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Abstract— This is among the first results that suggest
that multi-agent systems that interact through time-invariant,
nearest-neighbor rules, can synchronize their states regardless
of the size of communication delays. Network connectivity and
consistency in the use of neighbor state information is all that is
needed. The analysis in this paper is performed in discrete time
and is based on the properties of non-negative matrices. Due
to the fact that the state transition matrix is no more ergodic,
the results of [1] cannot be applied. A crucial observation
regarding the delayed dynamics allows the reduction of the
model and the establishment of ergodicity for the system’s
state transition matrix.

I. INTRODUCTION

It is generally true that communication delays degrade
performance in networked control systems. In this paper we
show that for a particular model of discrete time nearest-
neighbor interaction, it is possible to intertwine control
and communication in such a way that stability is robust
with respect to delayed update of each neighbor state. In
particular, if in the no-delay multi-agent system all agent
states synchronize asymptotically, in the sense that all states
converge to a common vector, the same will happen with
the delayed model if these delays are bounded.

Interest in models of nearest-neighbor interaction (c.f.
[2]–[4]) has been increasing recently, motivated by exciting
links to biology, statistical mechanics [5], networking and
computer science [6]. The stability of the Vicsek model [7]
was investigated from a control’s standpoint by Jadbabaie
et. al, [1] in a seminal work that highlighted links between
linear algebra, graph theory and cooperative control. Since
then, kinematic [8] and dynamic [9]–[11] synchronization
algorithms have been developed for multi-agent systems
with local interaction rules. The stability of synchronization
in large groups of coupled oscillators [12]–[14] has also
been the focus of attention. In most of this work, informa-
tion is generally assumed to be propagated instantly.

The effect of communication delays in networks of
interconnected systems has been addressed in several con-
texts, one of the early ones being asynchronous distributed
computation [15]. More recently, it has been investigated in
internet-like coordination algorithms by Sandoval and Ab-
dallah [16]. Liu and Passino [17] have considered the case
of time delays and proved uniform ultimate boundedness
of position errors in the swarm; velocity synchronization
is pursued via gradient following. Saber and Murray [18]

study the effect of delays on consensus protocols using
Nyquist plots. These results suggest that communication de-
lays have an adverse effect on stability. However, there is re-
cent evidence that nearest neighbor interactions can be made
robust to communication delays. Angeli et. al [19] extend
the result of Moreau [20] including time delays. Using a set-
valued Lyapunov function, they conclude that under certain
compactness conditions, connectivity is sufficient to ensure
stability. In ongoing work, Cao et. al [21] derive graph
theoretic conditions for velocity syncrhonization under time
delays, but both their model and underlying assumptions
on the information agents can use, are slightly different.
All these results seems to agree in principle with the one
presented in this paper, but our approaches (developed in
parallel) are different. In the model we are studying stability
is established through the properties of ergodic matrices.
Another difference is that in the problem addressed here the
interconnection topology is fixed. Although our approach
draws from the power of the results on nonnegative ma-
trices, the treatment has to deviate significantly from that
of [1], since due to the different state model, several matrix
properties on which the proofs of the latter paper are built,
are lost.

We look at a group of interconnected systems with single
integrator dynamics in discrete time. Agents broadcast their
state to their neighbors in turns, each having one time step to
complete the transmission. Thus, only one agent transmits
at a given time step and information cached by each agent
about its neighbors can be outdated up to N steps. The
systems update their state to the average of that of their
neighbors, based on the most recent information cached.
Under mild assumptions on the use of state updates, which
ensure that neighbors use the same information regarding
each other, we show that all systems synchronize their states
to a common value, regardless of the time delay in the
neighbor’s state information. Our proof is based on the
observation that some delayed information does not affect
the state dynamics, and thus the state evolution can be
described by a reduced model. Even though the original
state matrix lacks several important properties, the one
in the reduced model is shown to be ergodic and time
invariant, from where the stability of the complete model
follows. These stability results are supported by numerical
simulations performed using the original (full) model.



In Section II we present the system at hand, we construct
the discrete-time state space model and we identify the
properties of the associated matrices. Section III presents
our main result. In Section IV we illustrate the points of
our proof with a numerical example. Section V provides
simulation results showing the convergence of the system
with delays for several configurations. Finally, Section VI
concludes the paper with a summary of the results.

II. PROBLEM STATEMENT

The interactions between agents are represented by means
of a time-invariant, undirected graph:

Definition II.1 (Interconnection graph) The interconnec-
tion graph, G = {V , E}, is an undirected graph with:

• a set of vertices (nodes), V = {n1, . . . , nN}, indexed
by the agents in the group, and

• a set of edges, E = {(ni, nj) ∈ V × V | ni ∼ nj},
which contains unordered pairs of nodes correspond-
ing to interacting agents.

The set of nodes that are adjacent to node i is denoted
Ni. The state of agent i is ui and in the absence of any
communication delays during agent interaction, it is updated
in discrete time as follows [1]:

ui(k + 1) =
1

1 + |Ni|


ui(k) +

∑
j∈Ni

uj(k)


 , (1)

and collecting all states in a vector u, we can write the
dynamics of the multi-agent system without delays as

u(k + 1) = (I + D)−1(A + I)u(k) � Fu(k), (2)

where A and D are the adjacency and valency matrices of
G, respectively, [22]. To distinguish matrices from vectors
we will use sans serif fonts for the former.

Note that the stability results obtained here are not
dependent on the duration of the time step. Without loss of
generality we can consider a numbering of nodes according
to the order of transmission. Thus, every N steps, the
transmission sequence is repeated. We will call the sequence
of steps that starts with the transmission of agent 1 and ends
with the transmission of agent N , a communication cycle.

To keep track of timed transmissions we will use a 0−1
matrix S, with rows indexed by the agents and columns
indexed by time steps: sij = 1 indicates that agent i
transmits at cycle step j. As time progresses, the columns
of S shift from left to right, with the rightmost column
being recycled to the left. For example, for a group of four
agents where agent 1 broadcasts first, then agent 2, then
agent 3 and finally agent 4, at the time step k where agent
1 transmits again, and at time step k+1, S(k) and S(k+1)

will have the form:

S(k) =



1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


 , S(k + 1) =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



(3)

An agent i uses delayed neighbor states, and the earlier
a particular neighbor j has broadcasted its state to i, the
more delayed this state information is going to be when i
uses it. In order to keep some consistency in state updates
we will assume that agents are allowed to use their own
current states only after they have broadcasted them to their
neighbors.

Consider now augmenting the state vector u(k) with
components expressing previous states: u(k − 1), u(k −
2), . . . , u(k − N + 1). If we call

U(k) = (u(k)T , u(k − 1)T , . . . , u(k − N + 1)T )T ,

then we can write the augmented system with delays as
follows:

U(k + 1) =




(D + I)−1(I + A)[Si ⊗ eT
i ]

I 0 . . . . . . 0 0
0 I . . . . . . 0 0
0 0 I . . . 0 0
...

...
...

. . . 0 0
0 0 0 . . . I 0




U(k)

� H(k)U(k), (4)

where [Si ⊗ eT
i ] is the matrix formed by S when its ith

column, Si, is replaced by the Kronecker product of itself
with the transpose of the ith unit vector. For the example
of four agents at time step k where S(k) is given by (3),
the matrix [Si ⊗ eT

i ] will have the form:

[Si ⊗ eT
i ] =

[
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

]
.

Note that despite the original (non-delay) system being
time invariant, the delayed version is time varying, and H is
changing between time steps due to the shift in the columns
of S. In what follows, we will rewrite the first row of blocks
of H as follows:

F[Si ⊗ eT
i ] =

[
f1 f2 · · · fN

]
.

Matrix H inherits some of the properties of F, namely: (i)
it is row stochastic, and (ii) non-negative. However, it does
not have nonzero diagonal elements and it is not irreducible.
Without the latter two properties, the results of [1] do not
apply and stability of (4) cannot be directly established.

The purpose of the following section will be to show
that, despite the communication delays in state update, (4)
synchronizes its state vector asymptotically, provided that
the “nominal” (no-delay) system can do so.



III. MAIN RESULT

The system initializes at k = 0, without the agents having
any knowledge of their neighbors’ states. We have to allow
one communication cycle to elapse for the agents to acquire
local information. Our asymptotic analysis will therefore
begin from k = 1. The following theorem summarizes the
result of this paper:

Theorem III.1 (Stability with communication delays)
Consider a multi-agent system with a time invariant
connected interconnection graph G, and discrete time
agent dynamics described by (1). If only one agent is
allowed to broadcast its state information to its neighbors
at each time step k, and each agent can use its latest
broadcasted own state in its update equations (1), then in
the resulting interconnected system with communication
delays all agent states will converge to a single value.

Proof: First note that the change in H from step to
step is induced from the permutation of the first block of
rows: [f1 · · · fN ]. Matrix H is periodic with a period of
one communication cycle: H(t + N) = H(t). Starting at
every state, and sampling the trajectory at multiples of the
communication cycle, the obtained sequence appears to be
produced by a time invariant dicrete time system with the
state transition matrix

M � H(N)H(N − 1) · · ·H(1),

and since H(k) is row stochastic and non-negative for every
k, M will also be (row) stochastic and non-negative. The
state transition matrix of (4) can thus be written as

Φ(kN, 1) = Mk.

Let us now look into M closely. A direct calculation
verifies that

M =




G1(N) G2(N) · · · GN (N)
G1(N − 1) G2(N − 1) · · · GN (N − 1)

...
...

...
G1(1) G2(1) · · · GN (1)


 ,

where Gi(1) = fi, and the block elements of each column
are given by the recursive formula:

Gi(k) =
∑
j=1

fj(k)Gi(k − j), (5)

where Gi(r) for r < 1 are read from the blocks of H(1)
below fi(1). Using (5), and given that

fmod(i,N,1)

(
mod(j, N, 1)

)
= fmod(i−1,N,1)

(
mod(j − 1, N, 1)

)
, (6)

due to the permutation of S, where mod(·, N, 1) is the
modulo function with offset 1, we find that in all lower
diagonal matrix blocks of M, including G1(N), G2(N −
1), . . . , GN (1), we have fi(1) appearing in the block column
i as the last term in the sum

∑
j=1 fj(k)Gi(k − j). All

terms in this sum are right multiplied by fi(1) and involve
products of the form fj(1)fi(1). Based on the special
structure of fi(1) every such multiplication will result (i)
either in a zero matrix, if the node corresponding to the
nonzero column of fj(1) is not connected to the node of
the nonzero column of fi(1), meaning fji = 0,

fjfi =




0 . . . 0 f1j 0 . . . 0
0 . . . 0 f2j 0 . . . 0

...
...

...
...

...

0 . . . 0︸ ︷︷ ︸
j−1 times

fNj 0 . . . 0







0 . . . 0 f1i 0 . . . 0
0 . . . 0 f2i 0 . . . 0

...
...

...
...

...

0 . . . 0︸ ︷︷ ︸
i−1 times

fNi 0 . . . 0




=




0 . . . 0 f1jfji 0 . . . 0
0 . . . 0 f2jfji 0 . . . 0

...
...

...
...

...

0 . . . 0︸ ︷︷ ︸
i−1 times

fNjfji 0 . . . 0




,

or, (ii) if the nodes are connected, in a matrix having
nonzero elements in every row of the nonzero column of
fi(1) for which fj(1) has nonzero elements. In other words,
if the corresponding nodes are connected, the product
fj(1)fi(1) will inherit nonzero elements from the nonzero
column of fj(1) and place them in the nonzero column of
fi(1).

With this said, it becomes clear that the remaining terms
in each sum

∑
j=1 fj(k)Gi(k − j) of block column i

below the block diagonal, can only add positive elements
in the nonzero column of fi(1). In the Gi blocks above
the diagonal of M, using (6) we can verify the existence
of a term of the form fi(1)2. This happens because the
fj(k) terms in

∑
j=1 fj(k)Gi(k − j) are equated to the

corresponding blocks fr(1) via (6), with r taking values in
{N − (k − 2), . . . , N, 1}. On the other hand, the diagonal
block is located in block-row N − (k − 1), which means
that some fj(k) will be equal to fi(1).

Since the diagonal element of the nonzero column of
fi(1) is always positive (fi(1) inherits this property from F),
fi(1)2 will maintain the nonzero elements of fi(1). Thus, for
every j = 1, . . . , N , we will have a nonzero column of M,
mi, with the following structure:

mi = ∆



fj(1)

...
fj(1)


 + λi, (7)

where ∆ is a N2 × N2 diagonal positive definite matrix,
fj is a column of F, and λi a nonnegative N2 × 1 vector.



The zero columns of M indicate that the associated states
do not contribute to the overall dynamics. One can obtain
a reduced model that describes the evolution of the system
by removing those states from the state model. The reduced
system, viewed over multiples of the communication cycle,
has the form Ū(k + 1) = M̄Ū(k). In removing the zero
columns from M, one column corresponding to a (possibly
delayed) state of different agent is kept each time. Based
on (7), M̄ will have the following form:

M̄ = ∆1 ◦ (FS) + Λ,

where ∆1 is a positive N × N matrix, ◦ denotes the
Hadamard product, Λ is a nonnegative N × N matrix and
the product of F with the communication matrix S results
in a permutation of the columns of F. With F being an
irreducible matrix, since the underlying interaction graph of
the nominal system is (strongly) connected, M̄ will be too:
Λ will only insert additional edges in the underlying graph.
With F having all diagonal elements nonzero, M̄ will be
primitive too [23]. In addition, it is (row) stochastic, because
the removal of zero columns from M does not affect the sum
of the row elements. A primitive and stochastic matrix is
ergodic [1] which means that by definition:

lim
k→∞

M̄k = 1cT ,

which establishes the convergence of the reduced state
vector to ξ1, for some ξ ∈ R. If current and (bounded)
delayed states of agents converge to a common value, it is
clear that all current states will converge.

IV. A NUMERICAL EXAMPLE

A group of four agents is interconnected as follows:

•1 �� •2��

��•4 �� •3��

��

where a double headed arrow represents a bidirectional link
(undirected edge). For this graph the matrix F in (2) is

F =



1/2 1/2 0 0
1/3 1/3 1/3 0
0 1/3 1/3 1/3
0 0 1/2 1/2




Assuming that the broadcasting sequence is 1, 2, 3, 4 start-
ing at step k = 1, the matrix H will have the form:

H(1) =



f1(1) f2(1) f3(1) f4(1)

I 0 0 0
0 I 0 0
0 0 I 0




where

f1(1) =



1/2 0 0 0
1/3 0 0 0
0 0 0 0
0 0 0 0


 , f2(1) =



0 0 0 0
0 0 0 0
0 0 0 1/3
0 0 0 1/2


 ,

f3(1) =



0 0 0 0
0 0 1/3 0
0 0 1/3 0
0 0 1/2 0


 , f4(1) =



0 1/2 0 0
0 1/3 0 0
0 1/3 0 0
0 0 0 0


 .

In the next time step, matrix H will evolve as follows:

H(2) =



f1(2) f2(2) f3(2) f4(2)

I 0 0 0
0 I 0 0
0 0 I 0




where f1(2) = f4(1), f2(2) = f1(1), f3(2) = f2(1), and
f4(2) = f3(1). In the following time steps we will have:

H(3) =



f3(1) f4(1) f1(1) f2(1)

I 0 0 0
0 I 0 0
0 0 I 0




H(4) =



f2(1) f3(1) f4(1) f1(1)

I 0 0 0
0 I 0 0
0 0 I 0


 .

Time step k = 4 signals the end of one communication
cycle and matrix M will be:

M � H(4)H(3)H(2)H(1).

In numerical form, it will read:

M =




0.6667 0 0 0 0 0 0 0.0000 0 0 0.1667 0 0 0.1667 0 0
0.4815 0 0 0 0 0 0 0.1111 0 0 0.2593 0 0 0.1481 0 0
0.1667 0 0 0 0 0 0 0.3333 0 0 0.3333 0 0 0.1667 0 0
0.0833 0 0 0 0 0 0 0.5000 0 0 0.3333 0 0 0.0833 0 0
0.6667 0 0 0 0 0 0 0.0000 0 0 0.1667 0 0 0.1667 0 0
0.4815 0 0 0 0 0 0 0.1111 0 0 0.2593 0 0 0.1481 0 0
0.1481 0 0 0 0 0 0 0.4444 0 0 0.2593 0 0 0.1481 0 0
0.0556 0 0 0 0 0 0 0.6667 0 0 0.2222 0 0 0.0556 0 0
0.6667 0 0 0 0 0 0 0.0000 0 0 0.1667 0 0 0.1667 0 0
0.4444 0 0 0 0 0 0 0.0000 0 0 0.4444 0 0 0.1111 0 0
0.1111 0 0 0 0 0 0 0.3333 0 0 0.4444 0 0 0.1111 0 0
0.0000 0 0 0 0 0 0 0.5000 0 0 0.5000 0 0 0.0000 0 0
0.5000 0 0 0 0 0 0 0.0000 0 0 0.0000 0 0 0.5000 0 0
0.3333 0 0 0 0 0 0 0.0000 0 0 0.3333 0 0 0.3333 0 0
0.0000 0 0 0 0 0 0 0.3333 0 0 0.3333 0 0 0.3333 0 0
0.0000 0 0 0 0 0 0 0.5000 0 0 0.5000 0 0 0.0000 0 0




.

Notice the appearance of the zero columns, which also indi-
cate that M is reducible. These columns will be maintained
after multiplication from the left.

The matrix blocks of M displayed above can be calculated
through the recursive formula (5), using fi(j) = fi−1(j−1),



as:


f1(4)
(
f1(3)

(
f1(2)+I

)
+f2(3)+I

)
f1(1)

+f2(4)
(
f1(2)+I

)
f1(1)

+f3(4)f1(1)+f1(1)

f1(4)
(
f1(3)

(
f1(2)+I

)
+f2(3)+I

)
f2(1)

+f2(4)
(
f1(2)+I

)
f2(1)

+f3(4)f2(1)

f1(3)
(
f1(2)+I

)
f1(1)

+f2(3)f1(1)+f1(1)

f1(3)
(
f1(2)+I

)
f2(1)

+f2(3)f2(1)+f2(1)

f1(2)f1(1)+f1(1) f1(2)f2(1)+f2(1)

f1(1) f2(1)

f1(4)
(
f1(3)(f1(2)+I)+f2(3)

)
f3(1)

+f2(4)
(
f1(2)+I

)
f3(1)+f3(4)f3(1)

f1(4)
(
f1(3)

(
f1(2)+I

)
+f2(3)

)
f3(1)

+f2(4)f1(2)f4(1)+f1(2)f4(1)

f1(3)
(
f1(2)+I

)
f3(1)+f2(3)f3(1) f1(3)f1(2)f4(1)+f1(2)f4(1)

f1(2)f3(1)+f3(1) f1(2)f4(1)

f3(1) f4(1)




Where we have printed in boldface and blue color the terms
(or products of terms) that generate positive elements in the
same locations as the matrix blocks of the last block row.

After 100 × 4 steps, the state transition matrix will be:

M100 =




0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0
0.2857 0 0 0 0 0 0 0.2857 0 0 0.2857 0 0 0.1429 0 0




,

in which we can see that all rows have converged to the
same (row) vector.

V. SIMULATIONS

In the examples we simulated, we used the dynamic
equations given by (4) – not the reduced M̄-dynamics.
We tested three different interconnections of four agents
with random initial conditions for the state, same for all
examples:

U(0) = (−30, 12, 5.6, 0.2,−9, 19,−23, 15,

7, 3,−0.9, 1, 10,−15.6, 4, 5)T

The first interconnection is shown in (8),

•1 �� •2��

��•4 �� •3��

�� (8)

in which the graph is minimally connected. The evolution
of the (current) system states is depicted in Figure 1.

In the second example, the interconnection graph is
complete:

•1 ��

���
��

��
��

�

��

•2��

������
��

��
��

•4 ��

�� ���������� •3��

������������

0 20 40 60 80 100
−25

−20

−15

−10

−5

0

5

10
Connected Graph of 4 agents

Time steps

S
ta

te
 V

al
ue

s

Fig. 1: Convergence in a minimally connected graph

The initial conditions are the same and the state trajectory
is shown in Figure 2.
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Fig. 2: Convergence in a complete graph.

One notes that in the case of the complete graph, all agent
states get synchronized immediately, however, it takes some
time until the synchronized value reaches a steady state. At
every time step one cannot distinguish different markers
in Figure 2, because they overlap. This behavior can be
justified by a simple inspection of H.

In our last example, the interconnection graph is discon-
nected:

•1 �� •2��

•4 �� •3��

As expected, convergence takes place in each connected



component, as shown in Figure 3. Since in this case, the
connected components are complete graphs, all agent states
within them synchronize from the beginning.
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Fig. 3: Convergence in the connected components of a
disconnected graph.

VI. CONCLUSIONS

In this paper we have shown that if an interconnected
system of agents with time-invariant, nearest neighbor in-
teraction laws of the form (1) is stable (in the sense that all
agents states asymptotically synchronize), the introduction
of communication delays in the dissemination of state
information between neighboring agents does not disrupt
the stability of the system. This was shown formally in
discrete time, by exploiting properties of special classes
of non-negative matrices and by observing that the system
trajectories are not affected by parts of the full-blown
delayed dynamics. The state matrix of this reduced system
was then shown to be ergodic. To verify these findings, we
tested the combined state communication/update algorithm
in simulation and we found that the states in the (full-blown,
delayed) dynamics asymptotically converged to the same,
constant value. Extending these results to cases where the
communication topology is time dependent will be among
the objectives of our future work.
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