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Abstract— Controlled microrobots in fluidic environments
hold promise for precise drug delivery and cell manipulation,
opening new ways for personalized healthcare. However, co-
ordinating magnetic microrobot swarms presents significant
challenges due to the complexity of the associated actuation
mechanisms. Given that there is no known method to exercise
individual particle control within the magnetic microrobot
swarm, the collective has to be steered as a whole, primarily
by means of externally generated force fields. This paper
contributes to an emerging set of methods that enable swarm
control through manipulation of these force fields. This paper
in particular exploits the nature of force field equilibria in a
quadrupole workspace configuration as a means of steering
the swarm while maintaining its cohesion. The approach also
enables splitting the swarm in two subgroups in order to direct
each simultaneously to a different location.

I. INTRODUCTION
Controlled microrobots in suspension within fluidic envi-

ronments have the potential to deliver drugs with pin-point
accuracy, and manipulate individual cells, opening exciting
new pathways for personalized healthcare, targeted drug
delivery and potentially even contribute to by-design patient-
compatible organ formation on demand. These systems have
already seen applications in some aspects of drug delivery,
biomedical engineering and cell manipulation [1]–[3]. One of
the key challenges in this space, however, is that techniques
for steering a single microrobot do not easily generalize
to coordinated collections, or swarms [4], because of the
physics of the actuation mechanisms and the fact that the
robots themselves are too small to carry any meaningful sens-
ing, computation, and independent actuation subsystems [5].

Some of the tools that have been used to steer magnetic
micro-robots are microneedles, micropopettes, optical and
magnetic tweezers. Among these tools, magnetic tweezers
can propel specially designed magnetic microrobots by gen-
erating a magnetic field which exerts forces in a way that has
desirable characteristics: (a) it avoids contact, and (b) enables
motion with multiple degrees of freedom.

Magnetic tweezers can be categorized according to the
number of the magnetic poles employed. For quadrupole
magnetic tweezers, an analytical, physics-based force model
relates the force on the magnetic particle with the currents
applied to the tweezer coils [6]. Given that there is very
limited capability to do any meaningful sensing or compu-
tation on the particle, all coordination is done externally,
in a centralized fashion, primarily through the regulation
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of the coil currents. In this vein, a spectrum of microrobot
control techniques have been explored, ranging from open
loop control (i.e. combining their catalytic actuation with
magnetic actuation [7]) to feedback control (i.e. deriving the
sufficient currents for manipulations and stabilization [8])
with several variants in terms of the nature of the feedback
control strategy. Almost invariably, these control strategies
determine the tweezer coil currents in order to control the
motion of the magnetic particles. In some other instances,
the control is exerted through an additional (to the four
in the quadrupole) tweezer which is used to attract the
micro robot(s) and is positioned accurately via a robotic
manipulator [9]. Specific examples of approaches for the
control of a microrobot through quadrupole currents in
the workspace defined by the end points of the tweezers
include the design of an adaptive observer which enables
real-time dynamic force sensing and trapping [10], and an
adaptive dynamic sliding mode [11] which was used in the
context of dielectrophoresis micromanipulation to overcome
disturbances on the microrobot.

At the actuation level, and in relation to magnetic micro-
robots, two main approaches have been proposed in literature
for swarm coordination [5]: (i) Torque-based magnetic ac-
tuation: This method [12] generates relatively uniform mag-
netic fields which apply a moment to magnetized particles,
causing them to tumble as they try to align their magnetic
moment with that of the field; (ii) Gradient-based magnetic
actuation: Here, the driving force is generated directly as
a result of the variation of the magnetic field around the
microrobot. Along these lines, particular examples that in-
clude current adjustment in the coils can lead the swarm in
a desired directions in a 2-D [13] and 3-D environment [14].

In addition to forces and torques that steer the whole
microrobot swarm, there is also local particle-to-particle
interaction (e.g. fluidic as well as magnetic interactions) that
often be exploited to regulate the swarm’s spatial distribution
[5], [9]. Paramagnetic nanoparticle swarms have been manip-
ulated to adaptive elliptical formations by exploiting fluidic
interactions, and the shape adaptation has been leveraged
to enable swarm navigation through confined networks of
narrow channels [4]. Recognizing stochastic aspects of the
motion of microrobots within an ambient fluid, elements of
statistical analysis were used to characterize the distribution
of a microrobotic swarm and magnetic field frequency was
utilized to control swarm cohesion [15]. It has been con-
firmed that a rotating gradient-based magnetic field produced
by sequentially powering the coils with current can generate
attractors within the microrobot workspace at specific loca-



tions determined by the amplitude of the pulses given to the
coils [16]. Based on this concept, a sliding mode estimator
was subsequently built to estimate the position of the swarm
and a robust controller was then designed and interfaced with
the estimator to manipulate the swarm in order to follow a
pre-specified trajectory [17]. In this case, swarm is steered by
repositioning the field attractor dynamically in the workspace
by regulating the relative amplitudes of the time-varying
pulse-like waveforms of current sent to the coils.

The relation between the coil currents and the location and
nature of resulting force vector field equilibrium configura-
tions (locations in the workspace where the force applied to
a microrobot placed there is zero) has not been adequately
investigated and no analytical expression is available. This
fact limits attempts at microrobotic swarm motion planning
and control. In the case of a rotating gradient-based magnetic
field [16], for instance, the mapping from attractor location
to coil current amplitudes is encoded in a back propagation
neural network (BPNN). This offers an efficient way to facil-
itate motion planning but, in general, it does not generalizes
to other quadrupole setups and configurations and it offers
little insight regarding the nature of the equilibrium points.

This paper thus focuses on quadrupole configurations
that utilize piecewise-constant current amplitudes —which
are expected to generate static magnetic (and consequently,
force) fields, at least during the time interval when the
current amplitude levels are maintained— and performs a
formal force equilibrium analysis, that enables the prediction
of existence, location, and nature of the equilibria in the
workspace. Based on this analysis, mathematical conditions
are derived to ensure the generation of certain types of field
equilibria through application of some specific combination
of coil currents.

The remainder of the paper proceeds as follows. Section II
defines the objectives and lays out the mathematical frame-
work for the approach. Section III outlines the algorithm for
the generation of a desired equilibrium in the quadrupole
workspace. Section IV showcases simulation results that
support the theoretical analysis presented in the preceding
sections. Section V takes a critical look at the outcomes pro-
viding an overview that explores possibilities and highlights
limitations, and Section VI concludes the paper with the key
take-away points.

II. TECHNICAL PRELIMINARIES

Consider a quadrupole of magnetic tweezers and its an-
alytical magnetic force model [6]. First, let the workspace
be defined in a 2D Cartesian coordinate system with the
origin (0, 0) at the center. The four poles (magnetic tweezers)
are located at fixed locations at (0, 490), (490, 0), (−490, 0)
and (0,−490) respectively. The model for a magnetic force
applied to a micro model characterizes the nonlinearity of
the magnetic force applied on the micro robot with respect
to the currents to the coils and its position in the workspace.
The equation that describes this model in a quadratic matrix
form is

F = kII
⊺K⊺L(x, y)KI . (1)

In the above, F ∈ R2 is the two dimensional vector of forces
on the microrobot with components along x and y, kI is
the lumped coefficient related to the micro robot and the
properties of the magnetic circuit, I ∈ R4 is the stack vector
of coil currents, and K is a constant matrix that encodes the
distribution of magnetic flux:

K =


3/4 −1/4 −1/4 −1/4
1/4 3/4 −1/4 −1/4
−1/4 −1/4 3/4 −1/4
−1/4 −1/4 −1/4 3/4

 .

Location-dependent matrix L(x, y) ∈ R2·4×2·4 is a 4×4
matrix (with rows and columns indexing the four poles
of the quadrupole) where at each element we find a 2-
dimensional (x, y) vector. The matrix encodes the outcomes
of the gradient operations on the magnetic flux density B
that essentially determine the force applied to the microrobot
at each location (x, y). Thus if we let i, j ∈ {1, . . . , 4} index
a pair of poles, and denoting ri the normalized planar vector
from pole i to (x, y) and r̂i = ∥ri∥, we read [6]

[ℓ]i,j =

1

r̂3i r̂
3
j

(1− 3 r̂i · r̂j
r̂2j

)
r̂j +

(
1− 3 r̂i · r̂j

r̂2i

)
r̂i

 , (2)

understanding that r is a function of the microrobot position
and thus dropping the dependence on (x, y) from the expres-
sion. Separating the x and y component of [ℓ]i,j we can split
(1) into two scalar equations along the x and y axis:

Fx = kII
⊺K⊺Lx(x, y)KI

Fy = kII
⊺K⊺Ly(x, y)KI .

(3)

III. APPROACH TO SOLUTION

A. Existence of Force Equilibria

The equilibrium analysis starts with deriving conditions
for their existence. In principle, a force equilibrium exists
when for a particular nontrivial instance of I , the right hand
side of (3) vanishes: Fx = 0 = Fy .

Note that the right hand side of (3) involves quadratic
forms in terms of I . One sufficient condition for a force
equilibrium, therefore, would be I ∈ N (LxK)∩N (LyK).
(N denotes null space.) Matrix K is itself singular, but the
case where I ∈ N (K) is trivial because with this choice of
currents, the whole field vanishes. We therefore focus on the
null space of Lx and Ly , and consider the nonlinear system
of equations

detLx(x, y) = 0 detLy(x, y) = 0

that identifies the locations (x, y) where both matrices have
nontrivial nullspaces. Given (2), it turns out that this happens
along the x and y axes. However, these are not the only
equilibrium configurations; inspection of (1) indicates that F
will also vanish when L rotates the vector it operates on to a
direction orthogonal to the one it had originally. These latter



type of equilibria can appear at off-axes locations within the
workspace.

B. Location of Force Equilibria

After understanding where and how the equilibria can
exist, the next step is to derive sufficient mathematical
conditions for their appearance. These conditions will sub-
sequently translate to combinations of coil currents that are
capable of generating them at prespecified locations.

For the quadrupole of magnetic tweezers and according to
the Gauss’s law for magnetism, to ensure that the magnetic
flux is always zero [6], meaning that the sum of coil currents
should be zero:[

1 1 1 1
]
I = 0 ⇐⇒

4∑
i=1

Ii = 0 . (4)

This constraint can help us project the analysis into a more
tractable three-dimensional space. Specifically, define a 4×3
matrix

S ≜


1 −1 −1
0 0 1
0 1 0
1 0 0


which spans the orthogonal space to the four-dimensional
vector of ones, and let J ∈ R3 be a solution of the scalar
matrix equation

SJ = KI . (5)

With these definitions, (1) can be written as

F = kIJ
⊺S⊺L(x, y)SJ (6)

where now S⊺L(x, y)S ∈ R3×3. Consequently, (3) is now

Fx = kIJ
⊺S⊺Lx(x, y)SJ

Fy = kIJ
⊺S⊺Ly(x, y)SJ .

(7)

where the quadratic forms involve a three dimensional vector
J . In this way, after determining the vector J that can
produce an equilibrium at some desired location (xd, yd),
we identify the vector of coil currents I to realize this
equilibrium through (5).

Equations (7) are coupled and highly nonlinear with
respect to x and y. To solve them for equilibria, say at
location (x, y), we define

Ax ≜ S⊺Lx(x, y)S (8)

and proceed with eigendecomposition for the top part of (7)
as follows

Fx = J⊺S⊺Lx(x, y)SJ

= J⊺AxJ

= J⊺ U⊺ΛxU︸ ︷︷ ︸
eigendecomposition of Ax

J

zx≜UJ
= z⊺

xΛxzx

= λx1|zx1|2 + λx2|zx2|2 + λx3|zx3|2 = 0 , (9)

where λxi are the eigenvalues of Ax, arranged along the

diagonal of Λx, and zxi the components of zx. Similarly
along the y direction, we will have

Ay ≜ S⊺Ly(x, y)S (10)

and the eigendecomposition gives

Fy = J⊺S⊺Ly(xd, yd)SJ

= J⊺AyJ

J⊺ P ⊺ΛyP︸ ︷︷ ︸
eigendecomposition of Ay

zy≜PJ
= z⊺

yΛyyy

= λy1|zy1|2 + λy2|zy2|2 + λy3|zy3|2 = 0 . (11)

In (9)–(11), U and P are three-dimensional square matri-
ces whose columns are the eigenvectors of Ax(x, y) and
Ay(x, y) respectively, while Λx(x, y) and Λy(x, y) are
diagonal matrices whose elements are the corresponding
eigenvalues. Note that

J = U−1zx = P−1zy . (12)

Equations (9)–(12) form a system of two nonlinear and
three linear equations, with six unknowns: (zxi, zyi, for i ∈
{1, 2, 3}). In order for (9)–(11) to have acceptable (positive
real) solutions, the eigenvalues of Ax and Ay (which are
real because the matrices are symmetric) need not to have
all the same sign. (Otherwise, the only solution for zx or zy
is the trivial one.) To examine the sign of those eigenvalues,
we need to consider the characteristic polynomials of Ax

and Ay .
Let the characteristic polynomial of Ax be expressed as

α3λ
3
x1 + α2λ

2
x2 + α1λx3 + α0 (13)

and assume first, without loss of generality, that α3 > 0. Let
λ1, λ2, λ3 denote the three roots of (13). Vieta’s formulas
indicate that

α2 = −λ1 − λ2 − λ3

α1 = λ1λ2 + λ1λ3 + λ2λ3

α0 = −λ1λ2λ3 .

We need to exclude the possibility of all roots having the
same sign. If the roots are all positive, it follows that αi

must satisfy

α2 < 0 α1 > 0 α0 < 0 .

If, on the other hand, the roots are all negative

α2 > 0 α1 > 0 α0 > 0 .

For the roots to alternate in sign, therefore, one of the
three following cases must apply:

α3 > 0, and α1 < 0 or


α2 > 0

α1 > 0

α0 < 0

or


α2 < 0

α1 > 0

α0 > 0

. (14)

The same analysis can be applied in the case where α3 is



negative, leading to analogous results:

α3 < 0, and α1 > 0 or


α2 > 0

α1 < 0

α0 < 0

or


α2 < 0

α1 < 0

α0 > 0

. (15)

Note that these coefficients are functions of the microrobot
position (x, y). With that in mind, we conclude that if the
coefficients αi(x, y) of the characteristic polynomial (13)
satisfy either (14) or (15), then (9) has real solutions for
zxi and therefore offer possible solutions for J as follows

zx ≡

zx1
zx2
zx3

 = UJ =⇒ J = U−1zx . (16)

Note that (9) specifies 2-parametric solutions for zxi, i.e.,
taking into account of the squares, one ends with a set of
2D manifolds of possible solutions for zxi.

The same set of conditions (14)–(15) is similarly used on
the coefficients of the characteristic polynomial of Ay

α′
3λ

3
y1 + α′

2λ
2
y2 + α′

1λy3 + α′
0

to ensure the existence of a feasible solution for (11) and
subsequently

zy ≡

zy1
zy2
zy3

 = PJ =⇒ J = P−1zy . (17)

Equation (17) yields another pair of 2D manifolds for the
possible solutions for zy . Obviously, given that an equilib-
rium requires Fx = 0 and Fy = 0 for the same (x, y), the
solutions for J from (16) and (17) need to match. This means
that the solution manifolds of (16) and (17) should intersect
so that

U−1zx = P−1zy .

When they do, the selected J = U−1zx = P−1zy vector
can then be used to identify appropriate coil currents I to
produce an equilibrium at (x, y) through (5).

In the analysis that follows, we simplify the determination
of I by narrowing the solution space for zxi: we select zx1 =
1. This choice renders the number of (nonlinear) algebraic
equations in the system equal to the number of unknowns
and expedites computation. The numerical solution of the
resulting system produces a set of two real solutions for I
and two complex (the latter rejected). Each of the two real
solutions for I for a given (x, y) can produce an equilibrium
at that location, of possibly different nature (i.e., either an
unstable node or a saddle). The section that follows expands
on the nature of this equilibrium; one key observation,
however, is that as long as a case in (14)–(15) applies
(which is quite common for an (x, y) in the microrobot’s
workspace) the particular (x, y) location can be turned into
an equilibrium point for the force field, for an appropriate
selection of coil currents I .

C. Nature of Force Equilibria

In the microrobot’s workspace, each distinct solution set I
of coil currents obtained through the analysis of Section III-
B gives rise to a specific type of equilibrium point. We can
characterize the type of equilibrium at a specific location by
analyzing the eigenvalues of the Jacobian matrix of the right
hand of (3) evaluated at the equilibrium coordinates.

To this end, consider an equilibrium point at coordinates
(xd, yd), and assume that a combinations of coil currents has
been derived as solutions to the system (9)–(12), as described
in Section III-B. The Jacobian matrix associated with (3) will
be written as

JF =

[
∂Fx

∂x
∂Fx

∂y
∂Fy

∂x
∂Fy

∂y

]
(xd,yd)

=

[
I⊺K⊺ ∂Lx

∂x KI I⊺K⊺ ∂Lx

∂y KI

I⊺K⊺ ∂Ly

∂x KI I⊺K⊺ ∂Ly

∂y KI

]
(xd,yd)

. (18)

Extensive sampling of workspace locations and numerical
investigation of the eigenvalues of JF reveals that the
solutions for I we obtain through (9)–(12) generally yield
either saddles (both solutions of I yield a saddle), unstable
node (both solutions of I yield an unstable node) or mixed
nodes (where one solution for I can generate a saddle and
the other one produce an unstable node). Figure 1 illustrates
the different regions of the workspace where it was found
that these type of equilibria can be generated.

Fig. 1: Classification of possible equilibria generated over a dense grid in
the quadrupole workspace.

Turning a point into an attractive node may be appealing
as a prospect, given that it offers a straightforward way to
accumulate microrobot swarm members. However this setup
it is ellusive; the only attractors for the force field appear at
the pole locations on the boundary of the workspace. That
said, a saddle may as well be the next best thing. As will
be demonstrated in the section that follows, the field lines
emanating from a force field saddle converge to two of the
four poles without diverging significantly from each other
along the way. This suggests an expedient way of steering a
swarm (from saddle to pole) while preserving its cohesion.



D. How to Generate a Force Equilibrium

This section illustrates the algorithmic process of gener-
ating a force field equilibrium in the quadrupole workspace
based on the preceding analysis in Section III.

The algorithmic process of equilibrium generation at a
point (xd, yd) follows these steps:

1) The first step is the evaluation of the coefficients of the
characteristic polynomials of Ax and Ay , defined in (8)
and (10), for the given workspace location.

2) Subsequently, conditions (14)–(15) are checked for both
sets of coefficients of the characteristic polynomials of
Ax and Ay , to ensure that (16) and (17) can yield
acceptable solutions for zx and zy that agree on J .

3) Assuming that the conditions confirm the existence of
acceptable solutions, the system of nonlinear algebraic
equations (9), (11), and (12) is solved, after reducing
the number of unknowns by setting zx1 := 1.

4) If valid solutions for J is identified (two acceptable
ones are expected), they is translated into coil current
configuration I through (5).

5) The two acceptable solutions for I may produce dif-
ferent types of equilibria. To examine options, the
Jacobian JF is formed through (18) and its eigenvalues
calculated to determine the type of equilibrium that can
be produced at (x, y) using the two available choices of
coil current configurations. Depending on the outcome,
a choice of I can then be made.

6) The force vector field is finally generated either directly
through (7) through the identified J , or through (3) us-
ing the calculated I . (Note that the physical realization
of the field requires I .)

The presence of the intended type of equilibrium at the
desired workspace configuration is ultimately verified with
numerical simulation of the force field.

To illustrate the process, suppose that a force equilibrium
at coordinates (50, 250) (in µm) in the workspace is desired.
It’s nature is to be determined. Going through steps 1) –4) we
find the following two possible combinations for coil current
configurations:

Isaddle =


1.324
−0.629
−7.184
6.489

 Inode =


22.274
−1.018
33.472
−54.727

 .

In this case, step 5) produces the following eigenvalues:(
λ1

λ2

)
saddle

=

(
1.790
−0.735

)
(
λ1

λ2

)
node

=

(
23.490
15.120

)
suggesting that one solution for I produces a saddle, whereas
the other results in an unstable node. Indeed, Fig. 2 confirms
the emergence of these two types of equilibria at the same
target location (xd, yd) = (50, 250), each produced by the
corresponding solution for I .

(a) Unstable node. (b) Saddle.

Fig. 2: Characterization of a desired equilibrium point at (50, 250) accord-
ing to the solutions for the coil current vector I .

IV. VALIDATION
This section presents simulation results and numerical

analysis that supports the theoretical predictions on (a) equi-
librium generation in the quadruped force field, and (b) the
effect of particular equilibrium placement in the motion
behavior of a microrobot swarm. Initially we show a case
where the entire swarm can be directed towards a desired
pole by spawning a particular equilibrium at its vicinity,
and then we explore scenarios where the swam can be split
into two subgroups, each moving accordingly to different
poles. In addition, we numerically investigate how the nature
of the equilibrium point generated in the vicinity of the
microrobotic swarm affects affects its cohesion and flocking
properties.

For the numerical tests, consider a swarm consisting of
ten microrobots, placed at some given location within the
quadrupole workspace (see Fig. 3b). By generating a saddle
at point (0, 150) (Fig. 3a), which is located slightly above
the microrobots’ initial locations, we can steer the whole
swarm toward the bottom (i.e., at coordinates (0,−490)) pole
(Fig. 3b) while maintaining its cohesion as a group. This can
be achieved because the force field lines converging to poles
from saddles tend to stay concentrated and not spread across
different directions in the workspace.

(a) A saddle at (0, 150). (b) Swarm converges to a pole.

Fig. 3: When the saddle is located in the vicinity of the swarm it steers it
toward a single pole.

Interestingly, with slight adjustments to the selection of
the saddle location —or the initial placement of the swarm
distribution, as it is the case here— we can obtain group
fragmentation and two subgroups to two different quadrupole



poles (Fig. 4b). Which poles will be the designated attractors
for the microrobotic swarm is evident in the force vector field
plot (Fig. 4a) and can generally be predicted based on the
quadrant the equilibrium is generated in and its proximity to
the workspace coordinate frame axes.

(a) A saddle at (0, 150). (b) Swarm splits towards two poles.

Fig. 4: When the saddle is within the swarm, the latter breaks up and its
fragments converge to two different poles.

Next, we explore the scenario where the generated equilib-
rium is an unstable node. To this end, assume that an unstable
node is generated among the microrobot swarm members.
Then the uniform (along all directions) repulsive influence
of the unstable node will cause swarm fragmentation. The
number of different fragments produced ultimately depends
on the location of the equilibrium relative to the swarm’s
initial distribution. No cohesion can be expected in this
case, although ultimately, as fragments approach poles they
disperse less. These effects are showcased in Fig. 5.

(a) Unstable node at (250, 250). (b) Swarm fragmentation.

(c) Unstable node at (250,−150). (d) Swarm fragmentation.

Fig. 5: Placing an unstable node in or around the initial swarm distribution
is likely to cause fragmentation, and the fragments tend to disperse first
before converging to poles.

V. DISCUSSION

The nature and the placement of a desired equilibrium
point is of the essence for an effective swarm control.
Among, the types of equilibria, the saddle point is the
particularly of interest as it can lead the entire swarm or
its subgroups to desired poles according to its placement
with respect to the swarm. To guide the placement of the
equilibrium point in the workspace can be divided in four
quadrants. The placement of the saddle equilibrium point in
one of these quadrants will generate a force vector field with
flow lines converging to the two magnetic coil poles which
adjacent to that quadrant. If the saddle is positioned on the
coordinate axes, then the field flow lines will converge to the
magnetic poles on that particular axis (see Fig. 4). External
positioning of the quadrupole (see e.g. [9]) can potentially
make those poles coincide with desired destinations or way-
points for the microrobotic swarm.

Depending on whether one desires to keep the whole
swarm together or break it into (two) groups, they can
strategically position the saddle around or within the swarm
initial distribution. In the former case, the swarm will be
steered toward the magnetic pole attractor that faces the
swarm. In the latter case, the swarm will split into two groups
and each will follow a path toward one of the two attractors.
In both cases, the swarm will maintain its cohesion during
its convergence phase.

Only magnetic poles can become attractors, and in a
quadrupole configuration those attractors will appear on
the boundary of the microrobotic workspace. It can be
envisioned that a robotic device, e.g. a manipulator [9] can
reposition those magnetic poles, potentially in a sequential
manner, thus enabling microrobotic swarm large scale motion
through waypoint navigation.

VI. CONCLUSIONS

Analytical investigation of the mathematical mapping be-
tween coil currents and the generated force field on magnetic
microparticles within a quadrupole workspace configuration
reveals that force equilibria can be generated anywhere in the
workspace by appropriate choice of coil currents. Subsequent
theoretical and numerical analysis of the resulting force field
Jacobian matrices indicates that the generated equilibria are
typically saddles or unstable nodes. Of these two types,
saddles appear to be useful for magnetic microrobot swarm
control: depending on the placement of the saddle with
respect to the microrobot swarm initial distribution, the
swarm can be steered toward one of the four magnetic poles,
while the group maintains cohesion during convergence.
What is more, it is seen that placing the saddle within the
initial distribution has the effect of splitting the swarm in
two and directing the two subgroups toward two different
magnetic poles. These results potentially open a new pathway
to microrobot swarm control, which together with online
quadrupole reconfiguration can potentially enable point-to-
point or point-to-multiple-points microrobot swarm control.
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