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Abstract—Activity recognition in children and infants is im-
portant in applications such as safety monitoring, behavior
assessment, and child-robot interaction, among others. However,
it differs from activity recognition in adults not only because body
poses and proportions are different, but also because of the way in
which actions are performed. This paper addresses the problem
of infant action classification in challenging conditions. The
actions are performed in a pediatric rehabilitation environment
in which not only infants but also robots and adults are present,
with the infant being one of the smallest actors in the scene.
We propose a multiview action classification system based on
Faster R-CNN and LSTM networks, which fuses information
from different views by using learnable fusion coefficients derived
from detection confidence scores. The proposed system is view-
independent, learns features that are close to view-invariant, and
can handle new or missing views at test time. Our approach
outperforms the state-of-the-art baseline model for a small
dataset (2 subjects, 10-24 months old) by 11.4% in terms of
average classification accuracy in four classes (crawl, sit, stand
and walk). Moreover, experiments in an extended dataset (6
subjects, 8-24 months old) show that the proposed fusion strategy
outperforms all alternative fusion methods studied.

I. INTRODUCTION

Human activity recognition has drawn the attention of
computer vision researchers for many years, due to its appli-
cations in fields as diverse as human-computer interaction [1],
surveillance [2] and health care [3]. The main goal of human
activity recognition is to identify actions performed by one
or more humans in a temporal sequence of observations. The
increased computational power together with the availability
of public datasets with several thousands of annotated clips
have allowed for the training of large networks, such as multi-
stream 3D CNN architectures [4], significantly boosting action
recognition performance. However, human activity recognition
research has so far been primarily focused on adults.

Children activity recognition has important applications to
safety monitoring [5], object-play behavior assessment [6],
real-time feedback provision to adaptive environments [7], [8],
[9], [10], and others. However, children are largely underrepre-
sented in both human pose estimation datasets [11] and human
activity recognition datasets. This can be explained by the
fact that data from adult activities can be used in many more
applications than data from children activities. Moreover, some
of the largest annotated human activity datasets rely on user-

uploaded videos to public platforms [12], [13], [14], in which
the presence of children is limited due to privacy concerns.

Challenges. Activity recognition in children differs from ac-
tivity recognition in adults not only because of different body
poses and proportions [11], but also because of the way in
which actions are performed. In fact, a study of 5 to 8 year-old
children showed that classifying actions is harder in children
than in adults, and that adult-trained systems do not transfer
well to children [15]. The latter was also recently confirmed in
[7] by a large-scale study in children aged 6 to 10 years. Thus,
given its discrepancies with standard adult activity recognition,
children activity recognition requires special attention.

In the context of early pediatric rehabilitation, Kokkoni et
al. [10] recently proposed a learning environment for infants
in which interaction with socially assistive robots and body
weight support technology are used to promote the infants’
mobility. Sessions are recorded from a set of cameras, and the
system can benefit from infant activity recognition for both
real-time feedback to the robots and assessment of mobility
outcomes. However, this task is challenging because: (i) the
poses observed in infants are significantly different from
those observed in adults, and therefore off-the-shelf pre-trained
activity recognition systems would not work, (ii) infants are
often occluded by other actors or elements in the scene (such
as adults, robots, objects in the environment, etc), and thus
the information from a given camera is not always useful, and
(iii) the body size of infants is not only smaller than the size
of other actors, but also significantly smaller than the frame
size (covering in average less than 1.7% of its area).

Paper contributions. In this paper we propose a multiview
action classification system for infants that first localizes
the subject in each view, extracts spatio-temporal features
from a tubelet around the subject, fuses these features across
views, and then classifies the action. More specifically, spa-
tial localization is performed by a view-independent detector
based on Faster R-CNN [16] fine-tuned to detect infants. The
features obtained by the detector are subsequently fed to a
view-independent temporal model (a recurrent neural network
(RNN) with long short term memory (LSTM) units [17]) to
obtain a spatio-temporal representation of the tubelet around
the subject. Fusion coefficients based on detection confidence



scores are then learned for combining information across
different views. Experiments performed in multiview data from
6 subjects with an average age of 12.7 months show that our
approach not only significantly outperforms the state-of-the-
art baseline model for this dataset [10] (11.4% improvement
in average classification accuracy in four classes), but also
outperforms all other fusion strategies compared with in this
paper. In summary, the contributions of this paper are:
1) A detection-based multiview action classification system

specifically designed for scenes with a single (small) sub-
ject of interest moving in complex scenes.

2) A novel and meaningful use of the detection scores to learn
fusion coefficients that adaptively combine information
from different views.

3) State-of-the-art action classification results for rehabili-
tation therapy in infants, which show that our system
performs well in terms of generalization to new subjects.

The proposed system properly addresses the challenges im-
posed by the application. The infant detector and action
classifier are trained with data from infants, which allows
learning relevant patterns specific to the population of interest.
Moreover, the use of an infant detector not only helps to
overcome the small relative size of the infants in the scene,
but also provides information related to their visibility, which
is used to adaptively weigh the importance of each view.

While temporal action localization is out of the scope of this
paper, the proposed method can be easily extended to perform
action segmentation given the flexibility of RNNs.

II. RELATED WORK

Given the vast literature in activity recognition and multi-
view learning in general, this section focuses on children
activity recognition in particular. More general approaches are
discussed if they relate directly to the proposed method.

Early work on children activity recognition was based on
sensors such as accelerometers and barometers attached to
wearable devices [5], [15], [18]. Most of these papers used
traditional machine learning methods such as Support Vector
Machines (SVM) or Self Organizing Maps (SOM) to classify
actions based on handcrafted features, although recent work
has leveraged deep models [19], [20]. Wearable devices are
useful to capture data directly from the subject of interest,
but they can interfere with the typical behavior of the child,
especially in the early age [21]. Therefore, in this work we
focus on computer vision-based activity recognition.

A line of research of growing interest in computer vision-
based children activity recognition is motion analysis of new-
borns and young infants (0-6 months old), given its relevance
in monitoring respiratory events [22] and early detection of
movement disorders [23], [24]. They leverage the limited range
of movement of such young infants and locate a camera above
and in parallel to the crib surface, to acquire videos with the
infant as the only actor covering a significant portion of the
image. These conditions do not apply when studying older
infants in more complex environments.

More challenging scenarios have been studied in the field of
child-robot interaction, where computer vision-based children
activity recognition has been performed in multiview setups
[7], [8], [10]. In [7] the use of deep versus handcrafted
dense trajectories (DT) features [25], as well as fusion of
information from different views is studied in SVM classifiers.
It was found that early fusion at the feature level is more
effective for DT features in bag of visual words encodings
(DT-BOVW), while late fusion at the score level works better
for deep features. In [8] DT-BOVW and SVM were used, and
different post-processing fusion strategies at the score level
were studied to perform action classification. It was concluded
that maximizing the mean score or the minimum score of
the selected class works better than maximizing the maximum
score as a post-processing fusion strategy. While these models
are general, they were tested on 6 to 10 year-old children
whose actions are more similar to those of adults than to
those of infants. In contrast, DT-BOVW were used to perform
action classification in 10 to 24 month-old infants in [10],
where the multiview problem was addressed by a multiple
instance learning SVM scheme (MI-SVM), considering views
as instances of the same sample and taking into account that
the action might not be observed in all of them. That strategy
outperformed post-processing fusion strategies, however its
classification performance was modest; arguably, it did not
address the challenges imposed by the complexity of the scene.

Here, we directly address these challenges by using local
features from spatial regions of interest—a common practice in
activity recognition. Spatial localization of relevant regions is
usually achieved by motion estimation [25] or person detection
[8]. Faster R-CNN [16] is a well-known object detector that
has been trained in large-scale image datasets. Naturally,
there have been efforts to use this architecture for spatio-
temporal localization [26], and to extend it to generate spatio-
temporal tubelets of interest [27]. In our case, the availability
of annotations from isolated non-consecutive frames allows
for training and evaluation of frame-by-frame detections, but
not for spatio-temporal localization. Nonetheless, this still
succeeds in extracting the local information that is relevant
for the action classification task. By leveraging the object
detector not only by feeding the extracted features to the
classifier, but also by using the detection confidence scores
to fuse the information from different views in an adaptive
way, we outperformed all other fusion strategies we explored.

One of the main advantages of the availability of data
from different views is the variability of information they
can capture. However, this variability is also the main chal-
lenge. Generally speaking, the action to classify is the same
regardless of the viewpoint. Therefore, the key to address this
problem is to seek for view-invariant features. One way to
do so is to jointly use multiple views to infer 3D information,
and then extract view-invariant features from it [9]. Alternative
approaches include cross-view learning (where features from a
given view are estimated based on observations from another
view [28]), directly learning to map any view to a canonical
view [29], or learning a new shared representation based



on similarities among different views [30]. Inference of 3D
information, cross-view learning and canonical view mapping
either require large amounts of data, which comes with sig-
nificant computational cost, or a good initialization point. As
discussed above, action recognition in infants is significantly
different from traditional action recognition, which severely
limits the availability of good models that can be used for
initialization purposes. Therefore, what we propose instead is
the use of a view-independent architecture that generates close
to view-invariant spatio-temporal features, given its shared
architecture and joint supervision for the multiple views. In
that sense, our approach is akin to learning a new shared
representation. Experiments show that these close-to-view-
invariant features learned can improve performance even when
data from only one view are used at test time. The use of a
view-independent architecture also has practical advantages,
such as simultaneously learning from more and diverse data.

III. METHODS

Let {Xn}Nn=1 be a set of synchronized T frame-long video
clips captured from N different viewpoints of the same scene.
Each one of the clips can be written as Xn = {x1n, . . . , xTn }
for n = 1, . . . , N , where xtn represents the tth frame of the
nth view. Assume the scene contains only one actor of interest
(infant) in each clip and that the actor performs a single action
y ∈ {0, 1, . . . , C−1}, where C is the total number of classes.

In this section, we consider the problem of assigning a label
ŷ ∈ {0, 1, ..., C−1} to a video clip {Xn}Nn=1 such that ŷ = y,
i.e., the action is correctly classified. We propose a view-
independent detection-based multiview action classification
system, whose overview is depicted in Fig. 1 for the case
N = 3. The main components of this system are an infant
detector, an LSTM encoder, and learnable fusion coefficients
based on detection confidence scores. The components are
view-independent, and they are described in detail next.

A. Infant detector

In principle, any off-the-shelf person or infant detector could
be used to localize the infant in the frames; however, most
state-of-the-art object detectors have been trained on datasets
in which the “infant” or “child” categories do not exist and
the “person” category has a significant bias towards adult
subjects. Therefore they fail to recognize infants, especially
in challenging scenes. We decided to fine-tune the state-of-
the-art object detector Faster R-CNN [16] for this purpose.

The Faster R-CNN architecture is composed of a region
proposal network (RPN) in which several regions of the image
are refined and evaluated in terms of their probability of
containing an object (objectness), and an object classifier in
which the regions with highest objectness are further refined
and evaluated in terms of their probability of belonging to each
one of the classes of interest. The RPN and the object classifier
share a convolutional neural network (CNN) as a feature ex-
tractor, making the overall detection process computationally
efficient. Our infant detector uses a Faster R-CNN architecture

with ResNet-101 as feature extractor, which had been pre-
trained in the large-scale object detection dataset COCO. We
modified the last layer of the classifier to output the probability
that the object belongs to just one class (instead of the 80
classes in COCO), and then trained the object detector with
examples of bounding boxes containing infants performing
actions in a rehabilitation therapy setting. See section IV-C
for details on the implementation and training.

At inference time, each frame xtn for n = 1, . . . , N and
t = 1, . . . , T is processed by the object detector which
outputs a set of K candidate infant detections, where each
detection is described by a bounding box btn,k ∈ [0, 1]4

and a corresponding confidence score stn,k ∈ [0, 1] for
k = 1, . . . ,K. Detection is performed frame by frame, so
we apply a smoothing strategy to leverage information from
neighboring frames and provide smoother detections to the
action classifier. The average location of the center of the
infant is computed in a sliding window fashion: considering
only the most confident detection per frame, the one-third
frames with highest confidence within the window are used to
compute the average location. For each frame we then select
the most confident detection unless its distance to the average
center location is large. If that is the case, we select the closest
detection to the average center instead.

Let κtn be the index of the candidate detection selected
for the tth frame of the nth view. Then, for each T -long
clip Xn, the infant detector outputs a sequence with the
selected locations of the infant Bn =

[
b1n,κ1

n
, . . . , bTn,κT

n

]
∈

RT ×4 and their corresponding detection confidence scores
Sn =

[
s1n,κ1

n
, . . . , sTn,κT

n

]
∈ RT . We use feature maps already

computed for detection (from ResNet-101 in this case) to
provide local features from the selected locations as inputs
to the downstream task

F(Xn, Bn) =
[
Φ
(
x1n, b

1
n,κ1

n

)
, . . . ,Φ

(
xTn , b

T
n,κT

n

)]
, (1)

where the first argument of the feature map Φ (·) indicates
the whole frame used as an input, and the second argument
represents a region to be cropped from the feature map.

B. LSTM encoder

Long Short Term Memory units (LSTMs) have been widely
used in many fields, including activity recognition [9], [19],
[31]. Their learnable gated connections were proposed to
overcome the vanishing gradient problem observed in training
recurrent neural networks [17], and nowadays LSTMs are one
of the standard architectures used to process time series.

The LSTM network serves as an encoder G (·) that maps
the time series F(Xn, Bn) in (1) to a vector fn as

fn = G
(
F(Xn, Bn)

)
∈ RH , n = 1, . . . , N , (2)

where H is the dimension of the hidden layer of the LSTM. As
is a common practice in action classification approaches, fn
simply corresponds to the final LSTM state. We then apply a
linear layer to map the clip encodings to the number of classes

ỹn = AT fn + a ∈ RC , n = 1, . . . , N , (3)
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Fig. 1: Overview of the detection-based multiview action classification system for N = 3 views. The system first localizes the infant in the
different views and then it adaptively combines their local information to classify the actions. Green stars FFFFFFFFFFFFFFFFF mark the location of the infant
in the input images as a reference for the reader.

where A ∈ RH×C and a ∈ RC are learnable weights. The
quantities ỹn are referred to as logits. The LSTM encoder
can be trained to perform single-view action classification by
minimizing the cross-entropy loss `(y, ỹn) between the ground
truth class y and ỹn for n = 1, . . . , N separately. However, in
the proposed view-independent architecture, G(·), A and a are
shared across views—see Section III-C.

C. Learnable fusion coefficients

To combine the information from different views, we pro-
pose to learn fusion coefficients λn = PTSn + p ∈ R, n =
1, ..., N, where P ∈ RT and p ∈ R are learnable weights used
to combine the detection confidence scores Sn from different
frames of the same view. The fusion coefficients are then
normalized to ensure they are non-negative and add up to one:

λ̃n =
eλn

N∑
i=1

eλi

=
eP

TSn+p

N∑
i=1

eP
TSi+p

∈ [0, 1], n = 1, . . . , N. (4)

The fused logits ỹ are then obtained by a linear combination
of the logits

ỹ =

N∑
n=1

λ̃nỹn ∈ RC . (5)

The introduction of learnable fusion coefficients λ̃n based on
detection confidence scores allows the classifier to adaptively
weigh the contribution of different views, making the action
classifier rely more on views in which the detector is more
confident or the infant is more visible, as opposed to views in
which the infant might be wrongly detected or occluded.

The parameters of the LSTM encoder and the parameters of
the fusion coefficients are then jointly learned by minimizing

L = `(y, ỹ) +

N∑
n=1

`(y, ỹn) , (6)

where `(·, ·) corresponds to the cross-entropy loss, y is the
ground truth action class, ỹ corresponds to the fused logits

from the proposed multiview system, and ỹn correspond to the
logits predicted independently for each one of the N views.

At inference time, the classification score of each class is
obtained by applying the softmax function to ỹ, and the pre-
dicted class ŷ for the set {Xn}Nn=1 is the one that maximizes
the classification score. In summary, the proposed architecture
and fusion strategy generate a view-independent system whose
output is invariant to permutations of the views. Moreover, it
is flexible enough to handle samples with different number
and combination of views.

IV. EXPERIMENTS

A. Data acquisition and annotation protocol

Six non-walking infants between the age of 7.8 and 23.7
months at study onset (µ = 12.7, σ = 5.6), one of them
diagnosed with Down Syndrome (DS), participated in 8 one-
hour sessions over the course of 4 weeks. At each session,
infants engaged in motor tasks while interacting with two
socially assistive robots. In half of the trials, infants used the
assistance from a body weight support system, which provides
mechanical support to ease mobility in an open area [32],
[33], [34]. Infants wore a white suit with printed AR tags on
certain parts of the body. The sessions were recorded through
a network of five cameras (KINECT, from Microsoft). Out
of all the different motor tasks infants participated in, here
we focus on the crawling, walking, and standing tasks. In
the crawling and walking tasks, infants were encouraged to
move using the corresponding form of locomotor action while
following the robots (infants were assisted by the researcher in
the walking trials). In the standing task, infants were engaged
in manipulation of a chest-high multi-sensory table toy with
the humanoid robot. The researcher was always in the scene
and close to the infant. As is typical in natural play-type
scenarios with developing infants, the trials involved more than
the desired infant motor action; in fact, varying (unplanned)
spontaneous motor actions were demonstrated.

For localization annotation, the coordinates of a bounding
box containing the infant’s body were annotated using open-
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Fig. 2: Examples of bounding box annotations for infant detection.
Colors of the bounding boxes indicate different visibility levels.

(a) Crawling (b) Sitting

(c) Standing (d) Walking

Fig. 3: Examples of cropped frames from action annotated clips.

source software (www.kinovea.org [v. 0.8.27]). A new bound-
ing box was annotated every time the infant changed motor
action or moved by more than 50% out of the frame of the
previous bounding box. In cases where the infant had remained
stationary for a long time, a bounding box was annotated in
between. At most two views per clip were annotated. Three
infant body visibility levels were defined for bounding boxes:
high (more than 80% of the body is visible), medium (between
20% and 80% of the body is visible), and low (less than 20%
of the body is visible). Examples of bounding box annotations
can be found in Fig. 2.

For action annotation, the main motor actions seen in infant
development were annotated using a Java-based application
widely used in developmental research (www.datavyu.org,
[v.1.5.0]). The following locomotor and postural actions were
annotated: crawling, walking, sitting, and standing. In cases
infants demonstrated other actions, these were not annotated.
Examples of frames from annotated clips are shown in Fig. 3.

B. Cross-validation strategies

In total, 13.839 bounding boxes from five cameras cor-
responding to high (83.13%), medium (14.46%) and low
visibility (2.41%), and 1.603 instances corresponding to crawl
(17.97%), sit (24.27%), walk (36.62%) and stand (21.15%)
were annotated. Experiments were performed following two
cross-validation strategies: (i) Leave One Super-session Out,
in which 2 out of the 8 sessions from each one of the subjects
were held out for testing, and (ii) Leave One Subject Out, in
which data from one of the subjects were held out for testing.
Unfortunately, in the first 7 out of the 8 sessions, subject T1
did not wear the same type of tagged white suit that the other
subjects did, which introduced high unexpected variability
when compared to the rest of the subjects. Therefore, for the
sake of comparability, we considered only the last session from
this subject, and combined it with data from the subject that
had fewer bounding box annotations (T5) for cross-validation.
Annotations available for each split are detailed in Table I.

Boxes Actions
Crawl Sit Stand Walk Total

Super-session 1 3420 73 129 133 85 420
Super-session 2 3211 63 86 142 88 379
Super-session 3 3525 73 79 156 91 399
Super-session 4 3683 79 95 156 75 405

Total 13839 288 389 587 339 1603

Subject T2 5171 107 154 322 157 740
Subject T3 0 30 86 44 24 184
Subject T4 3113 58 80 69 64 271

Subject T5 & T1 2723 57 37 90 57 241
Subject T6 2832 36 32 62 37 167

Total 13839 288 389 587 339 1603

TABLE I: Annotations available for test splits in Leave One Super-
session out (top) and Leave One Subject Out (bottom) cross-
validation strategies. Training data for each split correspond to the
sum of the data in the remaining splits.

Boxes Actions
Crawl Sit Stand Walk Total

Split 1 1977 34 47 123 64 268
Split 2 1849 31 51 89 65 236
Split 3 1969 47 70 126 48 291
Total 5795 112 168 338 177 795

Additional data 2366 54 60 68 71 253

TABLE II: Annotations available for test splits from data studied in
[10]. Training data for each split correspond to the sum of the data
in the remaining splits plus the additional data.

To compare our method with the one presented in [10], we
performed experiments considering only data from the two
subjects studied in [10] (T1 and T2). Instead of randomly split-
ting the data as done in [10], we performed cross-validation
in a Leave One Super-session Out fashion. Since one of the
subjects corresponds to the infant discussed above, only 9
sessions were used for test purposes, divided in 3 splits. The
amount of training data in this case is significantly less, and
therefore we included sessions 1 to 7 from T1 as additional
training data for all splits in both methods; see Table II.

C. Implementation details

To detect infants, the Tensorflow Object Detection API [35]
was used to fine-tune a Faster R-CNN architecture pre-trained
on COCO, with ResNet-101 as feature extractor. The first three
blocks of the ResNet-101 architecture were frozen to reduce
the number of trainable parameters and prevent overfitting.
Vertical and horizontal flipping as well as jittering were used
for data augmentation. The maximum number of proposals
was set to K = 300, and the remaining parameters were set
as default. The detector was fine-tuned for 150.000 iterations.
Regardless of the action classification scheme, the detector
was always trained using data from five different views. For
temporal smoothing of the detections, a sliding window of 30
frames and stride 5 with a threshold of

√
0.0005 normalized

pixels provided desirable qualitatively results in the videos.
Features from the third block of the ResNet-101 were extracted
in the detected locations and reshaped to 14×14×1024-sized
feature maps per frame. Spatial average pooling of the top
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Fig. 4: Examples of detections in synchronized data from different
cameras. stn corresponds to the detection confidence score in frame
t, view n. Low score is observed when the infant is occluded.

half (first 7 rows) and bottom half (last 7 rows) of the feature
maps was then performed to preserve some spatial information
and end up with a 2048-sized vector feature per frame. For
the LSTM encoder, a two-layered network with hidden size
H = 512 was implemented in Pytorch. Number of classes
was set to C = 4 corresponding to crawl, sit, stand and
walk. Oversampling was performed to balance the number of
instances per class in the training set, and maximum number
of frames was set to T = 150. Crossentropy loss and L2

regularization with a factor of 5 × 10−5 were used to train
the classifiers for 1.000 iterations at an initial learning rate of
3× 10−5 with RMSProp optimizer and a dropout [36] rate of
0.5. Batch size was set to 64 samples.

D. Detection results

Table III presents detection results for both cross-validation
strategies. The infant is considered successfully detected if the
intersection over union between the most confident detection
for the frame and the annotated box is larger than 0.5.
On average, the infant detector achieves 95.2% and 94.6%
accuracy in the Leave One Super-session Out and Leave
One Subject Out experiments, respectively. Moreover, in both
cases the detector accuracy is directly related to the level of
visibility of the infant, achieving less than 37% accuracy on
average in cases of low visibility, and around 98% in cases
where the infant visibility is high. Examples of detections are
depicted in Fig. 4. This evaluation of the detection results
is pessimistic for the purpose of the action classifier because
(i) the evaluation is performed frame-by-frame based on the
most confident detection only, as opposed to our system
that temporally smooths the detections, and (ii) the detection
evaluation considers only one view at a time, while our system
uses data from different views (in which at each time the
infant is likely visible from at least one of them). Hence, given
the lack of annotations to evaluate multiview detection, these
results are considered sufficient as a first step to our system.

E. Baseline action classification methods

Single view. It corresponds to the case in which data from one
camera are used to train a view-specific LSTM encoder and
the classification is based on the logits from that given view.

Post-processing fusion. In this case, view-specific LSTM
encoders are trained independently, and information from
different views is combined as a post-processing step. Specif-
ically, let ỹn be the logits from the view-specific classifier n,

Visibility
Low Medium High Total

Super-session 1 40.5 89.5 98.8 96.3
Super-session 2 28.9 87.1 98.3 95.2
Super-session 3 32.9 86.9 97.8 94.6
Super-session 4 22.0 85.9 98.1 94.6

Average 31.1 87.4 98.2 95.2

Subject T2 27.9 78.8 96.7 91.1
Subject T3 — — — —
Subject T4 34.6 81.9 98.3 95.3

Subject T5 & T1 37.8 83.3 97.4 94.3
Subject T6 47.4 91.3 99.3 97.6

Average 36.9 83.8 97.9 94.6

TABLE III: Detection accuracy (%). The infant is considered detected
if the most confident prediction intersects the annotated bounding box
with intersection over union larger than 0.5. “Total” is not the average
over the other columns because data per visibility are not balanced.

and σ(ỹn) the corresponding classification score of each class,
where σ(·) denotes the softmax function. The action prediction
ŷ of different post-processing strategies is described below.

max score: argmax
c∈[0,...,C−1]

max
n∈[1,...,N ]

σ(ỹn)c

mean score: argmax
c∈[0,...,C−1]

1
N

∑N
n=1 σ(ỹn)c

sum logits: argmax
c∈[0,...,C−1]

∑N
n=1 ỹn,c

Joint training fusion. It corresponds to training a view-
independent architecture. The sum logits case refers to the
last method described in the post-processing fusion section,
except that the LSTM encoder is jointly trained for all views.

F. Action classification results

Results of our multiview action classification system inte-
grating information from 5 different cameras are presented in
the last column of Table IV, along with ablation results for
the best three cameras with the baseline action classification
methods described in previous section. Based on the ablation
results, the proposed fusion strategy not only outperforms the
best single-view classifier (81.3% vs 75.6% in the Leave One
Super-session Out cross-validation and 79.1% vs 68.2% in the
Leave One Subject Out cross-validation), but also outperforms
all the other fusion strategies. As expected, combining infor-
mation from different views in all cases results in similar or
better results than using the best single-camera. However, there
is a significant improvement between the best post-processing
strategy (sum logits) and the proposed approach (from 78.8%
to 81.3% in the Leave One Super-session Out case, and from
72.3% to 79.1% in the Leave One Subject Out case). The
difference observed between joint training of “sum logits”
and “fused logits” (80.2% vs 81.3%, and 76.9% vs 79.1%)
suggests that the improvement is the combined effect of joint
training and the introduction of learnable fusion coefficients.

Low-dimensional representations of the spatio-temporal fea-
tures extracted by the LSTM encoder fn ∈ RH were plotted
for the three best views when: (a) view-specific LSTM en-
coders are trained, and (b) the proposed view-independent
LSTM encoder is trained. In both cases the t-Distributed



Single view Post-processing fusion Joint training fusion
Splits Three views Three views Five views

#1 #2 #3 max score mean score sum logits sum logits fused logits fused logits

Super-session 1 69.0 (1.9) 75.3 (1.4) 71.8 (0.6) 78.0 (1.1) 78.3 (1.1) 78.9 (1.1) 81.9 (0.2) 82.4 (0.4) 82.5 (0.2)
Super-session 2 70.7 (0.8) 75.4 (1.3) 73.4 (1.2) 77.0 (1.3) 76.7 (1.1) 78.7 (1.2) 79.1 (1.6) 82.2 (0.5) 83.6 (0.3)
Super-session 3 72.8 (2.4) 75.6 (0.3) 71.8 (0.5) 76.5 (1.2) 74.7 (1.1) 77.3 (0.8) 76.9 (0.2) 77.4 (0.2) 81.5 (0.5)
Super-session 4 66.4 (0.7) 76.1 (0.2) 74.9 (1.0) 79.3 (1.7) 78.7 (1.5) 80.2 (1.5) 83.1 (0.8) 83.1 (0.1) 84.2 (0.8)

Average 69.7 (0.8) 75.6 (0.5) 73.0 (0.4) 77.7 (0.7) 77.1 (0.6) 78.8 (0.6) 80.2 (0.5) 81.3 (0.2) 83.0 (0.3)

Subject T2 55.6 (1.1) 63.7 (0.9) 68.1 (0.6) 64.3 (1.6) 66.9 (1.2) 65.8 (1.5) 76.6 (0.4) 76.9 (1.2) 75.9 (0.6)
Subject T3 63.9 (2.6) 69.0 (2.0) 71.6 (1.1) 76.0 (1.9) 78.0 (1.6) 78.6 (1.7) 81.9 (2.0) 82.4 (1.2) 84.6 (0.9)
Subject T4 65.2 (2.2) 68.7 (2.1) 63.2 (1.9) 70.1 (2.4) 69.7 (2.0) 71.6 (2.1) 75.9 (1.0) 78.7 (1.1) 76.8 (0.5)

Subject T5 & T1 63.8 (1.9) 71.1 (1.5) 59.9 (2.0) 70.7 (1.7) 71.0 (1.2) 72.4 (1.9) 68.9 (2.4) 73.2 (0.4) 77.0 (0.7)
Subject T6 73.9 (2.4) 68.7 (4.7) 66.5 (2.4) 72.1 (1.7) 68.1 (2.7) 73.2 (2.9) 81.2 (1.0) 84.4 (1.0) 85.6 (0.5)

Average 64.5 (0.9) 68.2 (1.2) 65.8 (0.8) 70.7 (1.0) 70.7 (0.9) 72.3 (0.8) 76.9 (0.7) 79.1 (0.5) 80.0 (0.3)

TABLE IV: Action classification accuracy (%). Mean classification accuracy (standard deviation) from three runs is reported. Last column
shows the results of the proposed method trained on 5 cameras. Ablation experiments performed in data from 3 best cameras are reported.

Camera #1
Crawl

Sit

Stand 

Walk

Camera #2 Camera #3

(a) t-SNE of clip embeddings from view-specific classifiers.

Crawl

Sit

Stand 

Walk

Camera #1 Camera #2 Camera #3

(b) t-SNE of clip embeddings from the proposed view-independent system.

Fig. 5: Example of t-SNE visualization [37] of 512-dimension LSTM
clip embeddings of: (a) action classifiers trained specifically for each
view, and (b) the proposed view-independent action classifier.

Stochastic Neighbor Embedding (t-SNE) [37] for visualization
purposes was learned in an unsupervised way using data from
the three views. An example of such plot for test data of Super-
session 1 is shown in Fig. 5. As expected, spatio-temporal
features are located in completely different regions when each
encoder is trained independently. On the other hand, spatio-
temporal feature embeddings generated by our method from
different views are mapped to the same region, supporting the
hypothesis that our method generates close to view-invariant
features. Moreover, when data only from a single view are
used at test time, the performance of the best single view
classifier is significantly boosted (around 2% for Leave One
Super-session Out and 6% for the Leave One Subject Out; see
Table V). Thus, learning a (close to) view-invariant mapping
improves performance even with missing views at test time.

Looking closer at the second-to-last column in Table IV, we
note that the lowest action classification accuracy is achieved
in splits where data from subject T1 are tested (“Super-session
3” and “Subject T5 & T1”). If we further analyze these splits
it turns out that average classification accuracy of data from

Single view
#1 #2 #3

Super-session 1 70.8 (0.6) 77.7 (0.9) 73.2 (0.8)
Super-session 2 70.8 (0.9) 78.1 (0.6) 73.4 (1.3)
Super-session 3 73.2 (1.3) 77.9 (0.9) 73.9 (1.6)
Super-session 4 69.1 (1.7) 76.0 (0.8) 74.6 (0.9)

Average 71.0 (0.6) 77.5 (0.4) 73.8 (0.6)

Subject T2 62.7 (0.8) 70.7 (1.1) 71.3 (0.5)
Subject T3 62.8 (3.9) 76.4 (0.9) 72.5 (3.8)
Subject T4 70.0 (1.6) 72.3 (1.7) 69.7 (1.4)

Subject T5 & T1 63.2 (1.9) 77.2 (1.8) 66.1 (2.3)
Subject T6 76.8 (0.7) 75.7 (2.8) 73.8 (1.5)

Average 67.1 (1.0) 74.5 (0.8) 70.7 (1.0)

TABLE V: Action classification accuracy (%). Considers LSTM
encoder jointly trained for three views, but only data from one view
used at test time; (cf. three first columns of Table IV).

subject T1 is 43.0% for the Super-session 3, and 47.9% for the
Subject T5 & T1 (classification accuracy of the remaining data
from these splits is close to the performance of the other splits:
82.9% and 80.6%, respectively). This could be explained by
differences in data resolution (608× 808 for cameras #2 and
#3 of T1 data, and 1080×1920 for other cameras and subjects),
subject’s age (T1 is the oldest subject), and subject’s diagnosis
(T1 is the only subject with Down Syndrome in the study). In
the final system when all 5 cameras are used (last column of
Table IV), the classification accuracy obtained in subject T1
data increases to 68.5% and 73.9% in the Super-session 3 and
Subject T5 & T1, respectively. This hints that the resolution
discrepancy in T1 data for cameras #2 and #3 is responsible
for part of the performance decrease. However, more data are
needed to further investigate these hypotheses.

Finally, we compare to earlier approaches to multi-view
children activity recognition. Note that [7] found that CNNs
perform poorer than DT for children activity recognition,
and thus [8] proposed a DT-BOVW approach with fusion
at the score level, to which the multiple instance learning
SVM (MI-SVM) approach shows superior performance in
[10]. As shown in Table VI, our method outperforms the
MI-SVM approach by at least 10.8% in terms of average
classification accuracy, even when MI-SVM uses information
from all 5 cameras while our method uses only data from 3
of them. Obtaining such an improvement by the use of detec-



MI-SVM [10] Ours Ours
Five views Three views Five views

Split 1 69.7 (1.0) 79.2 (0.9) 79.5 (0.3)
Split 2 72.8 (1.0) 78.8 (0.7) 81.2 (0.2)
Split 3 65.9 (0.4) 82.7 (0.9) 81.8 (0.5)

Average 69.4 (0.5) 80.2 (0.5) 80.8 (0.2)

TABLE VI: Action classification accuracy (%) on splits described in
Table II, reported as Mean (std) from three runs.

tion annotations for training suggests that performing spatial
localization of the action is significantly advantageous in this
challenging environment. Another factor possibly contributing
to this performance increase is the use of deep features
from ResNet-101 and LSTM as opposed to handcrafted dense
trajectories features.

V. CONCLUSION

A view-independent detection-based multiview approach for
action classification in infants suitable for complex scenes
is presented. Such a method significantly outperforms the
baseline model available for this dataset in the literature,
even when fewer cameras are used. Departing from earlier
approaches, we use pre-trained deep features and detection
annotations for training; both of which may have boosted
performance. Experimental results show that the proposed
method generates almost view-invariant features, which im-
proves performance even when views are missing at test time.
Finally, the introduction of learnable fusion coefficients based
on detection confidence scores was shown to be effective for
combining information from different views, outperforming
alternative fusion strategies.
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