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Synchronization of geophysically-driven
oscillators with short-range interaction
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Abstract—This paper presents a method to synchronize a
network of spatially distributed nonlinear oscillators that can
only interact with each other intermittently and at very close
proximity. This problem arises in applications where semi-
passive sensors drift along patterns of ambient geophysical
flows that bring them close periodically, and have to establish
periodic rendezvous in order to efficiently exchange infor-
mation or be retrieved. The problem is challenging because
cooperative control action can only be applied over the short
time window that agents are in rendezvous, and in over
the whole network different groups, some of which share
members, meet asynchronously. In cases such as these, the
ambient geophysical dynamics that drive the motion of the
agents need to be directly incorporated into control design.
The paper presents a decentralized, intermittently activated,
pairwise interacting control law for the agents, which un-
der reasonable conditions on overall network connectivity,
brings the whole system into a steady state where all agents
synchronize their periodic rendezvous around configurations
determined by the surrounding geophysical field.

Index Terms—Nonlinear oscillators, synchronization, coor-
dination, pattern formation, multi-agent systems.

I. INTRODUCTION

THIS paper addresses the problem of synchronizing
a spatially distributed network of intermittently in-

teracting semi-passive mobile sensors, which are drifting
along a dominant flow field, with limited actuation ca-
pability that only allows them to briefly accelerate along
their own periodic orbits. The motivating application
problem is the deployment of swarms of marine robotic
sensor drifters over very large areas of ocean, where they
can leverage natural ocean circulation [1]–[6] to collect
data [7], [8]. Here, it is assumed that the sensors can
intermittently communicate and interact with each other
only over very short (compared to the scale of their
motion paths) distances, specifically at those instances
where their trajectories are proximal. Synchronization
of this intermittent spatially distributed network may
be desirable in cases where data should be shared for
robustness purposes, increase of area coverage and ob-
servation persistence [7], [9], [10], energy savings and
endurance improvement [11]–[14] from the reduction
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in satellite communications, or when the sensors are
to be picked up at the end of their mission. Similar
application scenarios can be encountered in deployments
of heterogeneous mobile robot teams [15], or coordinated
groups of unmanned marine vehicles, on the surface or
underwater [16], e.g. in cooperative mine countermea-
sure [17] or search and recovery missions [7], [8].

In this paper the problem is formulated in the context
of networks of robotic drifters who need to rendezvous
on a shared two-dimensional workspace [8], but the
control objective is to achieve synchronized periodic
rendezvous (cf. [18]) under the constraint of local in-
teraction (cf. [19]). Here, synchronization through pe-
riodic rendezvous is understood as a steady state in
which robotic drifters moving along neighboring cur-
rent circulations periodically and intermittently come
in close proximity. One distinguishing characteristic of
the problem formulation of this paper is that agent
motion is driven (primarily) by an ambient vector field,
modeling a geophysical flow pattern that is dominant
in the workspace in which the agents are deployed;
e.g., the robotic drifters will not spend their precious
power reserves to fight the current that drives them.
For the purposes of this analysis, it is assumed that
this ambient flow takes the form of a grid of gyres
that give rise to Lagrangian coherent structures (LCS)
[20]. In fact, it has been suggested that such ocean
circulation patterns could be leveraged to improve the
endurance of environmental monitoring, weather, and
climate forecasting sensors [20]–[22].

Fig. 1: Snapshot (August 2005) of visualization of ocean
surface currents for June 2005 through December 2007
generated using NASA/JPL’s ECCO2 ocean model. Link:
https://svs.gsfc.nasa.gov/3827
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Earlier approaches to this problem [23], [24] examined
conditions under which drifters in neighboring gyres
can move within rendezvous range of one another by
leveraging this ambient flow dynamics. It has been
demonstrated that this can be achieved even in the
presence of stochastic disturbances [25]. In these early
synchronization control designs [23], the flow-induced
drifter dynamics was modeled in the form of a harmonic
oscillator. The oscillators’ phases, representing robot po-
sitions, achieve synchronization through a (linear) time-
optimal control law designed to maximize the brief
time interval in which they remain in rendezvous. In
principle, the rendezvous conditions can be extended to
more realistic (albeit still simplistic) nonlinear periodic
circulation models; however, the presence of nonlineari-
ties and the desire to handle uncertainty motivate the
use of sliding mode control laws for achieving and
maintaining synchronization [26]. Time-optimality and
maximization of the robotic drifter rendezvous time
can be recovered in this nonlinear setting through a
nonlinear transformation, under the assumption that the
robots’ communication range is negligible compared to
the spatial scale of their orbit [27].

There is a body of work on the problem of syn-
chronization of coupled oscillators which appears in a
diverse collection of literature related to physics, neu-
rology, and chemistry [28]–[31]. In this context, synchro-
nization is understood as the state in which the the phase
difference between neighboring oscillators is locked to
zero [28], [32]. However, all this work is premised
on neighboring oscillators interacting continuously with
each other. Multi-agent coordination with intermittent
or periodic connectivity or coupling has been received
some attention [19], [30], [33]–[35], motivated by ap-
plication cases where communication can occur over
very short range or where obstacles disturb line-of-sight
communication links [36]. Intermittent interaction has
also been proposed as a means of alleviating local stor-
age limitations and facilitating local plan execution [35],
[37]. The same concept, through the form of fixed-time
event-driven synchronization, has been advocated as an
effective strategy for regulation of power grids with
limits on transmission capacity [38].

One of the earliest approaches to the specific problem
of synchronous rendezvous under low-range interaction
constraints [19], leverages the structure of a bipartite
interaction topology, and exploits the capability of robots
to wait at designated rendezvous stations for their coun-
terparts to arrive. Other approaches utilize coordination
mechanisms in which robots that come into rendezvous
can schedule the time and location of their next en-
counter [19], [35]. However, When the robot motion is
dictated primarily by exogeneous dynamics and onboard
power is a scarce resource, as it is the case here, robots
may not have the ability to wait in place, ensure initial
connectivity to be able to cooperatively plan their next
move, or rely on their own actuation capacity [39] to
achieve rendezvous. Without specific assumptions on

the structure of the underlying intermittently connected
communication network, collective synchronization is
likely to be dependent on global connectivity condi-
tions [9], [34].

Within the pre-established context of intermittent
very-short-range interaction and synchronous periodic
rendezvous, the approach outlined in this paper differs
in some key aspects: (i) the robot gross motion behavior
is dominated by the ambient environmental dynamics
forces, and the robotic agent actuation and coordination
law has limited impact on it; and (ii) the communication
topology is also heavily dependent on environmental
dynamics, and connectivity of the overall network is
not guaranteed. The reported approach therefore ad-
dresses this new problem instance through a novel,
distributed control law that combines leader-following
multi-robot coordination (cf. [9], [30], [40]) for periodic
rendezvous with connectivity maintenance (cf. [34], [41]).
The stability and asymptotic properties of the closed-
loop networked system are formally established via an
analysis based on a discrete-time invariance principle ap-
proach [42] that explicitly incorporates the geophysical
environmental dynamics.

The rest of the paper is organized as follows. Sec-
tion II describes the technical parameters of the robot
control problem and frames it mathematically. Section III
outlines the solution approach and formally establishes
the stability and convergence properties of the closed-
loop system. Section IV presents numerical results that
corroborate the theoretical predictions of Section III, and
adds some limited experimental evidence that suggests
that the control architecture can be realized in practice
despite the mismatch between the simplistic geophysical
flow model and the actual environmental conditions.
Section V concludes the paper.

II. PROBLEM FORMULATION

Consider a regular planar arrangement of aligned ref-
erence frames, where each frame is centered at Cartesian
coordinates ( s

π `i, s
π mi) for i = 1, . . . , N, such that for

some s > 0, the quantities s`i/π, smi/π are integers. In this
arrangement, the frames are positioned on a grid where
each origin is displaced relative to the origin of a nearest
neighboring frame by a distance s along either the first
(`) or the second (m) Cartesian coordinate.

Assume a polar coordinate parameterization (ρi, θi) ∈
R+ × S on frame i, and for a fixed C ∈ (−1, 1) define
a planar submanifold (henceforth referred to as orbit)
around each center (`i, mi) through the equation (see
Fig. 2)

cos
(

π
s ρi cos θi + `i

)
cos

(
π
s ρi sin θi + mi

)
= ±C . (1)

Now fix the right hand side of (1) for each of the
i = 1, . . . , N frame origins to either |C| or −|C| so that
neighboring (in the north/south/east/west direction)
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Fig. 2: Three different orbits, each for a different value of
C around (`, m) = (0, 0). As C → 0 the orbit increasingly
resembles a square.

frames are assigned opposite values. Then, setting a pos-
itive amplitude parameter A > 0, define the dynamics
of an agent orbiting around (1) in the form

θ̇i = f (θi) ,

− sgn(C)πA
ρi

[
cos θi sin(πρi

s cos θi) cos(πρi
s sin θi)

+ sin θi sin(πρi
s sin θi) cos(πρi

s cos θi)
]

, (2)

with a period of oscillation

T =
8

πA

∫ π/2

s arcsin
√

C
π

1√
sin πx

s −C2
dx .

Note that θi and ρi are coupled through (1). Depending
on the sign of C, (2) forces the agent to drift either
clockwise (for C > 0) or counter-clockwise (for C < 0).
The dynamics above is motivated by the geophysical
gyre flow model of [13], [20], [43].

Agents moving in neighboring orbits i and j, i.e.
satisfying either `i − `j = ±sπ or mi − mj = ±sπ, may
come into rendezvous as they orbit around their (gyre)
centers if their Cartesian coordinates relative to any fixed
frame (either i or j) are within a distance δ� s.

Given the shape of the gyre orbits (1) for |C| → 0
and the fact that δ� s, the proximity condition for ren-
dezvous is satisfied for two neighboring agents drifting
along orbits i and j in two distinct scenarios:

(i) the agents are moving on the sides of their corre-
sponding rounded square-shaped orbits, in which
case for some small ε > 0, |θi + θj − (2k + 1)π| < ε
or |θi + θj − 2kπ| < ε, or

(ii) the agents are near the rounded corners of their
orbits (where θi would be close to (2k + 1)π

4 ) in
which case |θi − θj − (2k + 1)π| < ε.

In case (i) exactly two agents are in rendezvous within
each ball of radius δ, whereas in case (ii) up to four
agents can be in rendezvous with each other.

Agents interact with each other only when they are
in rendezvous. When they are not in rendezvous, they
simply drift along their orbits following (2). When they
are in rendezvous, however, their dynamics change to

θ̇i = fC(θi) + ui , (3)

where ui may depend on the phases θj of the agents who
are in rendezvous with i.

The dynamics of (assume non-interacting) agents (2)
steer agents along their corresponding orbits (1) in di-
rections dictated by the sign of the constant on the
right hand side of (1). Neighboring agents i and j or-
biting centers ( s

π `i, s
π mi), ( s

π `j, s
π mj) respectively, with

|`i − `j| = sπ or |mi −mj| = sπ, will rotate in opposite
directions. To facilitate comparisons between phases of
neighboring agents, we propose projecting their orbital
positions on a common virtual orbit, in which all of
them move in the same direction. The projection is
implemented as follows.

Pick an arbitrary orbit in the grid, centered at (`i, mi),
as the common virtual orbit, and assume that for this
gyre flow, C > 0. For any other orbit surrounding
a center (`j, mj) locate the agent moving on it, and
project an image of the orbital position of this agent to
a neighboring orbit that is closer to that around (`i, mi)
row- or column-wise (it does not matter whether you
move along a row or a column), symmetrically to the
axis of symmetry separating the two neighboring orbits.
Notice now that the mirrored image is moving with the
orientation of the resident agent to this orbit. Repeat this
process until the remote image of agent j is now on the
common orbit i, and denote ϑj the phase of that remotely
projected image of agent j. From this point on, ϑj will be
representing agent j on the common orbit i. To simplify
notation going forward we will drop the subscript C
from the right hand side of (3) when referring to the
phase image motion on the common virtual orbit, and
write

ϑ̇j = −πA
ρj

[
cos ϑj sin(

πρj
s cos ϑj) cos(

πρj
s sin ϑj)

+ sin ϑj sin(
πρj

s sin ϑj) cos(
πρj

s cos θj)
]
+ uj

= f (ϑj) + uj . (4)

The control objective is to have ϑi(t)− ϑj(t)→ 0, for any
i, j ∈ {1, . . . , N}, as t→ ∞.

Remark 1. The phase motion dynamic (3) stems from the
dynamic in Cartesian coordinates [27].

ẋ = πA cos π
s x sin π

s y + ux , f (x, y) + ux (5a)

ẏ = −πA cos π
s y sin π

s x + uy , g(x, y) + uy (5b)

III. TECHNICAL APPROACH

For i ∈ {1, . . . , N}, find ϑi such that ∀j ∈ {1, . . . , N} \
{i}, (ϑi − ϑj)mod 2π ≥ 0. If there is more than one
i ∈ {1, . . . , N} \ {i} such that (ϑi − ϑj)mod 2π ≥ 0, pick
one of those solutions arbitrarily and define ϑmax ,



SYNCHRONIZATION OF GEOPHYSICALLY-DRIVEN OSCILLATORS 4

ϑi. Then for k ∈ {1, . . . , N}, find ϑk such that ∀j ∈
{1, . . . , N} \ {k}, (ϑk − ϑj)mod 2π ≤ 0. Similarly, if more
than one solutions ϑk satisfy the above inequality, pick
arbitrarily one and set ϑmin , ϑk. In this sense, the
relation (ϑi − ϑj)mod 2π ≥ 0 ⇐⇒ ϑi ≥mod 2π ϑj defines
a total order on {ϑi, . . . , ϑN}. Since agents travel on their
orbits with a common frequency, after one period they
will have met all agents that they will be coming in
periodic rendezvous with.

Consider two agents i, j, moving on neighboring orbits
and having phase images on the common virtual orbit
denoted ϑi, ϑj, respectively. Each phase image evolves
according to (4) for the special case where ui = uj = 0.
The absolute value of their phase difference, |∆ϑij| ,
|ϑi − ϑj| is a time-varying yet periodic quantity which
oscillates between two extremal values min |∆ϑij|, and
max |∆ϑij| with period T. The geometry of the orbit (1)
and the dynamics on it (2) suggest that the extremal
values are attained at specific configurations: min |∆ϑij|
is attained when ϑi + ϑj = (2k + 1)π/4, and max |∆ϑij|
when ϑi + ϑj = kπ/2, for k ∈ Z.

One way for one to see that is to consider the distri-
bution of the agent’s speed v =

√
ẋ2 + ẏ2 along the orbit

(1) for (`, m) = (0, 0) and y→ s
2 . In the limit, as C → 0,

the speed v takes the form

lim
C→0

v = πA
∣∣∣∣cos

(
πx
s

)∣∣∣∣ , (6)

and when the agent approaches the vertical sides of
its orbit, that is when x → ±0.5s in the configuration
depicted in Fig. 2, the speed drops to a minimum—of
0 in the limit case of C = 0 as indicated in (6), which
means that the agent essentially stops. The function that
maps the agent’s single degree of freedom to its speed
over the orbit is highly nonlinear for a general case of C.
Due to continuity, however, we can reasonably expect the
speed function to behave similarly as described above
for cases of C in the neighborhood of zero, namely agents
maintaining some (small) speed as they slowly traverse
the orbit corner—see Fig. 3.
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Fig. 3: The profile of the agent’s speed v, as a function of the
Cartesian coordinate x, along the top side of the orbit featured
in Fig. 2. The agent’s motion is symmetric on each of the four
sides. Close to the orbit “corners,” the agent slows down, and
the reduction in speed there is larger the closer parameter C is
to zero.

Now imagine two agents i and j moving on the same
orbit in the neighborhood of an orbit corner, and with i
having a small lead over j. A first case would be when i
and j are converging to the corner. Then as i approaches
the corner of the orbit it will slow down faster than j,
and therefore their distance on the orbit will decrease
monotonically—as a result their phase difference will
decrease to, that is |∆ϑij| → 0. The alternative case is
when i and j are both moving away from a corner. Then
i will accelerate more than j and thus their distance on
the orbit will increase monotonically. Therefore, with the
pair of agents on either side of the orbit corner, |∆ϑij|
will decrease as they approach the corner, and increase
as they depart, suggesting that at the corner, i.e., the
configuration where ϑi + ϑj = (2k + 1)π/4, |∆ϑij| attains
its minimum.

In order for neighboring agents i and j to reach ren-
dezvous, their phase difference needs to be small enough
so that the agents’ Euclidean distance falls below the
threshold δ. Due to the nonlinear character of the orbit
(1) and its vector field (2), necessary and sufficient con-
ditions for rendezvous are not straightforward. Instead,
sufficient conditions will be provided, in the form of the
following proposition.

Proposition 1 (Sufficient condition for rendezvous on
gyres). Let i and j be the indices of two agents moving on
adjacent orbits, and ϑi, ϑj be their phase images, respectively,
on the common virtual orbit. Denote ∆ϑij(t0) = ϑi(t0) −
ϑj(t0) the agents’ phase image difference at some initial time
instant t0. The agents will rendezvous if

min
t0≤t≤t0+T

|∆ijϑ(t)| < 2
(

π
4 − arctan(1− δ

s )
)

. (7)

Proof. Since |∆ϑij| attains its minimum where (ϑi + ϑj)/2 =
(2k + 1)π/4 for k ∈ Z, it makes sense to focus on these con-
figurations: if rendezvous does not happen there, it will
not happen anywhere. Rendezvous happens when two
agents find themselves within a δ (Euclidean) distance
while in orbit. The problem is now constrained further
as follows: Consider a ball (circle) of radius δ/2 around
the point of symmetry in between four adjacent gyre
orbits (which is in fact a saddle point for the surrounding
flow) (Fig. 4). Admittedly, two agents flowing along
neighboring orbits can come within δ distance even
without being both in this ball centered at the symmetry
point. Still, this analysis is conservative in the sense that
if i and j cannot decrease their distance below δ, they will
not coexist in the ball of Fig. 4; however, if they coexist
in this ball they will sure have achieved rendezvous.

For the sake of this conservative analysis, assume for
the moment that rendezvous occurs when agents coexist
in the ball of Fig. 4. The figure depicts a four-agent
configuration at a location where (ϑi + ϑj)/2 ≈ (2k + 1)π/4,
and in particular, a case where the three agents j, n, and
p, are about to miss their rendezvous with agent i. The
reason is that i exits the ball right as j, n, and p are just
entering. Notice that in these extremal configurations,
(a) the phase images of agents j, n, and p on the orbit
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Fig. 4: Gyre detail around a flow saddle point with four agents
in rendezvous.

of agent i (assumed to be the common virtual orbit),
will coincide; and (b) the distances between i and all the
other agents are at least as big as the distance between i
and their common phase image, which is a bit less than
δ
√

2/2. It follows, therefore, that if i and j have phase
images that are less than δ

√
2/2 from each other, they

will achieve rendezvous even for a short time interval.
(Recall that |∆ϑij| reaches a minimum when ϑi and ϑj
position themselves symmetrically relative to (2k + 1)π/4,
so if the images are such that the spatial distance is
less than δ

√
2/2 anywhere else on the common orbit the

distance will be even smaller near the corners of Fig. 4
for δ/s < 1/2.) Given that δ � s, rendezvous will not be
possible unless the neighboring orbits are much closer
than δ (which happens for |C| close to zero), in which
case the difference of the Euclidean distance between
the images of i and j and δ

√
2/2 will be negligible, and

since the agents will in fact be already be in rendezvous
(within distance δ) by the time their images’ spatial
distance drops to δ

√
2/2, this approximation is deemed

acceptable. The phase difference ∆ϑ that corresponds to
a chord of length δ

√
2/2 on the circle of radius δ/2 around

the point of symmetry is 2[π
4 − arctan(1− δ

s )].

Let the agents within a group that is in rendezvous
establish leader-follower relationships. Specifically, an agent
will “follow” any other agent it meets provided that this
other agent has larger phase image than its own. For an
agent j ∈ {1, . . . , N}, the agents that it follows form a set
Lj, while the agents following j are indexed in set Fj.

However, agent j can follow only its leaders that it is
currently in rendezvous with. Then, its actuation input
(with reference to (4)) is activated and follows the control
law

uj = − ∑
i∈Lj(t)

aij (ϑj − ϑi)mod 2π , (8)

where aij is a positive control gain.
The number of different groups of agents that can

come into rendezvous over the course of a period is
finite, and can be indexed from a set I ⊂ 2N . Set I
is made time-invariant by tasking each agent j who is a

leader to preserve its followers Fj. This is done by ensur-
ing that a leader does not increase its phase difference
to its followers beyond the point that it will prevent it
from achieving rendezvous with them again. The reason
this works is because whether two agents moving on
neighboring orbits under their unforced dynamics (2)
will rendezvous within one period T, depends on their
relative difference between their phases (Proposition 1).
The connectivity maintenance control is therefore imple-
mented as follows:

Proposition 2 (Connectivity preservation). Let i be an
agent who is both a leader in some group(s) and a follower
in other(s). Denote tj the time instant when follower j ∈ Fi
breaks from its rendezvous with leader i. If over the course of
one period T, the actuation-induced phase lead relative to its
unactuated orbit flow dynamics (2), is restricted according to

∫ t0+T

t0

ui(t)dt

< 2
(

π
4 − arctan(1− δ

s )
)
−max

j∈Fi
|ϑi(tj)− ϑj(tj)| (9)

then the leader-follower relationships in which i is the leader,
are preserved.

Proof. When agents in rendezvous are completely in
synch, implying that they enter and exit the ball or
radius δ/2 around the flow saddle point (see Proposi-
tion 1), then their phase images on the common orbit
coincide. If, on the other hand, (under the conservative
conditions of Proposition 1) they are on the verge of
missing their rendezvous window, then their phase im-
ages have a difference of at least 2[π

4 − arctan(1− δ
s )].

Over the course of one period of oscillation, T, the
phase image differences between i and its followers
reach their minima when the images on the common
orbit are closest to and symmetric to the diagonal linking
the center of the common orbit to one of its rounded
corners (Fig. 4). According to Proposition 1, this mini-
mal difference should not exceed 2[π

4 − arctan(1− δ
s )],

because then the agents are in risk of missing their
rendezvous window. Assuming now that the followers
of i, Fi do not themselves accelerate relative to their
orbit dynamics after they break rendezvous with i—
if they do, the bound of (9) will be more conserva-
tive than needed for connectivity maintenance—then i
should restrict its own relative acceleration so that the
phase lead it achieves with respect to its natural orbit
flow, plus the minimum phase difference to its most lag-
ging follower does not exceed 2[π

4 − arctan(1− δ
s )]. One

thus arrives at
∫ t0+T

t0
ui(t)dt < 2[π

4 − arctan(1 − δ
s )] −

maxj∈Fi mint0≤t≤t0+T |ϑi(t)− ϑj(t)|. Note now that for a
follower j ∈ Fi, (see the discussion in the proof of Propo-
sition 1) mint0≤t≤t0+T |ϑi(t) − ϑj(t)| ≤ |ϑi(tj) − ϑj(tj)|,
where tj is the time instant at which the connection
between leader i and follower j was severed and their
rendezvous terminated. Substituting |ϑi(tj)− ϑj(tj)| for
mint0≤t≤t0+T |ϑi(t)− ϑj(t)| yields (9).
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Thus, every agent at rendezvous applies (8) (except
for the group leader for which Lj = ∅). They do so
throughout the whole duration of the rendezvous, unless
they risk breaking up their leader-follower relationship
with some followers in Fj in other groups (if any).
In such cases, agents terminate their actuation input
prematurely and default to uj = 0.

At a given time instant t, only a subset of the groups
in I that are in rendezvous, and we denote this set using
a set-valued piecewise constant function R : R+ ⇒ I .
The leader-follower relationships within a group that is
in rendezvous can be naturally encoded into a directed
graph G = (V , E), then V will contain the indices of the
agents in rendezvous, and E will contain ordered pairs
of the form (i, j) with i, j ∈ V and the understanding
that i follows neighboring agent j while this group is in
rendezvous.

We will refer to a group of agents in rendezvous using
its associated directed graph. At a particular instant in
time t there can be several agent groups in rendezvous,
each indexed using a unique element of the set R(t).
Any of these groups will have cardinality either 2, 3, or
4, (see Section II) depending on which segment of their
orbit they experience proximity with their neighbor(s).
For an arbitrary group GL with L ∈ R(t), consider
the phase image stack vector ϑL and denote Lm the
dimension of ϑL.

Proposition 3. While an agent group is in rendezvous,
the phases of all its followers converge exponentially and
monotonically to the phase of the group’s leader.

Proof. Collect the phase images of the agents within
a group in rendezvous in a stack vector ϑ ∈ Sk for
k ∈ {2, 3, 4}, and order the elements of ϑ from largest
to smallest. Without loss of generality assume that ϑL
can be decomposed in the form ϑL = (ϑ−L, ϑLm)

ᵀ,
where ϑLm is the phase image of the agent that does not
have an outgoing edge in EL—this is the leader of the
group, having the largest phase image. From (4) and (8)
it follows that the dynamics of the group’s phase images
evolve as the solution of a linear nominal system subject
to a nonlinear perturbation

ϑ̇L =

[
A−L ALm

01×(Lm−1) 0

](
ϑ−L
ϑLm

)
+

(
f (ϑ−L)
f (ϑLm)

)
, (10)

in which 0n×m denotes the n × m zero matrix, f (ϑ−L)
is the stack vector of the followers’ unforced orbital
dynamics (2) in the group, ALm is a column vector with
nonnegative entries having at position 1 ≤ k ≤ Lm − 1
the aij control gain associated with the leader-follower
relationship of the agent whose phase image is in po-
sition k in the ϑ−L vector with the leader of the group,
and A−L is the (Lm− 1)× (Lm− 1) matrix whose entries
are formed by the aij control gains of the leader-follower
relationships among the group’s followers. Specifically,
the element of ALm in row p, column q is the control gain

associated with this pair if the agent whose phase image
at entry p of ϑ−L follows the agent whose phase image
is in location q in ϑ−L, while the diagonal elements of
A−L are the negated sums of all non-diagonal elements
on that particular row plus the one in the same row of
ALm . (This implies that the whole matrix in the right
hand side of (10) is row stochastic.) Due to the total order
that the set made of the elements of ϑL will enjoy, the
elements of ϑ−L can always be arranged so that A−L is
upper triangular, in which case its eigenvalues will be
its (negative) diagonal elements.

Let In denote the n-dimensional identity matrix, let 1n
be the n-dimensional vector of ones, and define a new
(vector) variable

xL =
[

ILm−1 −1Lm−1

]
ϑL ∈ SLm−1 , (11)

which will evolve, given (10) and after setting
∆f (xL, ϑLm) , f (ϑ−L)− f (ϑLm)1Lm−1, according to

ẋL = A−L xL + ∆f (xL, ϑLm) . (12)

To see this, rewrite (11) as ϑ−L = xL + ϑLm 1Lm−1 and
take derivatives using (10) to get

ϑ̇−L = ẋL + ϑ̇Lm 1Lm−1

= ẋL + f (ϑLm)1Lm−1

=
[

A−L ALm

] (
ϑ−L
ϑLm

)
+ f (ϑ−L)

=
[

A−L ALm

](xL
0

)
+ ϑLm 1Lm

+ f (ϑ−L)

= A−LxL + f (ϑ−L) + ϑLm

[
A−L ALm

]
1Lm ,

from which (12) follows because
[

A−L ALm

]
is row

stochastic.
The dynamical system (12) is a (stable) linear system

with a nonlinear perturbation: the eigenvalues of A−L,
which can be thought of as upper triangular, are all
negative—in fact, (8) with (10) confirm that a diagonal
element is equal to −∑i∈Nj

aij for some j ∈ {1, . . . , N}.
The ∆f (xL, ϑLm) is actually vanishing because when
xL = 0 =⇒ ϑ−L = ϑLm 1Lm−1 =⇒ f (ϑ−L) =
f (ϑLm)1Lm−1. This is why (12) can be made exponentially
stable for a sufficiently large choice of aij; to see this in
detail, consider a quadratic Lyapunov function candidate

VL(xL) = xᵀLPLxL ,

where PL is the unique solution of the Lyapunov equa-
tion PL A−L + Aᵀ−LPL = −ILm−1. It can be verified that
with A−L being triangular, PL will be diagonal, and
its largest and smallest eigenvalues will be equal to
λmax(PL) = −1/2λmin(A−L) and λmin(PL) = −1/2λmax(A−L),
respectively.

Then invoking [44, Lemma 9.1], one concludes that
(12) is exponentially stable.1 Note, now that the nominal

1The bound on ‖ ∂∆f
∂xL
‖ is given in the appendix.
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(unperturbed) linear system has real eigenvalues provid-
ing exponential convergence with no oscillation for its
state. The fact that the bound on the rate of increase
of ∆f is dominated by the rate of decrease of the state
of the nominal system, especially given the triangular
structure of A−L, essentially ensures that the solutions
of (12) not only decrease exponentially, but they do so
monotonically.

Note, however, that the limited time in which GL is
in rendezvous may not allow its state xL to converge to
the origin. In addition, (12) rendezvous intermittently.
In between the rendezvous times of group GL, its agents
may flow passively along (2), or rendezvous in other
groups—in which case some of these interactions can
potentially disrupt the convergence of GL. Between the
times that GL rendezvous, therefore, VL does not neces-
sarily decrease. This complication motivates an analysis
of the whole network in discrete time, where a time
step expresses the time interval between two subsequent
rendezvous events occurring for agent groups which
include the agent with the smallest phase image, namely
ϑmin.

In the forthcoming analysis of the stability properties
of the network, the following lemma will be of use.

Lemma 1. Consider two dynamical systems

ż = f (z), z(0) = z0; ż = f (z), z(0) = z 0 (13a)
ẇ = f (w), w(0) = w0; ẇ = f (w), w(0) = w 0 (13b)

where z 0 < z0 and w 0 < w0. Take C < 0 and assume that
z0 = w0 and z 0 > w 0. Then,

min
t∈[0,T]

{
z(t)− z(t)

}
< min

t∈[0,T]

{
w(t)− w(t)

}
.

Proof. Since z and w evolve on the same periodic orbit
with period T and C < 0, from uniqueness of solutions
and given that z 0 > w 0 there will be an ε > 0, possibly
time-varying, such that w(t + ε) = z(t), while z(t) >
w(t), ∀t ≥ 0. At the same time, z(t) = w(t), ∀t ≥ 0. In
light of these observations,

w(t) + w(t) < z(t) + z(t) ∀t ≥ 0 =⇒

tw , inf
{

t ≥ 0 | w+w
2 = (2k+1)π

4 , k ∈N
}
>

tz , inf
{

t ≥ 0 | z+z
2 = (2k+1)π

4 , k ∈N
}

,

meaning that (13a) will reach min{z − z} faster than
(13b) will reach min{w − w}. Given that w(t) = z(t),
this implies that z(tz) < w(tw). As a result,

min
t∈[0,T]

{
z(t)− z(t)

}
= 2

(
z(tz)− (2k+1)π

4

)
< 2

(
w(tw)− (2k+1)π

4

)
= min

t∈[0,T]

{
w(t)− w(t)

}
Summing up,

z0 = w0, z 0 > w 0 =⇒
min

t∈[0,T]

{
z(t)− z(t)

}
< min

t∈[0,T]

{
w(t)− w(t)

}
. (14)

The main result is summarized in the theorem that
follows. The theorem states that as long as the leader-
follower relationships form a spanning tree across the
network, asymptotically all agents will achieve periodic
rendezvous at different neighborhoods but simultane-
ously.

Theorem 1 (Network syncrhonization). If a collection
of N agents with dynamics (3) evolving in a pattern of
periodic orbits (1) under intermittent control law (8), ren-
dezvous periodically according to (7) and form leader-follower
relationships encoded in a directed graph which has a time-
invariant spanning tree after ensuring (9), then the agents
will eventually synchronize their phase image dynamics (4)
and have them converge to that of the agent with the largest
phase image.

Proof. While the identity of the agent associated with
ϑmin may change over time as different groups synchro-
nize in a decentralized way, by nature of the interaction
law (8), the identity of the agent associated with ϑmax is
constant. The phase image of the agent associated with
ϑmax evolves according to (4) with uj = 0 ∀t ≥ 0.

Denote tn beginning of the nth time interval when
the group containing the agent exhibiting ϑmin is in
rendezvous. Let ϑ̂(t) |n denote the solution of (2) with
initial condition ϑ̂(0) |n = ϑ(tn), and define

V(n) , min
t∈[0,T]

¶
ϑ̂max(t) |n − ϑ̂min(t) |n

©
. (15)

Recall that this minimum is attained when
(ϑ̂max + ϑ̂min)/2 = (2k + 1)π/4. The value of this minimum
is not known in closed form; what can be shown,
however, Lemma 1 guarantees that the smaller the
difference ϑmax(tn) − ϑmin(tn) is, the smaller V(n)
would be. At the same time, Proposition 3 ensures that
during rendezvous, ϑmin converges monotonically to
some (higher) ϑLm which also evolves according to (4)
with uj = 0 during this rendezvous. That implies that
ϑmin accelerates relative to the unactuated flow dynamics
(2) that always drive ϑmax, and therefore reduces the
difference ϑmax − ϑmin. As a result, if that rendezvous
instance is indexed n, at the end of their rendezvous,
say time t′, the group that had the agent associated
with ϑmin will have this agent presenting a phase image
ϑ′min for which ϑmax(t′)− ϑ′min(t

′) < ϑmax(tn)− ϑmin(tn).
In the above, the phase image of the trailing agent
is primed to express the fact that by the end of the
rendezvous interaction in that group, the agent with the
minimum phase image may have changed.

However, irrespectively of whether the identity of the
agent associated with ϑmin changes during a rendezvous
period, as long as tn+1 − tn > 0,2 it will still be the case

2In fact, the possibility of tn+1 = tn, ∀n ∈N (an event time set with
infinite cardinality) is excluded based on two facts: (i) by continuity,
rendezvous times are always nonzero, and (ii) by definition, if there
are multiple solutions to arg min ϑi then one is arbitrarily selected to
define the agent with ϑmin.
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that when the next rendezvous involving ϑmin occurs,
one has ϑmax(tn+1)− ϑmin(tn+1) < ϑmax(tn)− ϑmin(tn).
As a result,

ϑ̂max(0) |n+1 − ϑ̂min(0) |n+1 < ϑ̂max(0) |n − ϑ̂min(0) |n .

The differences ϑ̂max(0) |n+1 − ϑ̂min(0) |n+1 and
ϑ̂max(0) |n − ϑ̂min(0) |n can be thought of as being
the differences between the initial conditions of the
two states in systems (13a) and (13b), respectively.
Consequently, Lemma 1 will imply that

min
t∈[0,T]

¶
ϑ̂max(t) |n+1 − ϑ̂min(t) |n+1

©
<

min
t∈[0,T]

¶
ϑ̂max(t) |n − ϑ̂min(t) |n

©
, (16)

suggesting that V(n + 1) < V(n).
Function V(n), as defined in (15), is bounded, non-

negative and continuous. Furthermore, since the agent
associated with ϑmax will remain unactuated, while the
one giving ϑmin will certainly accelerate on its first
rendezvous, ϑmax(tn) − ϑmin(tn) ≤ ϑmax(t1) − ϑmin(t1),
meaning that the set in which ϑmax(tn) − ϑmin(tn) and
therefore ϑ̂max(t) |n − ϑ̂min(t) |n takes values, is compact.
Therefore, there exists a c ≥ 0 such that as n→ ∞,(

ϑmax(tn)− ϑmin(tn)
)
→ M ∩V−1(c) ,

where

V−1(c) , {ϑmax(tn)− ϑmin(tn) ∈ S1 |
min

t∈[0,T]
{ϑ̂max(t) |n − ϑ̂min(t) |n} = c}

and M is the largest invariant set in

E ,
ß

ϑmax(tn)− ϑmin(tn) ∈
[
0, ϑmax(t1)− ϑmin(t1)

]
:

min
t∈[0,T]

¶
ϑ̂max(t) |n+1 − ϑ̂min(t) |n+1

©
−

min
t∈[0,T]

¶
ϑ̂max(t) |n − ϑ̂min(t) |n

©
= 0
™

.

One can recall the monotonicity properties of

mint∈[0,T]

¶
ϑ̂max(t) |n − ϑ̂min(t) |n

©
with respect to ϑmax(tn)− ϑmin(tn) (see (14)) to conclude
that E is equivalently expressed as

E =

ß
ϑmax(tn)− ϑmin(tn) ∈

[
0, ϑmax(t1)− ϑmin(t1)

]
:

ϑmax(tn+1)− ϑmin(tn+1) = ϑmax(tn)− ϑmin(tn)

™
.

Now given the rendezvous group GL dynamics (10) (for
any arbitrary L ∈ R(t)) and its stability properties estab-
lished in Proposition 3, the difference ϑmax(tn)− ϑmin(tn)
will be time-invariant only if ϑ−L = 0, which implies
that ϑmin = ϑLm . The phase image ϑLm , however, has
dynamics of its own: as long as the agent network has a
spanning tree, the agent with ϑLm is a follower in some

other rendezvous group, ϑLm converges to some other
leading phase image, and from the network’s percistent
connectivity one inductively arrives at ϑmin = ϑmax. If
ϑmin = ϑmax and ϑmin ≤ · · · ≤ ϑi ≤ ϑmax this inevitably
means that ϑi = ϑj, ∀i, j ∈ {1, . . . , N}, which is the
only time-invariant configuration as t and n tend to
infinity.

IV. VALIDATION

A. Numerical Simulation Analysis

We start with a small-scale numerical study of 3×3
grid arrangement of nine gyres (see e.g. the gyre arrange-
ment in Fig. 5), each of which hosts one simulated drifter.

-1 0 1 2 3 4 5

X

-1

0

1

2

3

4

5

Y

Fig. 5: An example of an arrangement of gyre flows on a grid.
In this picture, each gyre occupies a 2×2 area and the flow lines
within it resemble cocentric rounded squares. Drifters marked
with different colors move in opposite orientations, following
the direction of the vector fields inside their gyres.

The flow parameters chosen to realize the simulated
geophysical flow for the small-scale study were s = 2,
δ = 0.2, and A = 0.03. The initial conditions used
to produce the outcomes for the nine agents in Figs 6
and 7 are as follows. 1: (0.9873,0.0000); 2: (0.9872,1.9223);
3: (0.9869,4.1563); 4: (1.0137,4.2368); 5: (1.0145,1.6798);
6: (1.0159,0.4076); 7: (4.9820,0.5003); 8: (4.9784,1.4005);
9: (4.9714,4.7058).

The simulated start their motion from their assigned
initial conditions moving along their orbit as it is pre-
scribed by the flow equations (2), five of them rotating
clockwise while the others counterclockwise. Until they
come into distance δ from another robotic drifter and
establish a first rendezvous with it, the robots do not
apply any actuation; they just go with the flow. After
being released and once they come into rendezvous
they apply (8), fix their leader-follower relationships
within their corresponding groups and start to reduce
the differences between their phase images.

For this configuration, the evolution of the Lyapunov-
like function V(n) over time is depicted in Fig. 6.
Figure 7, on the other hand, illustrates the frequency,
duration, and scope of rendezvous events at the four
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(internal) flow saddle points, indicating how the ren-
dezvous periodicity and duration time stabilizes to con-
stant values over time.

0 50 100 150 200 250 300 350 400 450 500
t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

V
(n

)

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
ax

-
m

in
Fig. 6: Evolution of Lyapunov-like function V(n) over the
course of a simulation run (dashed curve), overlaid on the
trajectory of ϑmax(t) − ϑmin(t) (continuous curve). Function
V(n) decreases monotonically and its jumps coincide with the
instances when the identity of the agent with ϑmin switches.
The interval including four (same amplitude) peaks on the
ϑmax(t) − ϑmin(t) graph corresponds to one orbit period T,
since along a virtual common orbit, the phase image difference
is maximal along the four long sides based on (13).

Fig. 7: The duration of rendezvous intervals around the flow
saddle configurations over the course of network synchro-
nization. The height of each pulse indicates the number of
robots engaged in rendezvous and the width of the pulse
expresses the duration of the rendezvous event at the saddle
point. At steady state, this sequence of sets of saddle points
in rendezvous repeats periodically at the period of the robots’
orbit.

To verify the scalability properties of the synchronized
rendezvous protocol, we created in silico a larger-scale
planar pattern with 100 gyres arranged on a rectangu-
lar 10×10 grid. Gyre flow parameters A and s were

now chosen at 0.03 and 1, respectively. In an attempt
to accelerate the simulation, the rendezvous range δ
was purposefully selected a relatively high at 0.4; the
main reason for this is the appearance of accumulated
numerical errors at lower C and δ regimes that pushed
simulated robots away from their nominal orbits. On
each gyre orbit associated to C = 0.05 (cf. Fig 2), we
initialized a robotic drifter. With this choice of param-
eters, the period of oscillation T for a robotic drifter
around each gyre orbit is about one minute (T = 59.2275
seconds, to be exact). We split the [0, 2π/3] interval into
100 values, and assigned initial conditions to the robots
starting from the gyre centered at (0, 0) and moving
up and down, thus covering the grid from left to right
in a raster scan fashion. This assignment method, com-
pared to a completely random assignment, contributed
giving initial intermittent connectivity to the network
which is a necessary condition for synchronization—
the network can preserve its connectivity but cannot
establish it starting off without it. Naturally, this way
it is ϑmax(0)− ϑmin(0) = 2π/3.

Figure 8 shows the evolution of discrete-time
Lyapunov-like function V(n), from the start of the simu-
lation with the initial conditions and for a period of 300
simulation seconds. Monotonic3 convergence to zero for
V(n) is observed as simulation time t→ ∞.
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Fig. 8: Evolution of Lyapunov-like function V(n) over the
course of a simulation run (dashed curve), overlaid on the
trajectory of ϑmax(t) − ϑmin(t) (continuous curve). Function
V(n) decreases monotonically and its jumps coincide with the
instances when the identity of the agent with ϑmin switches.
The interval including four (same amplitude) peaks on the
ϑmax(t) − ϑmin(t) graph corresponds to one orbit period T,
since along a virtual common orbit, the phase image difference
is maximal along the four long sides based on (13).

If one observes the internal flow saddle points (where
four rounded corners of neighboring gyres meet) and
documents the scope and duration of the rendezvous

3There is, in fact, a very gradual decrease even along the apparent
plateaus on the graph of V(n), as the robot pair associated with ϑmax−
ϑmin remains fixed and ϑmin slowly crawls toward ϑmax.
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events occurring there, they will notice the following pat-
tern. Initially, rendezvous events around these locations
occur randomly and may include anywhere from 2 to
4 robots (Fig. 9). At steady state, all rendezvous events
are periodic and last for equal time periods. Within the
orbit period of about 60 seconds, as a robot goes around
a full rotation on its orbit, it will rendezvous at all four
saddle points with three other robots, in a sequence
illustrated in the inset pictures on top of the rendezvous
time evolution graph of Fig. 9.

Fig. 9: The duration of rendezvous intervals around the flow
saddle configurations over the course of network synchroniza-
tion. The height of each pulse indicates the number of robots
engaged in rendezvous and the width of the pulse expresses
the duration of the rendezvous event at the saddle point. The
insets on top of the graph mark (circled in yellow) the saddle
point locations where robots are in rendezvous. At steady state,
this sequence of sets of saddle points in rendezvous repeats
periodically at the period of the robots’ orbit.

B. Elements of Experimental Implementation

The numerical analysis of the previous section was
based on the assumption that the robotic drifters follow
their gyre orbits faithfully. In reality, no matter how
strong the geophysical currents may be, there is consid-
erable amount of noise and perturbation to throw them
off course. Yet, keeping their motion on their designated
orbit is important for achieving sustained synchronous
rendezvous, because it affects the period of oscillation
as well as their ability to come close enough to their
neighbors to initiate interaction.

A pair of neighboring gyre flows was realized in
laboratory conditions within a water tank steered by two
submerged motor-driven propellers rotating in opposite
directions (Fig. 10a). In this implementation, a robotic

agent is realized in the form of the micro autonomous
surface vehicle (mASV) of Fig. 10b which are localized
externally through a motion capture system. As the plot
of Fig. 11 indicates, the motion of the mASV within the
current generated by the submerged propellers is noisy,
and needs to be regulated in order to follow the nominal
flow lines generated by the theoretical gyre model (1).

(a) (b)

Fig. 10: The experimental setup. (a) A view of the experimental
multi-robot Coherent Structure Testbed (mCoSTe) at the Uni-
versity of Pennsylvania, where a pair of neighboring gyre flows
with opposite orientation was realized; (b) A mASV which is
differentially driven and can achieve a forward speed of up to
0.2 m/s (Courtesy of Prof. Ani Hsieh [27]).

Fig. 11: Closed-loop motion of mASV (Fig. 10b) while attempt-
ing to track the designated surface paths (marked in Fig. 10a).
Dashed curves represent the nominal flow lines that vehicles
have to trace and solid lines show the mASVs’ traversed
paths. The square marker indicates the vehicles’ initial position
and the circle marks their final position. The dashed ellipsis
highlights the region where the two vehicles rendezvous.

The remaining of this section, therefore, elaborates on
a path tracking controller that can be implemented on
differentially-driven micro-vehicles to follow the nomi-
nal flow lines of (1) with bounded errors in the pres-
ence of disturbances. Keeping the vehicle on the closed
orbit associated with a specific value of parameter C
is realized through a controller that acts on the radial
component ρ of the vehicle’s polar coordinates (ρ, θ)
relative to the gyre’s center.

The design of the radial regulation law uρ is based
on the streamline-based control [4]. In this framework,
stream functions quantify the path-independent net flow
flux from one point P to another point Q. A quantifi-
cation of this flux from P to Q is referred to as stream
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value and in the case of the geophysical flow considered
here (see (5)) is expressed as ψ f (P, Q) ,

∫ Q
P f (x, y)dy−

g(x, y)dx. The set of points with the same stream value
form a streamline. The actuated robotic drifter dynamics
(5) can be seen as the result of a superposition of stream
function ψ f (P, Q) with ψd(P, Q) ,

∫ Q
P ux dy− uy dx. In

theory, a vehicle moving along a vector field (ux, uy) rela-
tive to a 2D incompressible flow field ( f (x, y), g(x, y)) can
only reach from P locations Q for which satisfy the (su-
perimposed) streamline constraint ψ f (P, Q) + ψd(P, Q) =

0 [4], and since by construction ψ f (P, Q) = 0,4 it fol-
lows that it should be ψd(P, Q) = 0. For the latter, it
suffices that ux dy− uy dx = 0, which due (5), and after
setting R(x, y) , tan πx

s (tan πy
s )−1, leads to the condition

uy = −uxP(x, y). From this condition, and given that

ux = uρ cos θ − u ρ sin θ

uy = uρ sin θ + u ρ cos θ ,

the radial regulation controller can be extracted as a
function of the synchronization control law uθ :

uρ = ρ u
R(x, y) sin θ − cos θ

R(x, y) cos θ + sin θ
.

V. CONCLUSION

One big challenge for large-scale ocean monitoring by
marine vehicles with limited communication ability is
how local interaction can result in a global synchroniza-
tion so as to maximize the interaction time and realize
global information transmission for all the agents in the
network. At the same time, those low cost marine drifters
should take advantage of the ambient flow field to per-
form the long endurance monitoring task. In this paper,
the dynamic for a semi-passive drifter in dynamically
dominant ambient ocean circulation is understood as
a nonlinear periodic oscillation which is expressed in
phase model. Constrained by the fact that a drifter can
only perform local interaction with a relative small part
of the network, we studied how to apply connectivity
maintaining strategy to the network through design
of controller. Local interaction accomplished through
state feedback controller can successfully achieve local
synchronization, which is proved by theory from sta-
bility of perturbed systems. Thanks to the connectivity
maintaining theory and the achievement of local syn-
chronization, the global synchronization can be possible.
Based on the experimental result from small scale test
tank, a orbit maintaining method is also designed. The
numerical simulation supports the effectiveness of the
synchronization strategy for a large network. Future
work involves validation in experimental environment
and how initial condition of the network influence the
global synchronization result.

4To see this, set ux = uy = 0 for an unactuated vehicle, and apply
the streamline constraint.

APPENDIX

Recall (11) xL =
[

ILm−1 −1Lm−1

]
ϑL ∈ SLm−1; then

∆f (xL, ϑLm) ≡ ∆f
(
[ ILm−1 −1Lm−1 ]ϑL, ϑLm

)
= ∆f (ϑL) .

Therefore,

∂∆f

∂xL
=

∂∆f

∂ϑL

∂ϑL
∂xL

=
∂∆f

∂ϑL

(
ILm−1
−1
ᵀ
Lm−1

)
.

At the same time,

∂∆f

∂ϑL
=



∂ f (ϑL1 )

∂ϑL1
0 ··· 0

0
∂ f (ϑL2 )

∂ϑL2
··· 0

. . .
0 ··· 0

∂ f (ϑLm )
∂ϑLm


.

Given that the agents’ phase images evolve on the
(common) orbit cos πx

s cos πy
s = C, with x = ρ cos ϑ and

y = ρ sin ϑ, and with ρ ∈
(

s
π arccos C,

√
2

π arccos
√

C
)

,
the magnitude of each one of the diagonal elements∣∣∣∣ ∂∆ f (ϑLi

)

∂ϑLi

∣∣∣∣ = ∣∣∣π2 A
s sin

πxLi
s cos

πyLi
s cos 2ϑLi

−πA
ρLi

(
cos

πxLi
s sin

πyLi
s cos ϑLi − sin

πxLi
s cos

πyLi
s sin ϑLi

)∣∣∣∣
can be bounded as follows∣∣∣∣ ∂∆ f (ϑLi

)

∂ϑLi

∣∣∣∣ ≤ π2 A
s

∣∣∣sin
πxLi

s sin
πyLi

s

∣∣∣
+ πA

ρLi

√
cos2 πxLi

s sin2 πyLi
s + sin2 πxLi

s cos2 πyLi
s

≤ π2 A
s

√
1 + C2 − cos2 πx

s −
C2

cos2 πx
s

+ π2 A
s arccos C

√
cos2 πx

s +
C2

cos2 πx
s
− 2C2 .

With x ∈
[
− s

π arccos C, s
π arccos C

]
, the left hand side is

maximized at x = ± s
π arccos

√
C, which yields the upper

bound:∣∣∣∣ ∂∆ f (ϑLi
)

∂ϑLi

∣∣∣∣ ≤ πA
s

(
π(1− C) + π

arccos C

»
2C(1− C)

)
.

It thus follows that∥∥∥ ∂∆f
∂xL

∥∥∥ ≤ πA
√

10+2
√

21
2s

(
π(1− C) + π

arccos C

»
2C(1− C)

)
.
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