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Abstract— This paper presents a synchronization controller
for mobile sensors that are minimally actuated and can only
communicate with each other over a very short range. This
work is motivated by ocean monitoring applications where
large-scale sensor networks consisting of drifters with minimal
actuation capabilities, i.e., active drifters, are employed. We
assume drifters are tasked to monitor regions consisting of
gyre flows where their trajectories are periodic. As drifters
in neighboring regions move into each other’s proximity, it
presents an opportunity for data exchange and synchroniza-
tion to ensure future rendezvous. We present a nonlinear
synchronization control strategy to ensure that drifters will
periodically rendezvous and maximize the time they are in
their rendezvous regions. Numerical simulations and small-scale
experiments validate the efficacy of the control strategy and hint
at extensions to large-scale mobile sensor networks.

I. INTRODUCTION

This paper addresses the problem of synchronizing a
network of semi-passive mobile sensors that compared to
monolithic solutions involving large, specialized, and human
operated surface vessels, teams of autonomous and mini-
mally actuated mobile sensors can cover large expanses of
physical space at reasonably low costs [1]. This can be
accomplished by utilizing inexpensive sensing, computation,
and communication hardware and increasing each vehicle’s
endurance by lowering onboard energy consumption [2]–[5].
Since energy expenditure due to mobility is significantly
higher compared to sensing and communication, it makes
sense to consider strategies where the drifters leverage the
surrounding currents for their actuation needs [6], [7].

In this work, we consider scenarios where mobile sensors
have limited communication range and thus must be within
proximity of one another for data exchanges. (Although
specifically targeted in this work which employs primarily
surface vehicles, such cases are even more often in under-
water robot deployments [8], [9].) In this context, the co-
operative control strategy suggested rests on the assumption
that mobile sensors can leverage the surrounding currents
for navigation and controls is exerted to ensure they come
into close proximity of one other, i.e., rendezvous [10], to
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allow current and future data exchanges. The data can then
be propagated throughout the network and fused accordingly.

We assume that the team of mobile networks operate in
a region whose environmental dynamics can be reasonably
approximated by gyre-like flows whose boundaries are de-
lineated by Lagrangian coherent structures (LCS). As such,
the active drifters can utilize these currents for mobility
and maintain the desired motions for data gathering and
rendezvous with neighboring drifters using minimal onboard
actuation. From our previous work [11], [12], we examined
conditions under which drifters in neighboring gyres can
move into close proximity of one another by leveraging
the flow dynamics in their respective gyre and achieve ren-
dezvous, even in the presence of stochastic noise perturbing
this dynamics [13]. An early synchronization control de-
sign that accompanied the derivation of periodic rendezvous
conditions [11] treated the flow-induced drifter dynamics
as harmonic oscillators and implemented a (linear) time-
optimal control law aimed to synchronize the oscillators’
phases, in an attempt to maximize the time they shared in the
rendezvous region. While the periodic rendezvous conditions
are valid in gyre flows [14], the optimal synchronization
protocols needed to achieve rendezvous were not. Rather
synchronization was achieved through the design of a sliding
mode controller [14]. This paper presents a strategy that
recovers time-optimality for the synchronization in gyre
flows through a nonlinear transformation that brings the
drifter dynamics into a form where a reasonable local approx-
imation permits the application a time-optimal (bang-bang)
synchronization controller. The efficacy and performance of
this new time-optimal controller is validated via numerical
and experimental studies.

Synchronization of coupled oscillators is an extensively
studied field with applications in biology, physics, chemistry,
among others [15]–[18]. Synchronization is achieved when
the frequencies between neighboring harmonic oscillators
agree [15]. The ability to synchronize is directly tied to the
coupling strength between the oscillators [19] and thus when
the oscillator dynamics is nonlinear, frequency synchroniza-
tion does not necessarily guarantee phase matching.

Existing strategies in synchronization of coupled oscilla-
tors assume continuous and persistent interaction between
the agents [20]. When the interaction is conditioned on
proximity, synchronization must occur intermittently. Such
intermittent interaction has not been well understood with the
exception of [21]. In [21], Zavlanos coined such intermittent
yet repeated rendezvous between robots as achieving syn-
chronous rendezvous and developed strategies for ensuring



synchronous rendezvous at pre-specified sites for robots
moving back and forth along the edges of a graph. By
designing the mobile robot network to have a bipartite graph
topology, the travel and wait times at rendezvous sites are
set to ensure following synchronization.

Similar to [21], we assume robots can only interact
intermittently, over very short time windows, and there is
no information sharing nor control action when robots are
outside their designated rendezvous neighborhoods. Different
from [21], the motions of the robots and the topology
of the resulting communication network is dictated by the
underlying geophysical fluid dynamics where a bipartite
graph structure may not be achievable. Furthermore, the
active drifters may not have the necessary energy budget to
achieve robust station-keeping given the ambient dynamics.
Thus our approach leverages the surrounding environmental
dynamics as vehicles attempt synchronous rendezvous.

Thus, this work reports on a control strategy that en-
ables mobile sensors deployed in gyre flows to travel along
adjacent limit cycles achieving periodic rendezvous such
that they maximize the time they spend in the rendezvous
zones (Section III). Through the proposed time-optimal con-
troller, the underlying transformation applied to the nonlinear
ambient flow improves on our previous strategy [14] by
allowing for more realistic environmental dynamics. We
present results from numerical studies designed to test the
correctness of the control law for robots on a network of
gyre flows (Section IV-A) and present experimental results
to show the efficacy of the methodology in real physical
environments (Section IV-B).

II. PROBLEM STATEMENT

Denote (xi, yi) the position of drifter i with respect to
some fixed Cartesian coordinate frame, and assume that the
drifter moves under the influence of some double-gyre flow.
For the double-gyre flow dynamics (Fig. 2) the amplitude
and scale parameters are A and s, respectively [22]. When
the agent is passively drifting without applying any actuation,
its dynamics is

ẋi = −πA sin π
s xi cos πs yi (1a)

ẏi = πA sin π
s yi cos πs xi . (1b)

Now zoom out and imagine a planar array of gyres (Fig. 2),
each indexed with the Cartesian coordinates (l,m) of its
center. The area D(l,m) covered by gyre (l,m) is defined
as the region¶
x, y ∈ R2 | (x, y) ∈ [l − s

2 , l + s
2 ]× [m− s

2 ,m+ s
2 ]
©
.

With C ranging in [−1, 1], and with fixed (l,m), a gyre
is characterized by a family Φ(l,m) of invariant orbits each
denoted

ΦC(l,m) =
¶

(x, y) ∈ D(l,m) | sin πx
s sin πy

s = C
©

in the sense that Φ(l,m) =
⋃
C ΦC(l,m), and therefore the

whole region D(l,m) is positively invariant.

Fig. 1. Layout of the invariant orbits in the gyre lattice annotated by the
values of parameter C.

We consider a lattice arrangement of gyres (see Fig. 1).
Then with an appropriate selection of the global coordinate
frame, the gyre centers take values (Ms/2,Ns/2) for M, N ∈
Z.

Definition 1 (Adjacent invariant orbits): Orbits ΦC1

(l,m)

and ΦC2

(r,q) are adjacent if C2 = ±C1 and

(r = l ± s ∧ q = m) ∨ (r = l ∧ q = s±m) .

For simplicity, we assume only one drifter drifting in each
gyre, and we mark the symbolic coordinates of the gyre and
that of the drifter with the same subscript i: agent i drifts
in gyre (li,mi). Drifters drifting along adjacent orbits are
considered neighbors. Neighbors can only exchange infor-
mation only when they are within distance δ of each other,
and δ is called the communication range. When neighbors i
and j satisfy (xi − xj)2 + (yi − yj)2 ≤ δ2 then they are in
rendezvous.

Definition 2 (Rendezvous): Neighbors i and j drifting
along ΦC(li,mi)

, Φ−C
(lj ,mj)

, respectively, are at rendezvous at
time τ > 0 if their Euclidean distance dij(t) satisfies
dij(τ) ≤ δ.

Only when an agent is in rendezvous does it engage its
controller. Then, the dynamics of agent i change from that
of a passive drifter (1) to

ẋi = −πA sin
π

s
xi cos

π

s
yi + uxi(t− τ) (2a)

ẏi = πA sin
π

s
yi cos

π

s
xi + uyi(t− τ) (2b)

with uxi
and uyi the control inputs along the corresponding

spatial dimensions.
Spontaneous rendezvous, and consequently agent interac-

tion, can be very ephemeral. Ideally, the rendezvous event
is as frequent as possible and its duration is maximal —
to safely allow e.g. complete data transmittal. For this to
happen, cooperative control actuation has to be applied;
however, the duration of this control intervention is limited



within the time boundaries of the rendezvous event: drifters
cannot interact when not in rendezvous. In other words, the
controller needs to make the most of its (rendezvous) time
to bring the adjacent drifters back together soon and allow
them to stay together longer. This suggests a time-optimal
control problem which is stated as follows:

Problem 1: Design a time-optimal cooperative control law
which ensures that at steady state neighbors passively drifting
according to (1) rendezvous as frequently as possible and
stay in rendezvous for the maximum time (allowable by (2)).

III. TECHNICAL APPROACH

Express the motion of the drifters in polar coordinates:

θi = arctan2 (yi −mi, xi − li) (3a)
ρi = ‖(xi − li, yi −mi)‖ . (3b)

Fig. 2. Flow field of wind driven double gyre flow. One invariant orbit(bold
contours) is with |C| = 0.08. The streamlines in oval circles are parts
of hyperbolic manifolds. These three solid dots represent neighbor drifters
which synchronize with each other.

Definition 3 (Pairwise synchronization): Two neighbors i
and j, drifting along orbits ΦC(li,mi)

and Φ−C
(lj ,mj)

, respec-
tively, achieve pairwise synchronization if

θi + θj =

{
0 if mi = mj

π otherwise
(4a)

ρi − ρj = 0 . (4b)

The condition for phase synchronization (4a) recognizes
phase as a variable of interest (Fig. 2) and makes this
approach easier to relate to existing literature. At the same
time, tuning the radii to satisfy (4b) and synchronizing the
phases according to (4a) is also in line with the definition of
synchronization utilized in previous work [14].

A. Phase and radius dynamics for actuated drifter

The differential relation between the polar and Cartesian
representations follows directly from differentiating (3)

θ̇i = 1
ρi

(ẏi cos θi − ẋi sin θi)

ρ̇i = ẋi cos θi + ẏi sin θi .

If one uses (1) and (3) to substitute for the Cartesian variables
and derivatives can be reduced to a form

θ̇i = f(θi, ρi) (6a)

, −πAρi cos θi sin (ρiπs cos θi) cos (ρiπs sin θi)

− πA
ρi

sin θi sin (ρiπs sin θi) cos (ρiπs cos θi)

ρ̇i = g(θi, ρi) (6b)

, πA cos θi cos (ρiπs cos θi) sin (ρiπs sin θi)

− πA sin θi cos (ρiπs sin θi) sin (ρiπs cos θi) ,

which can be brought into a general form during rendezvous
with cooperative control action being applied

θ̇i = f(θi, ρi) + uθi(t− τ)

ρ̇i = g(θi, ρi) + uρi(t− τ) ,

where now the control inputs are understood along the radial
and tangential (rate of rotation) dimensions. Note, however,
that on a fixed orbit, θ and ρ are coupled:

sin
Ä
πi

s ρi cos θi + li
ä

sin
Ä
π
s ρi sin θi +mi

ä
= C .

The synchronization controller of the following section will
therefore apply on the phases (6a) only.

B. Time optimal synchronization controller design

Define εij , θi + θj . Here we wrap εij ∈ (−π, π].
Given that the communication range is negligible compared
to the scale of gyre, i.e, δ � s, when two neighbors are in
rendezvous

εij(τ) ≈

{
0 if mi = mj

π otherwise

and at the same time from (6) one can verify that

f(θi, ρi) + f(θj , ρj) ≈ 0 .

Now define
uθij (t) , uθi(t) + uθj (t) (8)

in order to approximate the error dynamics in the form

ε̇ij = uθij . (9)

Proposition 1: Consider a pair of neighbor drifters i and
j for which θi+θj is either in the neighborhood of 0 (or π),
and their phase error dynamics is given by (9). Assume that
the control input is bounded in the form |uθij (t)| ≤ ∆ ∈ R+.
Then the time-optimal control law uθij (t) to steer (9) to 0
(or π) is unique, given by

u∗θij (t) = −∆ sign(εij) . (10)



Proof: Optimizing for time, the Hamiltonian for (9) is

H = 1 + uθij (t)p1(t) ,

where the costate variable p1(t) satisfies

ṗ1(t) = − ∂H

∂εij(t)
= 0 . (11)

The control law uθij which minimizes the Hamiltonian is

uθij (t) = −∆ sign
Ä
p1(t)

ä
and assuming p1(0) = π1, it follows from (11) that

p1(t) = π1 = constant ,

at least piece-wise in time. With constant uθij (t) = Ω ∈
{−∆, 0,∆}, and initial condition εij(0) = ξ1 (9) yields

εij(t) = ξ1 + Ωt .

Naturally, Ω has opposite sign from ξ1 to reduce εij and the
switching point for Ω will be εij = 0, resulting to

uθij (t) =


∆ if εij < 0

0 if εij = 0

−∆ if εij > 0 .

C. Control allocation

In view of (8), uθij can be realized in an infinite number of
combinations of drifter i and j inputs. For instance, drifters
can split the required control effort between them to balance
the load on their onboard power resources. Another way
could be to assign actuation loads according to individual
energy reserves. This paper does not focus explicitly on the
optimal control allocation problem; rather, it follows prior
work [11] in which there is a leader-follower relationship
between the drifters in rendezvous. A leader-follower rela-
tionship can suggest a control allocation strategy, especially
in practical cases when it may be easier for the drifter to
speed up along the current flow than fight against it. In such
cases, the direction of actuation along uθi and uθj aligns with
the current, which implies that the follower uses actuation to
“catch up” and the control input of the follower satisfies

uθk θ̇k ≥ 0 k ∈ {i, j} . (12)

Thus in this allocation strategy, the follower is responsible
for optimizing rendezvous. (However, in a multi-pair network
setting, this control load allocation strategy has its implica-
tions —details in Section IV-A.2.)

IV. VALIDATION

A. Simulation

In all scenarios here, drifter oscillation frequencies here
are fixed, determined by the ambient geophysical dynamics.

1) Synchronization for neighbor drifters: Two drifters on
orbits ΦC( s

2 ,
s
2 )

and Φ−C
(− s

2 ,
s
2 )

are released at initial positions
(0.7500, 0.0913) and (−0.6500, 0.0721), respectively. The
double-gyre flow dynamics parameters are set at A = 0.03,
s = 1,and C = 0.2. The communication range is δ = 0.3.

Based on these parameters, the period on the orbits ΦC( s
2 ,

s
2 )

and Φ−C
(− s

2 ,
s
2 )

is 40.75 seconds. At 7.54 seconds after their
release, the drifters come into rendezvous. During this first
rendezvous, which lasts 10.47 seconds, control law (10) starts
synchronizing the phases. Note that synchronization control
action is only possible during rendezvous (marked by the
time intervals of the red pulses in Figs. 3–4). As more clearly
seen at the top graph of Fig. 3, during the first rendezvous
(before the 20th second) the ε12−π oscillation average drops,
but does not yet vanish. During the subsequent period when
the vehicles are no longer in rendezvous it remains constant
(no control is applied), and then the synchronization con-
troller zeros the error ε12 − π within the second rendezvous
period. After synchronization is achieved, both ε12 − π and
ρ1−ρ2 remain at zero. Figure 4 depicts the evolution of the
synchronization errors in Cartesian coordinates (cf. [14]).

0 20 40 60 80 100 120 140 160 180 200

t

0

0.1

0.2

1
+

2
-

Synchronization result

0 20 40 60 80 100 120 140 160 180 200

t

-0.04

-0.02

0

0.02

0.04

1
-

2

Synchronization result

Fig. 3. Time evolution of θ1 + θ2−π and ρ1− ρ2. The red square pulse
train indicates when there is rendezvous.

2) Synchronization for a network of four drifters: Now
four drifters are considered in a gyre configuration that
matches that of Fig. 2. The drifters are indexed 1 through
4, and are deployed on orbits Φ0.1

( s
2 ,

s
2 )
,Φ−0.1

( s
2 ,

3s
2 )
,Φ0.1

( 3s
2 ,

3s
2 )
, and

Φ−0.1
( 3s

2 ,
s
2 )

, respectively. The gyre flow parameters are set at
A = 0.03, s = 1, and C = 0.1, while the communication
range now is adjusted to δ = 0.4. The initial positions
for the four drifters are (0.9681, 0.5000), (0.9630, 1.3315),
(1.0741, 1.1427), and (1.2384, 0.9573), respectively.

No drifter can rendezvous with all three others —only one
at a time— so the interaction and communication topology is
time-varying. If all four drifters are to be synchronized, they
would need to converge to a state where (given the spatial
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Fig. 4. Time evolution of x1 + x2 and y1 − y2. The red square pulse
train indicates when there is rendezvous.

configuration of their gyres)

ε12 = θ1 + θ2 = π , ρ1 − ρ2 = 0

ε23 = θ2 + θ3 = 0 , ρ2 − ρ2 = 0

ε34 = θ3 + θ4 = π , ρ3 − ρ4 = 0

ε41 = θ4 + θ1 = 0 , ρ4 − ρ1 = 0 .

In this particular simulation example, drifter neighbor pair
(2, 3) rendezvous first, followed by (1, 2), then (1, 4) and
finally (3, 4). The history of the pairs’ synchronization errors
is shown in Fig. 5, and reveals an interesting consequence
of the control allocation strategy of Section III-C.
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Fig. 5. Evolution of phases combination for the network.

When two drifters meet in isolation, they would activate
their synchronization controllers and attempt to drive their
synchronization errors to zero (see Fig. 3); if, however, a
third drifter and engages with them while this synchroniza-
tion is in process, this new control action under the control
allocation scheme of Section III-C is bound to increase the
synchronization errors related to the earlier rendezvous. For
the whole network, synchronization error is updated for every
period and vanishes at the end of the second period for the
case in Fig. 3.

B. Experiment

Experiments were conducted in the multi-robot Coherent
Structure Testbed (mCoSTe) at the University of Pennsylva-
nia. The testbed consists of a 4.5m×3m×1.5m multi-robot
flow tank (Fig. 6(b)) and a collection of micro autonomous
surface vehicles (mASVs) (Fig. 6(a)). Each mASV is a
differentially driven vehicle, with a maximum forward speed
of 0.2m/s. As implied in Fig. 6(a), mASV localization is
achieved through a motion capture system (see also [22] for
details).

(a) micro Autonomous Surface Vehicle (b) Water tank and its sizes

(c) New flow generator (d) Old flow generator

Fig. 6. Basic setup for water tank experiment. Source: ScalAR Lab

The current circulation within the flow tank is gener-
ated by motor actuators, that feature newly designed 3D
printed propellers. Compared to earlier gyre flow realizations
(Fig. 6(d)) [22], the new flow generator system (Fig. 6(c)) can
create a steady desired current flow faster and requires less
maintenance. Custom propeller blades had to be designed
and manufactured in order to produce the opposite flow
directions necessary to emulate a double-gyre flow.

To generate a combination of gyre flows, each pair of flow
generators needs to utilize propellers with opposite directions
of rotation. The pair of propellers utilized in Fig. 8 is placed
at a distance of 1m along the x axis and symmetrically with
respect to the y axis. The propeller rotation speed is 70 rpm.
The streamlines produced resemble the hyperbolic manifold
associated with (1). To keep the robotic mASVs along their
ΦC orbits, a PID tracking controller is employed, steering
each robot to track a reference point that evolves according
to (1). The outcome of this tracking controller is shown in
Fig. 7 for the two mASVs participating in this experiment.

Tho mASVs are initially placed at coordinates
(0.6779, 1.8726) and (−0.8326, 1.6792). Their orbits
are identified as Φ−0.2

(0.5,1.5) and Φ0.2
(−0.5,1.5), and the amplitude

and scale parameters of the experimentally produced field
are approximated at A = 0.03, and s = 1, respectively,
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Fig. 9. Evolution of x1 + x2 and y1 − y2. The red square pulse train
marks the rendezvous periods.
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Fig. 10. Evolution of |θ1+θ2|−π during the experiment. The red piecewise
constant line indicates the periods of rendezvous. The blue curve shows the
history of the phase error ε12. The gray curve shows the error evolution in
another baseline experiment where the synchronization controller was not
active, for comparison purposes.

Fig. 7. The effect of the PID tracking controller: Reference orbits (dashed
curves) and actual vehicle trajectories (colored curves). Initial positions are
marked by squares and the circles show the vehicle positions at the end of
the experiment. The dashed oval highlights the portion of the orbits where
rendezvous occurs.

Fig. 8. An image snapshot during the experiment. The yellow and red
paths mark the desired (theoretical) orbits for two mASVs.

while the communication (rendezvous) range is δ = 0.3.
This experiment runs for 100 seconds. After 28.2 seconds

since being released, the two mASVs have their first ren-
dezvous (see Fig. 9). The time optimal control law engages
and for the brief 10.1 second time window of this encounter,
one vehicle regulates its speed relative to the other. The
second rendezvous begins at 66.3 seconds and lasts for 10.5
seconds —0.4 seconds longer than the first one. The evolu-
tion of the synchronization errors in Cartesian coordinates,
x1 + x2 and y1 − y2, are shown in Fig. 9. The evolution
of the synchronization errors in phases, |θ1 + θ2| − π is
shown in Fig. 10. The effect of (random, for the most part)
environmental disturbances is evidence in the measurements,
but the controller keeps the errors bounded at a lower level
compared to when control action is not applied.

V. CONCLUSION

Mobile sensors drifting along ocean circulations can lever-
age ambient environmental dynamics to navigate, search, and
monitor dynamic marine environment and minimize energy
expenditure. In situations where robots are limited to short-
range communication while deployed over large swaths of
ocean, they must take advantage of times when the ocean
dynamics bring them within proximity of each other to
interact. This robot-environment interaction can improve the
efficiency of the sensor network for data uploads, exchanges,
backups, and such. Therefore it makes sense for these robots
to maximize their time for regularity of interaction. This can
be possible through cooperative, intermittent time-optimal
control policies which take into account the nonlinear dy-
namics —at least in idealized form— of the ocean circulation
currents that drive the gross, large-scale motion of those
robots. This idea is explored and tested in a novel small-
scale experimental testbed where circulation is generated
artificially through a system of submerged propeller-based
flow generators. The time-optimal cooperative control law
reported here is an example of a local robot interaction policy
that works in concert with strong ambient environmental
dynamics to yield emergent network properties. More work
is needed to understand how the allocation of the cooperative
control action between the robots in rendezvous can affect
the global synchronization abilities of a network of robotic
drifters flowing along neighboring gyre flows.
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