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Abstract— In this paper we build on, and extend our previous
work on automated nuclear search, by taking the principle
of a bidirectional, real time interaction between perception
and the sensor management to the implementation level. In
the algorithm that we implement in hardware, a model of
the underlying physical process is used to guide measurement,
which then closes the loop by updating the model. Realization
of our “model-driven-measurement” concept leads to a working
robotic prototype, capable of confirming the presence of weak
radiation sources at the specified statistical confidence level,
within a bounded, two-dimensional area. The contribution of
this paper is in demonstrating that automated nuclear search
is feasible, can be performed with commercially available
robotic hardware and measuring devices, and that experimental
data are consistent with existing theoretical and computational
results.

I. INTRODUCTION

The world’s geopolitical situation has changed over the
past decade to the degree that requires a new approach to the
types of threats which we now face. Modern threats are subtle
and ephemeral, can be hidden across large areas. Classical
information extraction methods, in which data are randomly
collected, and then subsequently filtered and analyzed by
human operators in search of particular signatures, are no
longer effective. Data collection must be guided by querying
world models that, unlike the human mind, can have the span
and resolution needed for multi-scale problems. Physical
models of real-world threats will need continuous updating
to follow unpredictable human choices and chaotic physical
outcomes.

Our response to this challenge is a new methodology of
dynamic interplay between model update and data collection,
facilitated by autonomous robots (Figure 1). Our sensing
and control architecture (illustrated in Figure 3) introduces
the concept of “Model-Driven-Measurement,” which goes
beyond the classical data collection and assimilation.

Currently, searching for radiation sources is done man-
ually, usually by operators waving radiation counters in
front of them. When the target is a weak radiation source
like a speck of uranium, this process is highly unlikely
to yield any results at all. The strength of the signal in
nuclear search relative to noise falls as R−2 as distance R
to the source increases. For this reason, existing techniques
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Fig. 1. The Khepera II mo-
bile robot with the radiation sensor
attached. Coper tape is used to
shield the detector from ambient
noise.

Fig. 2. The miniature radiation
sensor that is interfaced with the
mobile robot.

for autonomous mapping and searching that are based on
gradient following [3] will fail: there will be no statistically
significant gradient measurement to follow. A new approach
that combines random and guided search is needed, to bring
the sensor as close to the source as possible [4]. Using mobile
robots to carry the sensors close to the source, and position it
accurately for required measurement collection, is a natural
choice (Fig. 2).

In our recent work [9], we automated nuclear search
using a strategy based on the classical sequential testing
theory which allows to quickly locate microscopic specks of
radioactive material scattered over large area. To speed up
the search task our motion controller maintains a maximum
scanning speed while the observed count rate is consistent
with our model of natural background radiation. When the in-
crease in the number of detected counts is observed, the robot
decelerates to a level where the exposure time is sufficient to

Fig. 3. Model-driven measurement: we must start asking our questions of
models, rather than measurements.



arrive at a definitive conclusion, with very high confidence,
as to whether a source is present there. In a sequential search
for a weak radiation source, the space is typically divided in
cells and the sensor collects measurements at each cell for
different time periods. Once a statistically definitive decision
is made regarding the presence or absence of a source, the
sensor “jumps” to the next cell.

From the robotics perspective, the problem of locating
such a target is at the intersection of search and exploration.
Contrary to common approaches in robotic mapping and
exploration, here it is not the topology of the environment
that is of interest, but rather the distribution of a physical
quantity over an area. The conceptual similarities between
the two problems motivate a very brief (and therefore in-
complete) review of robotic approaches to robotic search and
exploration, where existing approaches differ depending on
the a priori information available about the environment. If
the boundary of the environment is known, a robot can follow
a variety of pre-specified paths to cover the entire space
[1], [11], [2]. But when the environment boundaries are not
known, exploring the area in minimum time is known to be
an NP-complete problem, even for the simplest, discretized
environments with graph structure. Since an efficient, time-
optimal exploration algorithm is unlikely to exist, locally
optimal “greedy” approaches and heuristics are being used.
One of the most sophisticated approaches is that of [6], where
a single robot decides the new search directions by weighting
the information gain against the cost of moving along each
particular direction.

Among the first problems to be resolved for realizing
an automated sequential search using a mobile robot, is
how to modify the method to make it applicable in a
continuous-space/time framework; a robot can not instanta-
neously “jump” from one cell to the next, and measurements
are collected continuously. We approach this issue by reg-
ulating the velocity and acceleration of the moving sensor,
to approximate the execution of the discrete algorithm as
close as possible. We link the robot motion controller to the
statistics of the radiation measurements, and let the latter
determine if the robot should accelerate or slow down. In
this paper, we develop an experimental platform with which
we test our methodology, and present an application where
radiation levels are mapped using the Khepera II mobile
robot (shown in Figure 1) along one, and two dimensions.

II. PROBLEM STATEMENT

Low-rate counting of radiation from nuclear decay is
described by the Poisson statistics, where the probability to
register n counts in the detector in t seconds from the source
that is known to emit an average of μ counts per second
(cts/s) is

P (n, t) =
(μ · t)n

n!
e−(µ·t). (1)

The simplest way to find the radiation source is to search the
area uniformly, exposing each location for a fixed duration of
time. When no time constraints are present, uniform search
is the reasonable strategy to employ. The width of Poisson

distribution is defined as σ =
√

μ · t. At known average
expected background μb, signal μs and exposure time (t), the
threshold on the number of observed counts can be set that
satisfies the required confidence level of the search outcome.
However in real life scenarios the time allowed for the search
is limited. We need methods that are optimized with respect
to search time.

The objective is to use a mobile robot to scan a two
dimensional area and confirm the presece of tiny, weak
radiation sources, at a very high level of confidence. The
robot is supposed to carry a radiation detector, capable of
registering gamma rays as they pass through it. Based on
the measured radiation, the robot should decide if a source
exists at its location.

III. SEQUENTIAL NUCLEAR SEARCH

Classical sequential testing theory [10] suggests the “stop-
ping rules” that allow for rejection of certain sequences
of observations at early stages, providing for optimized
solution that we seek. Either positive or negative identifi-
cation can be made based on the likelihood ratio κk =
P (Nk|S)/P (Nk|B), where P (Nk|S) is the probability to
observe Nk counts within time period tk, given that the
location contains source with average number of counts per
unit time μs, P (Nk|S) = (tk·µs)Nk

Nk! e−tk·µs , and the prob-
ability to observe Nk counts assuming location k has only
background is P (Nk|B) = (tk·µb)

Nk

Nk! e−tk·µb . The stopping
rule is determined from the desired false negative and false
alarm rates

C =
PFN

1 − PFA
A =

1 − PFN

PFA
. (2)

For the probability ratio κk in location k, the condition κk ≤
C rejects the hypothesis that the source is present, while
the condition κk ≥ A confirms the presence of the source.
When C < κk < A, longer exposure is required to make
a decision. An example of the stopping rules is illustrated
in Figure 4, where the straight lines represent the limits of
confidence intervals for certain statistical hypotheses: when
the radiation counts collected within a certain time period are
in the upper region, the presence of a source is verified with
a given confidence; if the counts fall in the lower region,
then they are most likely due to background radiation; in
between, no conclusion can be confidently drawn until more
measurements are collected.

IV. AUTOMATION OF SEQUENTIAL METHOD

We develop a (velocity) motion controller for a mobile
robot, which regulates sensor exposure time, and implements
the sequential search strategy described in the previous
section within a two-dimensional environment. The search
is performed by scanning an N × N plannar grid, row by
row (Figure 5), regulating the time the sensor collects data
from each cell by controlling the speed of the robot.
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Fig. 4. By applying sequential testing theory to our search problem, we
calculate thresholds for a positive confirmation or rejection of the source
hypothesis (from (2)). The set of gates for positive (top set of thin horizontal
lines) and negative (bottom set of thin horizontal lines) identification of
10cts/s source within 1cts/s background compared with the set of gates
obtained from numerical calculation (triangles). The bold solid lines are the
linear fit to the outer limit of the gates.

Fig. 5. The mobile robot moves the radiation sensor along the rows of a
planar grid. The collected measurements facilitate a decision on the presence
or absence of a radioactive source, at every cell scanned, and at a given
confidence level.

A. Overview

To each region in Figure 4 we associate a robot mode
of operation (behavior). As soon as the robot can reach a
decision regarding the presense or absense of a source, it
keeps moving at a constant, nominal speed. This speed is
maintained as long as the counts received at the end of each
sampling period remain below a certain threshold. If this
threshold is exceeded, and counts begin to accumulate at an
increased rate, the robot decelerates to a slower speed, allow-
ing it to collect more measurements at that particular region,
thus reducing the measurement uncertainty, and enabling a
more confident decision regarding the possible existence of
a source there.

Once in this mode, the robot slows down to provide a
total maximum exposure time of the sensor over the given
cell, approximately equal to Tt = 2.4 seconds. If during this
interval the number of counts collected from this region falls
below the negative detection (lower) line, the hypothesis that
a source is present is rejected and the robot accelerates back

to its nominal speed; if the number of counts registers above
the positive detection (upper) line, the presence of the source
is verified, the position is marked and the robot accelerates to
to nominal speed; and if the number of counts is still in the
region of uncertainty at the end of the T t exposure interval,
the presence of a source is rejected by default, and the robots
accelerates to nominal speed.

The robot dynamics is modeled in discrete time as follows:

x[k + 1] = x[k] + v[k]ΔT +
1
2
a[k]ΔT 2 (3)

v[k + 1] = v[k] + a[k]ΔT, (4)

where x[k] and v[k] are the position and speed of the robot at
the end of the k sampling period, respectively. The sampling
time is ΔT and a[k] is the acceleration input at step k
computed based on observations made during step (k − 1).

Let vo be the nominal, initial speed of the robot, and let
LS be the length of the sensor (Figure 2). If the robot is
moving with constant speed v[k], each point on the robot’s
path will be given a uniform exposure time of T exp = LS

v[k] .
During each sampling period ΔT , the counts recorded by the
radiation detector are added up. At the end of each step, the
sum is stored and the detector’s buffer is cleared to begin
recording the new sum. Let ci be the sum of the detector
counts during step i. The rate of change (increase) of counts
in the ith step is estimated at the end of each time step as

Δc

Δt

∣∣∣
i
=

ci − ci−1

ΔT
. (5)

The line expressing the negative identification gate in
Figure 4 can be expressed in the form c = λt + ν, where
λ and ν are constants that can be calculated from the graph
of Figure 4, as the slope and intercept of each straight line,
respectively.

To determine whether the sample collected by the detector
during step i is actually drawn from a Poisson distribution
with a mean significantly larger than the assumed back-
ground, we test the condition

Δc

Δt

∣∣∣
i
ΔT > λΔT + ν. (6)

If (6) is satisfied, (some of) the counts recorded could be
coming from a nearby source. To confirm whether this is
the case, we increase the exposure time to Tt. By then, the
sample size would either have increased enough to cross
the positive identification gate (upper line in Figure 4) and
confirm the presence of the source with the given confidence,
or remain below that line, in which case it is classified as
noise by default.

B. Development of the motion controller

Let μs denote the average number of counts emitted by
the source at each second. Then the estimated time Tp, for
which the sensor has been collecting counts from the source
before (6) is satisfied, is

Tp =
Δc

Δt

∣∣∣
i
· ΔT

μs
.



Figure 4 suggests that within the first 0.2 seconds, it is
probable that the detector recorded no counts at all coming
from the source. Therefore, we restrict Tp to satisfy 0.2 <
Tp < 0.2+ΔT . At the time when (6) is satisfied, a decision is
made to increase the total exposure time to Tt, and therefore
the detector has to continue collecting measurements from
the same location for T = Tt−Tp additional seconds. Define

n =
⌈

T

ΔT

⌉
.

We quantize T as T = nΔT, n ∈ N . If the robot was
travelling with speed v[k] for the time period Tp, during
which the sensor was possibly exposed to the source, the
latter would have moved relative to the tip of the sensor by
a distance Sp = v(k)Tp. The part of the sensor which has not
yet been exposed to the source is S = LS −Sp. Assume that
the robot travels S1 distance in ΔT time while decelerating,

S1 = v[k]ΔT +
1
2
a[k]ΔT 2,

and then covers S2 distance in (T − ΔT ) time, moving at
constant speed:

S2 = v[k + 1](T − ΔT ).

The sum of the distances (S1 + S2) should be equal to the
length of the unexposed part of the sensor, S, from which

S = v[k]ΔT +
1
2
a[k]ΔT 2 + v[k + 1](T − ΔT )

= v[k]T +
1
2
a[k](2TΔT − ΔT 2).

The required acceleration input at step k is therefore

a[k] =
2(S − v[k]T )
2TΔT − ΔT 2

,

which can be further simplified and written in terms of LS,
v(k) and Tt:

a[k] =
2(LS − v[k]Tt)
ΔT (2T − ΔT )

. (7)

Obviously, if v[k] ≤ LS

Tt
, the robot does not need to

decelerate, because the exposure time is already more than
Tt seconds. We therefore assume that v[k] > LS

Tt
, and conse-

quently for the nominal speed it should hold vo > LS

Tt
. The

speed to which the robot decelerates if more measurements
are needed is given by (4). To allow only forward motion,
we need v[k + 1] to be positive, which based on (7), and
given Tp = Tt − T implies

v[k] <
LS

ΔT/2 + Tp
=

LS

ΔT/2 + ΔT + 0.2
.

The nominal speed should therefore be set so that

LS

Tt
< vo <

LS

3/2ΔT + 0.2
. (8)

After decelerating by a[k] for one sampling period, the
robot travels with a constant speed, v[k + 1] for the next
(n−1) sampling periods. At the end of each of the sampling
periods k + 1 through k + n, the total number of counts is

cj =
∑k+j

i=k ci, j ≤ n. By then, the suspected source is
exposed for a total time of tj = (j + 1)ΔT . Therefore, if

cj > λtj + ν1,

where c = λt + ν1 describes the positive identification line
(Figure 4), then the presence of a source is verified. The robot
marks the location and accelerates back to v[t + 1] = vo.
The acceleration in the k + j + 1 sampling period is given
by a[k + j + 1] = vo−v[k+j]

ΔT .

V. EXPERIMENTAL RESULTS

A. Hardware Description

Experimental implementation of the sequential search al-
gorithm was performed using the Khepera II robot with
a custom- built turret to interface the CsI radiation sensor
(Figure 1). The Khepera II robot features a Motorola 68331,
25MHz processor with 512Kbytes Ram and 512Kbytes Flash
memory, running our embedded C code that implements the
sequential search motion controller. We use three analog
inputs provided by the I/O turret, and communicate with it
through RS232. Data acquisition software is also developed,
allowing for real-time 1-D and 2-D radiation mapping during
experimentation. The added weight of the sensor, digital
board, and power supplies, present a challenge to robot’s
motors. To reduce friction, a stainless steel ball caster wheel
is added at the base of the sensor. Odometry errors tend to
cause the robot to deviate from the reference path, if the
latter is relatively long (> 75 cm).

The Khepera II is equipped with a CsI radiation sen-
sor. Gamma-rays that pass through the CsI crystal have a
probability of depositing some or all of their energy. The
deposited energy goes into excitement of the electrons into
higher energy levels that decay with characteristic lifetime
and emit visible light. The 4 cm long and 1.2 cm in diameter
cylindrical CsI crystal was encapsulated into the Al casing
with the Hamamatsu S3509 pin photodiode mounted on it
to detect light induced in the crystal by passing photons.
The sensor was assembled for us by the Alphaspectra, Inc.
The pulse generated by the diode is very weak and needs to
be amplified. We used the A250 preamplifier with external
FET from Amptek. The pulse is then shaped through a
four-stage shaping amplifier based on operational amplifiers.
On the output of the amplifier we get almost Gaussian
pulse the hight of which corresponds to the energy that
was deposited by the gamma-ray in the active region of
the detector (Fig. 6). The pulse is processed using digital
board that is based on low power, high speed, 8bit National
Semiconductor ADC08200 and Altera Cyclone 2910 FPGA.
The FPGA can beprogrammed to perform all necessary
pulse postprocessing. We have developed FPGA code to
perform peak finding and pulse counting. We estimated the
total power consumption of the electronics to be below
200 mAh at 6V, that allows us to power them for several
hours with four rechargeable digital camera batteries. The
pin photodiode is in reverse bias and consumes negligible
amount of power (nAh at 25V).



Fig. 6. Example of the energy spectrum recorded with our CsI sensor.

B. Tests

The first experimental run is one dimensional, and the
robot is driven over a 75 cm straight line. A smooth surface
is needed to ensure accurate path trajectory so a 1 m2

white board was used. The experiment is performed using
a 10 nCi Na-22 source. The source is so weak that we
observed an increase in count rate only when the source
was directly under our detector. The average count rate from
cosmic gamma-rays was approximately 1.8 counts/s, while
we measure an average of 6.1 counts/s from the source. The
sampling period for the control loop is set at ΔT = 0.6 sec,
and the maximum exposure time allowed for each point is
set at Tt = 2.5 sec. The nominal speed of the robot is set
at Vo = 32 mm/s. During the deceleration phase, where the
presence or absence of a source cannot be verified, the speed
of the robot is set to 0 mm/s, since the current experimental
setup required the source to be directly under the detector,
obscuring the path of the robot. After the maximum exposure
time, the radiation source is removed from the path of the
robot and the robot accelerates back to its nominal speed.

Figure 7 shows the counts (background plus source)
recorded at each time step. The peak between t = 14 s and
t = 16 s, indicates the presence of a source.

Figure 8 depicts the cummulative counts versus time, in
order to highlight the significant jump in the increase rate
around t = 16 s, which takes the data sample to the region of
uncertainty, and triggers the transition to deceleration mode.
During the next sample period, the robot decelerates to zero
velocity to increase the exposure time, which decreases the
uncertainty of the presence of a source. In this sampling pe-
riod the robot confirms the presence of a source, accelerates
back to its nominal speed, and resumes the search.

Figure 9 shows how the robot decelerates in response to
the increased rate of count collection. Each sudden increase
in radiation count measurements in Figure 7 triggers a
transition to the deceleration mode. Increased exposure time
allows the robot to make a decision regarding the presense or
absense of a source, and proceed with its search at nominal
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Fig. 7. The counts (source and background) collected at each time step
during the one-dimensional search.
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Fig. 8. The total number of counts (source and background) collected as
time progresses in the one-dimensional search.

speed. This is evident in Figure 10, where the speed profile
of the robot is ploted versus time.

During the second run, the robot is driven over a 75 cm
× 12 cm area creating a 2-D radiation map. Each cell is
considered to be a 2 cm × 4 cm area. All parameters are kept
the same as in the first experiment. The 10 nCi Na-22 source
is placed in turns at three different locations: (32, 3) cm,
(32, 7) cm, and (45, 11) cm. The robot is scanning the 2-D
region following a pattern similar to that shown in Figure 5.
The resulting map is shown in Figure 11. The mapping indi-
cates that during the search the robot decelerated 13 times,
of which 10 were triggered by background, and 3 by the
sources. All three sources were identified at there respective
locations and at no time was a false alarm recorded.
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Fig. 10. The speed of the robot as a function of time.
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Fig. 11. A portion of a two dimensional radiation map created by the robot
after scanning three rows.

VI. CONCLUSIONS

We present an experimental implementation of a sequential
nuclear search strategy in two dimensions, using a com-
mercially available desktop mobile robot, equipped with a
CsI radiation sensor. Our approach to implementing the
sequential nuclear search, is to regulate the speed of the robot
(and therefore control the exposure time of the sensor) over
each segment of the search area, in real-time, according to the
radiation counts collected by the sensor. Further steps include
extensions to three-dimensional searches, the use of prior
knowledge about the search area, as well as the introduction
of Bayesian statistics for the on-line update of the world
model. The latter, will enable us to map arbitrary radiation
levels over an area, rather than just confirm the presense of
a source, using navigation strategies inspired by [8].
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