.1. Similarly, the
simulated sensor triggered a false alarm (decided on the
presence of a source where none was there) 3 out of 50
times, resulting in a Monte-Carlo estimate for the probability
of false alarm of 0.06, below the acceptable bound.

Figure 3(b) shows the variation in the sensor integration
window length, T , necessary to make a decision based on the
LRT. The figure marks the mean value for T , along with its 5th

and 95th percentiles. Note that that although the maximum
T that any simulation run could use had been set at 168
seconds, since detection calculations were performed every
second, it was possible to also ascertain a minimum T that
would result in successful detection. The median of required
detection interval comes out to be approximately 100 sec
with 95 percentile being 135.4 sec. Based on these results it
can be confidently concluded that given a detection interval of
approximately 2.5–3 min, a gamma source of 8.2µCi strength
can be accurately detected using the current setup with the
probabilities of false alarm and missed detection being those
shown in Fig. 3(a).

The same process was repeated using the estimated param-
eters for the GM-90 counter, using the same characteristics
for source intensity and range to sensor. Given its increased
sensitivity compared to the GM-10 counterpart, the GM-90
counter appeared to need approximately T = 70.4 seconds,
with a 5% and 95% percentiles at 65.5 and 96 seconds,
respectively. Figures 3(c) and 3(d) shows the Monte-Carlo
simulation detection results for the GM-90 counter.

V. FIELD DEPLOYMENT RESULTS

The final sensor performance tests involve a sequence of
controlled experiments in which the efficiency of both aerial
radiation sensors, and the variation of their recorded count
mean rate as a function of their distance to the source is
estimated in field conditions, both outdoors as well as indoors
(Fig. 4). The MAVs featured in the Abstract graphical were
deployed in both indoor and outdoor experiments, where
their task was to locate and intercept a ground target (the
remotely controlled ClearPath Robotics Jackal) moving along
an unspecified path with unknown but bounded speed. The

ground robot carried an approximately 8.2 µCi radioactivity
source which the MAVs had to detect.

The receding horizon planning and control strategy [23]
running onboard the MAV ensures that it closes this distance
to the target as fast as possible, thus enabling the onboard
Geiger counters to collect informative measurements. The
target detection is based on an SSD-Mobilnet V2 based neural
network which was trained on over 500 images of the Jackal
robot in different background and lightening conditions. The
network utilizes a 300× 300 fixed image resizer to increase
the inference speed. Adam optimizer was used for a total
20000 steps. All other parameters are kept to their default
values. The average 3D position of the inliers within the
bounding box (obtained from the neural network) has been
obtained utilizing the disparity image from the RGB-D sensor.
This aggregate relative position measurement is used by a
linear Kalman filter, which based on a constant-acceleration
motion model for the target, returns 3D position estimates of
the target with respect to the MAV’s center of gravity (COG)
and feeds it to the motion planning algorithm.

A. MAV with GM-10 Counter
The first set of experiments involved the MAV with GM-10

counter tracking the ground vehicle for certain time T . The
MAV has to maintain a certain minimum distance from the
target to keep it in its camera’s limited FOV; as a result, the
relative distance should not be reduced to arbitrarily small
levels. Variations in the relative distance between sensor
and source can be attributed to motion perturbations, as the
(remotely operated) target performs avoidance maneuvers.
Although generally robust, the neural network running on
board the MAV does not furnish guarantees against false target
identification, and this can contribute to relative distance
estimate outliers (see Fig. 5, around the 85th second).

Figure 5 presents the results of one radiation detection
experiment conducted in an indoor environment (an aban-
doned industrial warehouse, see Fig. 4) using the MAV that
features the GM-10 counter. It shows the evolution of the
estimate of the relative distance d between the MAV and
the ground robot as the latter moves with unknown and
time-varying speed. The relative distance is estimated in real
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(a) Error Probability Bounds and T

(b) Box Plot of Detection Interval T

(c) Error Probability Bounds and T

(d) Box Plot of Detection Interval T

Fig. 3: Monte-Carlo sensor-based decision-making simulations results. (a)
Scatter Plot showing outcomes of an likelihood ratio test (LRT). The green
dots • correspond to LRT performed in the presence of the source, while the
red crosses + mark outcomes of the LRT when no source was present. The
solid black line represents the threshold separating a decision supporting
H0 (LT < γ) from a decision supporting H1 (LT > γ). (b) Box plot
showing the variation of detection interval T required to successfully detect
the source during Monte-Carlo simulations. (c) and (d) Similar results for
GM-90 sensor.

time via the target tracking pipeline. The dashed curves in
Fig. 5 indicate the evolution of Chernoff bounds on the
probability of false alarm, PFA, and probability of missed

Fig. 4: Indoor facility where some of the autonomous sensor target inter-
ception and source detection experiments were conducted.

Fig. 5: Detection parameters for an autonomous airborne GM-10 sensor
as a function of decision time T . Bound on probability of false alarm:
dashed blue; bound on the probability of missed detection: dashed green;
ratio log LT/γ: solid red; sensor-source distance: solid magenta.

detection PM (see [9]). The bound on the probability of false
alarm appears to drop below the acceptable upper limit after
approximately 50 seconds from the start of the experimental
run, after which the bound on the probability of missed
detection PM also starts to slowly decrease monotonically—
the latter is a decreasing function of the sensor integration
time and distance between sensor and source [9]. The graph
of the logarithm of the likelihood ratio LT over the detection
threshold γ over time is marked in red; this process is
stochastic because it depends directly on the arrival time of
gamma rays on the sensor. The initial segment of the red
curve corresponds to the initial time period during which
the constraint on PFA has not been satisfied and log LT/γ
has been kept at 0. The experiment is concluded at 95.54
seconds and the likelihood ratio LT exceeds its threshold
value at 89.8 seconds indicating the presence of the radiation
source on the ground target (marked with a black circle
in the plot). (The likelihood ratio had actually crossed the
threshold before that time, but the experiment was continued
because that event was observed significantly earlier than the
recommended sensor integration window.)

B. MAV with GM-90 Counter
Figures 6(a) and 6(b) showcase two different runs where

the MAV featuring the GM-90 counter was utilized. The
experimental run of Fig. 6(a) shows an instance where the
airborne sensor did not have enough time to detect the source.
This experiment was performed in the same indoor facility
as that used for the run of Fig. 5. Here, the radiation sensor
integration window is 56 seconds. In this case, the bound on
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(a) GM-90 Indoor Run (b) GM-90 Outdoor Run

Fig. 6: Detection parameters for the autonomous airborne GM-90 counter as a function of decision time T . Bound on probability of false alarm: dashed
blue; bound on the probability of missed detection: dashed green; ratio log LT/γ: solid red; sensor-source distance: solid magenta. (a) Detection time
interval 56 seconds.(b) Detection time interval 206 seconds.

the probability of missed detection is still around 0.6, thus
comparable to the conditions under which the detection of
Fig. 5 was achieved, but this value for T is below the 5%
percentile for the recommended exposure time.

Figure 6(b) depicts the results of a longer chase by the
MAV carrying the GM-90 counter conducted outdoors. This
time, the integration window was extended to more than
200 seconds. In addition to the effect of sensor integration
window length on detection accuracy, Fig. 6(b) shows more
clearly the evolution of the bounds on the decision test’s error
probabilities PFA and PM. At the time of decision, the bound
on the probability of miss, PM is almost zero, indicating very
high probability for accurate decision-making. Although the
statistic log LT/γ crosses zero and becomes positive for the
first time shortly after 70 seconds, at that time the bound on
PM is still over 0.3, which is relatively high (one-in-three
chance of missing a source). After 120 seconds, however,
the statistic log LT/γ stays steadily above the threshold of
0, indicating a confident decision. It is of note that towards
the end of the integration window, the statistic log LT/γ
decreases, most likely due to the target being able to open
up its distance with respect to the pursuing MAV—which by
that time was experiencing a drop in its power reserves; same
trend can be noticed in Fig. 6(a).

VI. COMPARISON WITH ALTERNATIVE METHODS

This section provides a qualitative comparison with
methodologies available in the literature for the detection
of mobile radiological signatures. It needs to be noted that
such comparisons can only be performed at a qualitative level
because the experimental setup and structure is significantly
different between what is presented in this paper and what
has been reported in literature. Among the fundamental
differences, besides the fact that typically sources utilized
were strong, is that sensor mobility has not been used
explicitly for the purpose of facilitating the detection of
a fleeting source, or that the hardware utilized was quite
sophisticated and expensive. Specifically, on one side one can
find existing approaches to detecting a moving source that

rely on measurements from a static (i.e., stationary) sensor
network, and on the other there exists very interesting work
that deploys heavy-duty UAVs with high-end scintillators. In
contrast, the work reported in this paper aims in the middle of
this range, motivated by the need to be able to deploy highly-
agile autonomous mobile networked sensors economically
and at scale.

With these caveats, one conceptually comparable approach
utilizes a static network of three COTS sensors in an effort
to detect a moving source [12]. The data (acquired as a log-
likelihood of radiation intensity) from the sensors have been
fused in a sequential manner and compared against a pre-
selected threshold. A near zero false alarm rate is shown to
be achievable with an integration window of approximately
120 seconds. Although detection is quick and with a low
false alarm rate, the source is kept very close to the sensors
(within a distance of 1–20 cm) and its activity is an order of
magnitude stronger than the one considered in this paper.

Another existing approach draws from Domestic Nu-
clear Detection Office (DNDO)’s Intelligent Radiation Sensing
System (IRSS) indoor and outdoor datasets [15] that typically
feature a static network of 16–18 NaI 2 in ×2 in scintillators
in either a 40 ft×40 ft indoor or 50 m × 50 m outdoor
space where a (static) sensor network is deployed. Data
from Cs-137 sources of intensity varying between 7.2-350
µCi are fused [21] as part of a methodology that also
aims at spatially localizing them. In one such experiment,
a moving source was localized in about 100 seconds. The
detection time is comparable to the one reported in this
work, with the difference being that in the former, data
from many (static) sensors are utilized. In an approach that
does leverage sensor mobility [7], a 4 kg sensor payload
package (CLLBC scintillators + LiDAR) is fitted on a DGI600
Matrice; a 60Co gamma source of intensity 500µCi, and a
mixed (252Cf, 133Ba, 137Cs) Pu surrogate neutron source of
approximate intensity 300 µ Ci have been utilized as targets,
but detection times are not reported. Another example of
sensor mobility [7] involves a 2 in × 4 in× 16 in NaI(Tl)
scintillator mounted on a car for the purpose of detecting a
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189µCi 137Cs source.
Even when detection times are comparable, the afore-

mentioned examples employ setups that differ from the one
reported here in one (or more) different aspects:
• significantly stronger sources were deployed;
• higher-end (i.e., more expensive) detectors are utilized;
• multiple sensor (vs single) data streams were fused;
• the sensor platform was heavier and more expensive;
• the sensor payload was heavier and more sophisticated.
Having said that, it should also be acknowledged that the

existing literature presents methodologies to infer additional
characteristics, such as source intensity, localization, speed,
etc. Some of these features can possibly be utilized in the
reported sensor system in future realizations; at this time, the
target ground platform that may be a carrier of a radiological
signature is assumed to be known.

VII. CONCLUSIONS

This paper reports on the development of an autonomous
aerial radiation detector which can leverage its mobility to
achieve significant improvements in detection performance
(in terms of time or distance) for weak radioactive sources
in transit compared to current alternatives. Given that the
experimental setup and structure of the problems reported in
the literature is notably different from the one examined here,
it is difficult to draw a quantitative comparison to determine
exactly how much better the reported system performs. Yet, in
addition to performance improvements, the reported system
contributes to democratization of radiation detection plat-
forms, making it possible to deploy small MAVs carrying low-
cost, COTS sensors for detecting weak radiological signatures,
as opposed to utilizing high-end infrasture or using the
sensors only in controlled laboratory experiments. With this
new sensor modality a source of less than 10µCi intensity,
moving at speeds of 1–2 m/s, can be detected in about
11/2 minutes. The sensor design described lowers the cost
barrier to scalability to networks of mobile sensors, as well as
the incorporation of more advanced (networked) information
fusion and decision-making algorithms [25].
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