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Abstract— This article presents a motion planning strategy
that integrates a reactive receding horizon local trajectory
generation methodology with a navigation function based global
planner to guarantee that a quadrotor type MAV navigating in
partially-known cluttered environment can reach its goal. The
environment is partially known in the sense that there can be
obstacles which are not a priori known to be included in the
navigation function construction and used by the global planner.
These obstacles are avoided reactively at the level of the local
planner, which reacts to sensing information within the Field
of View (FOV) of the onboard sensors and keeps generating
dynamically feasible safe trajectories along the segments gen-
erated by the global planner. The proposed motion planning
strategy combines the advantages of global and reactive aerial
navigation, producing locally optimal (in a minimum-jerk sense)
vehicle motion. The effectiveness of the planner is demonstrated
through realistic ROS-Gazebo simulations.

I. INTRODUCTION

Research advances over the last decade have enabled
the use of quadrotor-type micro aerial vehicless (MAVs) in
various application areas where accessibility of terrain or
complexity of the environment pose challenges to the kind
of device that can be successfully deployed. The agility,
affordability and currently available onboard computation
capability make modern quadrotors an attractive choice in
applications ranging from surveillance, mapping, precision
agriculture, environmental monitoring, and security. The in-
dustry standard at this time in terms of autonomous MAV
navigation capabilities is the capacity to track a set of prede-
fined trajectory waypoints without, however, any particular
attention to the surrounding workspace. A priori information
about the vehicle’s workspace can be used to make a map and
thus help the vehicle navigate in constrained environments.
Environment topology information, however, is often incom-
plete. Recent relevant research literature focuses on building
(or updating) a local environment map of this workspace
using an onboard perception stack [7], [17].

A reactive local trajectory generation, integrated within
a receding horizon scheme, has been shown to permit safe
MAV navigation in unknown environments [24]. State of the
art trajectory generation and control algorithms that can be
used for this purpose are based on the idea of generating
piece-wise polynomial in time trajectories [14], [18], which
can then be faithfully followed using a differential-geometric
trajectory tracking control design [10]. Still, there are several
implementation issues which can compromise navigation
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mission success, and ensuring both convergence and safety
requires addressing several open research questions [2].

Motion planners for MAVs, particularly those applicable
to deployments in unknown environments, often compute
using a grid-based representation of the environment [7],
[16]. Such planners attempt to compensate for the incomplete
environment information through onboard sensors like a 3D
LiDAR, to generate a safe corridors through the environment
and force the MAV to stay within that corridor [6]. One way
to navigate to configurations outside the MAV sensor range,
is to use a sequence of predefined waypoints. One such
approach uses knowledge of obstacle location and geometry,
and locally decomposes the available free space into convex
polyhedra, amongst which a safe path is drawn [9]. Variants
of such approaches [12] consider workspace representations
in the form of a 3D grid map with uniform voxels, and
create a convex safe flight corridor (SFC). Recent reactive
motion planning algorithms include lightweight egospace-
based techniques extended to capture the MAV configuration
dynamics [4], and approaches that reactively sample safe
trajectories in the FOV of the MAvV, thus decoupling local
obstacle avoidance from global guidance [20].

Concerns related to most grid or sampling-based motion
planning algorithms is that no guarantees for convergence
to the navigation goal can be provided, and that on-line
map building does not scale well computationally as the
size of the workspace increases. Receding horizon planning
schemes circumvent the latter limitation by building only a
local map. Still, however, it is not clear if convergence can
be guaranteed at all using purely local and reactive planning.
Some algorithms empirically demonstrate convergence [24],
without, however, any formal guarantee.

Navigation functions [19] present an closed-loop mo-
tion planning and control strategy which offers formal and
deterministic guarantees of convergence and safety. The
methodology has been extended to cover cases of moving
destinations [11] and obstacles [3]. Parallel notable exten-
sions along a reactive navigation direction include method-
ologies for online construction and update of the navigation
function based on sensory input [1], [22], including ap-
proaches utilizing deep neural networks for the identification
of previously unknown obstacles. Such approaches have been
successfully tested on fully actuated or differential drive
robots at relatively low speeds; their applicability to and
fast moving MAVs, which have underactuated and high order
dynamics, remains to be demonstrated. There is some early
and preliminary work on MAV motion planning and flight
control using navigation functions [23] but safe autonomous
flight in partially known environments remains an open.



This paper attempts to close this gap. While receding
horizon based local planners [24] do not furnish any provable
guarantee of the convergence or the completeness (or even
exactness) and are prone to get trapped in local minima
due to lack of knowledge of the environment, a navigation
function-based reactive planning [23] can compensate despite
not being designed for higher dimensional systems such as
those of quadrotors. Under the assumption that some key,
high-level, features of the environment topology which can
typically allow a local planner to fail are known, the paper,
as its key contribution, presents a cascaded MAV motion
planning approach in which a navigation function-based
global planner repeatedly generates a high level motion plan,
which is then executed at the low-level by a model predictive
control (MPC)-type local planner that fully incorporates the
nonlinear vehicle dynamics [24]. The local planner utilizes
a 3D point-cloud generated by an onboard RGB-D camera to
select a (probabilistically optimal) safe path within the field
of view and then fits a minimum jerk trajectory to it. The
key advantage of this approach is that it combines the best
of reactive and deliberate motion planning; the navigation
function-based global planner closes the planning loop and
guarantees convergence as long as unknown obstacles rep-
resent local and isolated environmental features, while the
local planner fully incorporates the nonlinear dynamics and
reactively accounts for local collision avoidance. The algo-
rithm have been tested in realistic ROS-GAZEBO simulations
using RotorS package [5].

II. OVERVIEW OF THE APPROACH
Figure[I]illustrates the architecture of the motion planning
and control system. The arrows indicate the direction of
information flow. Point-cloud data from the RGB-D sensor are
utilized to frame the obstacle-free portion of the workspace
and encode it as a set of rays cast from the RGB-D sensor’s

focal point to the edge of its FOV.
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Fig. 1: Block diagram of the motion planning and control architecture.
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The computation steps involved in the reported cascaded
planning approach are (i) A priori information about the
MAV’s workspace is used to construct a navigation function;
(i1) the local planner operating at 15Hz takes the pointcloud
information from RGB-D sensor and shares the MAV’s current
location and desired global goal with the global planner;
(iii) the global planner receives this information and uses
the gradient of the navigation function to construct a segment
of a feasible path connecting current MAV configuration to
the global goal (assuming no unknown obstacles are on that
path); (iv) the local planner receives the path segment and
generates a dynamically feasible minimum-jerk trajectory

that fits on it tightly; and finally, (v) a small initial component
of that minimum-jerk reference trajectory is faithfully tracked
by a provably stable differential-geometric tracking controller
operating at 100Hz, which starts steering the quadrotor along
its way to the path segment in the FOV. Once this process is
completed, the cycle closes and repeats from step (fi)).

In a typical receding horizon fashion, before the end of that
initial segment is reached, the global planner uses updated
quadrotor position to construct a new path segment and the
local planner collects the updated point-cloud information to
complete the generation of new trajectory, and transitions
smoothly between reference trajectory segments. The re-
planning and trajectory tracking process repeats until the
final static destination is reached. On board state estimation
runs independently of the planners and supplies the position
information to the MAV at 100Hz.

III. QUADROTOR DYNAMICS AND CONTROL

The quadrotor is modeled as a rigid body evolving in
SE(3). Let m and J denote its mass and moment of inertia,
respectively, and denote x = (z,y,2)T and v = x its 3d
position and velocity in the inertial frame. Let R be the
rotation matrix from the body-fixed frame to the inertial
frame, and €2 be the MAV’s angular velocity in the body-fixed
frame. We denote * the skew symmetry operation, and write
the gravitational acceleration vector and the unit vector along
the inertial vertical as g = (0,0,9)7, and e3 = (0,0,1)7,
respectively. The control inputs to the quadrotor are the
(scalar) thrust f and the (vector) moment M, both of which
are bounded (cf. [15]). the constraint on the latter, can be
shown to translate to a bound on angular velocity:

Jmin < f < fmax (la)

2] < Qumax (1b)
With these in place, the dynamics of the MAV are

X =V, mv=fRes—mg (2a)

R=RQ, JO+QxJQ=M (2b)

The control law for this system is designed based on a (dif-
ferential) geometric method [10] with minor modifications.
To examine the control strategy in more detail, consider a
smooth position reference trajectory x4(t) € R3. From here
one can construct [10] the desired rotation matrix Rq and
angular velocity 24; here, however, we select for the yaw
angle 1) the direction by4 = (cos ), sin, 0)7, perpendicular
to the stabilizing direction. The tracking errors in position

ey, velocity e,, orientation eg, and angular rate e are
ex = X —X(¢ e\,:).(—).(d
1

€eR = i(R}R — RTRd) eqn = Q- RTRde

Picking positive control gains k;, k,, kr and kg, the
control inputs can be constructed as

f = _kxex_kvev"_mg"’_mida
M = krer + kqeq + Q x JQ



allowing one to achieve exponentially stable tracking behav-
ior for initial attitude error less than g and almost global
exponential stability otherwise [10].

IV. THE GLOBAL PLANNER

A navigation function [19] is a real-valued map V : F —
R, constructed on the MAV’s free configuration space JF
that when tuned appropriately has a unique minimum at the
desired goal configuration and is uniformly maximal over the
boundary of F. The global planner used in this paper utilizes
a navigation function where known obstacles are represented
as rounded parallelepipeds (aka squircles) [11]. Since in the
context of this method, the MAV is to be represented by a
point x in F, the volume of the MAV is taken into account in
planning by inflating the known obstacles by an appropriate
safety margin.

Let x(t) denote the position of the MAV in the map’s
inertial frame and x,4(¢) that of the (possibly moving) target
at time ¢, both assumed in the interior of the free space
F. For the purposes of constructing the navigation function,
x(t) and x,(t) are assumed known; the MAV configuration
x(t) is made available through an onboard state estimation
algorithm, while the target configuration x4(¢) is assumed at
this time to be supplied explicitly.

In this variant of navigation functions [11] the vehicle is
not supposed to collide or overlap with its target, but rather
to track it from a selected desired distance r. In this light,
we take r to be the radius of the spherical bubble around
the target X, and define the goal region for navigation as the
area minimizing the time varying goal function

J(X,xg) = ||x—xg||2 —r? 3)

It has been shown [11], [21] that for a suitably selected
obstacle function $(x) and a suitably large parameter A\ €
R, there exists a positive number N such that Vx > N,

J(x,%g)
[J(x, Xg)F+ A B(x)] 1/%

has navigation function properties—with the only differ-
ence being that destination configurations are degenerate—
in sphere worlds [21] as well as sphere worlds [11]. The
parameter A # 1 has been utilized [21] to facilitate tuning.

Assume now that the (known) obstacle collection in the
configuration space of the MAV is a forest of squircles.
Then a diffeomorphism hy  : F — & parameterized by
a suitably chosen positive parameter A\sq € R, allows the
composition ¢ = @ o hy_ (x,Xy) to become a navigation
function on F [11]: for any position of the target satisfying
some reasonable topological conditions, all (unstable) critical
points outside the destination manifold are nondegenerate
saddles with attraction regions of measure zero.

A properly tuned navigation function ensures that a gra-
dient descent using its negated gradient converges to the
goal from almost everywhere in the free workspace—Iless
the attraction regions of the saddles, which are sets of
measure zero. This provides the basis for a robust navigation

95( X, Xg) = 4)

feedback strategy that can reasonably account for estimation
and model inaccuracies. Aggressive maneuvering at user-
defined maximum speeds vmax iS achieved by prescribing
a desired MAV velocity vector field as

Vxp
A .
vil®) = g v

It should be noted at this point that (5) does not take
into account the (high-dimensional and nonlinear) dynamics
of the MAV. Nonetheless, through forward integration (3]
can produce safe reference trajectories which the MAV can
closely track using appropriate nonlinear control loops. The
closure of such control loops, in a way that actually guards
against collisions with unknown obstacles, is described in
the next section.

(&)

V. THE LOCAL PLANNER

The local planner utilizes a receding horizon planning
strategy in which the quadrotor continuously takes input from
the onboard RGB-D sensor to generate feasible, safe, and
locally optimal trajectories. In this way, the MAV reactively
avoids previously unknown obstacles within its FOV while
making progress toward the navigation goal specified by the
global planner [24]. This section presents a brief description
of the approach followed.

The MAV dynamics are differentially flat [14], at least to
some extent, and that allows one to express system inputs
and states as a function of the four (flat) outputs associated
with the vehicle’s 3D position and yaw. We can bundle
these flat outputs into a vector x = [z, y, z,9]T, and noting
that the yaw angle ¢ is kinematically decoupled from z
and y, we may restrict our analysis on constructing smooth
reference trajectories in « and y, knowing that ¢/ can be set
independently afterwards. Local planner trajectories which
satisfy (2) and () will be referred to as dynamically feasible.
The local planner iterates cycles of computation, updating
each time the MAV’s reference trajectory which attempts
to track the navigation function’s currently generated path
segment. The end point of this path segment is referred to
as the intermediate point.

Suppose that at time ¢ the planner is at cycle N, generating
a reference trajectory segment of duration ¢, and the follow-
ing cycle N +1 produces another segment ranging from time
instant t4-dt to t+24dt. Such reference trajectory segments are
represented as extended vectors of desired position, velocity,
acceleration and jerk; for cycles N and N + 1 will look like:

Xn(tt+ot) = [x§ XL %5 XL]T

N
Xnp1(t+0t,t+26t) = [Xyi1 Xy Xng1 XNat

The objective of the planner is to produce dynamically fea-
sible reference trajectories that stay in F and are compatible
in the sense that for any two consecutive cycles IV and N +1
it holds that Xy (t + dt) = X1 (¢ + 0t).

We assume that the FOV of the RGB-D sensor is contained
in a rectangular pyramid, having its apex at the base frame
attached to the sensor, its depth direction is aligned with



the local * MAV axis. The height of this FOV pyramid if
determined by the sensor’s range. We discretize this volume
to reduce it to a grid of fixed resolution. A ray is then cast
from the apex to each point on the grid. Any ray, including its
end point, that passes sufficiently close to a point within the
sensor’s RGB-D point cloud is discarded, on the basis that this
line of sight is likely obscured by some (unknown) obstacle.
These type of discrete query and selection operations can be
implemented efficiently using KD-tree data structures [24].

quad

Interior points ...

Fig. 2: Checking for collisions. Triads mark the MAV’s initial configuration,
its current center of gravity (COG), its local goal in its FOV, and its global
goal. Black dots mark representative discretization points in the MAV’s FOV.
Rays in the FOV intersecting with obstacles reflected in point cloud data (red)
are marked red and considered discarded. Green rays represent collision-free
motion directions.

An optimal among all possible collision-free rays should
strike an acceptable balance between safety and aggression
while converging to the global goal. The latter is assessed
based on how close to the navigation function-generated path
segment. To strike such a balance we weigh each of the
collision-free rays based on a linear combination of two cost
factors: (a) a collision cost factor that penalizes a ray depend-
ing on how close it brings the MAV to any of the obstacles
in the FOV, and (b) a convergence cost factor that penalizes
a ray based on the distance between its end point and the
intermediate point. (Given the receding horizon nature of
the control scheme, we found that this singular end-point
comparison was adequate for implementation purposes.)

Denote p the total number of collision-free rays, and d; the
Euclidean distance between the end point of the i*" ray and
the intermediate point. Set d,ax £ max; d;, and let # > r
be an additional safety margin (added to the radius around
detected obstacles). Letting p; be the minimum distance to
the nearest obstacle out of all interior points on ray i, the
collision cost for ray ¢ is measured as

Lept | [(pi=r)®—i?)?
T T (-

if pj—r<r
Ceoll; = .
otherwise

Then for the positive scalar weights k1 € (0,1) > ko, the
total cost associated with ray i € [0, ..., p| is (see Fig.

Ci:kl

d.
dml + k2 Ceoll;

The end point of the ray that has the lowest total cost is
named the local goal (because it is within the FOV) of the

local planner. With the local goal in the FOV selected, the
problem now reduces to generating a dynamically feasible
and locally optimal reference trajectory from the MAV current
3D position to the local goal, tracing the optimal ray. The
reference trajectory thus involves the first three flat outputs
of the dynamics, namely the Cartesian position coordinate
vector x = [z, y, 2]T.

The duration of the segment of the reference trajectory that
runs from the MAV’s location segment from the starting state
(position, velocity, acceleration, jerk) xo = [xJ, %8, %7, %7 ]"
to the local goal state xt = [xF.,xT, %%, X%]T is set to
a predetermined planning horizon denoted T'. The optimal
ray is now divided into n, equal segments, the endpoints
of which now define way points for the reference trajec-
tory to be generated. Let At; denoting the time difference
between two successive waypoints on the reference trajec-
tory, (zj—1,¥j—1,%2j—1)7 and (x;,y;,2;)T; naturally, T =
Z?:”l At;. The reference trajectory for planning cycle N
can now be defined as a solution of the following minimum
jerk optimization problem over the planning horizon [14],
(18],

5 112
. Aty || d3x;
argminy, > 170 [o dxll de
subject to
it . (6)
d®x; _ d¥xi41 ‘ k _ 0 3
dek 1At; =  dtk 10 IR

x(0) = %o, X(T)=xt

Problem (6)) is converted to a quadratic program (QP) and
efficiently solved using standard solvers (see [8], [18]). Once
a reference trajectory is generated, it is checked to ensure
that the nominal thrust and angular velocity conforms to
the dynamic constraints (I). In case they do not, the tra-
jectory completion time is dilated thus reducing the average
speed of the MAV. Once the output reference trajectory is
finalized, an initial portion of it of time duration 7, < T'
(called the control horizon), is then tracked by the MAV
utilizing a variation [24] of a differential-geometric motion
controller (cf. [10]). An illustrative example of this reced-
ing horizon planning method for the relatively simple test
scenario of Fig. 2] is presented in Fig. [3]

Notice that the reference trajectory generated as a solution
of the minimum-jerk optimization problem involves only the
3D Cartesian coordinates of the MAV and their derivatives.
The fourth flat output 1, the MAV yaw angle, is kinemat-
ically decoupled and can be presecribed independently. To
construct a smooth reference trajectory for the yaw angle,
we fit a third order time polynomial between initial yaw
state 1)(0) = g, 1(0) = v and final yaw state (at the
local goal) ¢(T) = o, and ¢(T) = 4y, of the form
¥(t) = a1 + ast + azt® + ast>. When realizing this, and
for any planning cycle, we kept the yaw rate ¢)(T') at zero,
and set 17 so that the MAV’s onboard camera always faced
the local goal at time 7. On the other hand, t and t(0)
are set by the preceding planning cycle.
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Fig. 3: Trajectory Generation. Dashed magenta lines show generated refer-
ence trajectories while solid green curve is the trajectory of the MAV as it
tracked the trajectory segments consecutively.

VI. RESULTS

This section outlines the steps toward the integration
of the two planners through a 2.5D example. Consider a
workspace with one nonconvex II-shaped obstacle, designed
and positioned in a way that could potentially trap the
MAV (Fig. A(a)). The workspace has a 15m x 15m hori-
zontal footprint, and in it, the MAV is supposed to reach
(z,y,2) = (12,0,0) m, starting from (—14,1,0) m. If no
prior information is utilized about the II-shaped obstacle,
a purely reactively navigating MAV would encounter the
interior wall and most likely be trapped inside. A navigation
function incorporating this obstacle, however, can inform the
MAV to safely maneuver around it (Fig. d(D)).

The global planner utilizes the navigation function in a
receding horizon manner: it regenerates a path toward the
global goal and updates the navigation plan from whatever
configuration the MAV finds itself in the beginning of each
replanning cycle. This iterative process is reflected in the path
of Fig. [A(b)] in the different colors used to mark the different
segments of the path to the goal: each segment is generated as
part of a different planning cycle. The end point of each such
segment defines the intermediate point for the local planner
(Section [TV). The local planner then iteratively generates
dynamically feasible jerk-minimizing reference trajectories,
reactively avoiding previously unknown obstacles detected
in the MAV’s FOV. The differential-geometric controller sub-
sequently tracks these collision-free reference trajectories to
steer the MAV toward the global goal.

While true that during trajectory tracking the MAV can
deviate slightly from the navigation function path, safety is
never compromised because of the reactive nature of the local
planner. Even if the local planner steers the MAV away from
the nominal path as it attempts to reactively avoid obstacles,
the global planner regenerates a feasible path to the global
goal at 15Hz (only a small selection of these segments are
shown in Fig. for clarity). As long as the unknown
obstacles are isolated, local (much smaller in scale compared
to the workspace topology features encoded in the navigation

function), and disjoint from the navigation function’s domain
boundaries, the global planner is guaranteed to produce a new
global navigation solution (cf [13]).

Figures [3] and [6] illustrate how the local and global plan-
ners work in tandem to account for unforeseen obstacle
encounters. In Figurefd] four obstacles were placed along
the path that the MAV would normally follow from its initial
configuration to the final goal. The MAV initially follows
the path originally generated by the global planner faithfully
(black path in Fig. [6]), until the unknown obstacles emerge in
its FOV. At this stage, the local planner reactively generates
avoidance maneuvers, which the global planner adapts to by
reconstructing a high-level navigation plan to the final goal
(purple path Fig. [6). GAZEBO and RVIZ simulation can be
found at https://youtu.be/MCIX7E7qX28|

The MAV successfully avoids long wall-like obstacles (e.g.
the I1-shaped obstacle in the current setup) if they are known
and captured by the navigation function. If not included,
such obstacles may obstruct the entire FOV of the MAV and
trigger an emergency stop policy that brings the MAV to a
halt (see [24] for a more detailed discussion).

Parameters controlling the density of grid points as well
as incoming point cloud can be adjusted depending upon the
computational resources available for real-time local plan-
ning. Our experience points to these parameters as the main
contributors to computation overhead. Additional mitigation
measures include the frequency of the global planner, which
is the same frequency as that of the local planner by default
(15Hz), but can be slightly reduced depending upon the
user constraints. A detailed discussion on the computational
efficiency of the local planner [24] is beyond the scope of
this particular paper.

Among other issues that affect the performance of the
planner is the inclusion of key environmental features (e.g.
obstacles that can trap the MAV) in the global planner,
and the proper tuning of the navigation function so that
it is free of local minima. The latter is typically achieved
with higher values for « that lead to more direct paths to
the goal and a relatively more aggressive maneuver around
obstacles. In any case, the motion plans generated cannot
come with any guarantees of optimality, especially since
the total length of the trajectory depends on a number of
unknown environmental features.

VII. CONCLUSIONS

As parallel and independent work in literature has started
to demonstrate, deliberate and reactive robot navigation can
be integrated in ways that combine the best aspects of both
approaches. This paper reports on a new integrated end-to-
end planning and control approach, in the spirit of receding
horizon control, which is tailored to MAV navigation in
partially known static environments. It is thus possible to
steer an MAV in such environments with guarantees on safety
against collisions and on convergence to the navigation
goal, despite uncertainty about the existence of scattered
isolated obstacles. What is particularly notable in the reported
approach is that it is computationally light for autonomous
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(a) MAV workspace in Gazebo
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Fig. 4: The MAV’s known workspace and the global planner’s path. The path from the start point to the global goal (in blue region) is generated by the
navigation function’s gradient. The multiple colored segments indicate the portions produced at different cycles of the global planner.
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Fig. 6: Quadrotor Trajectories. Black curve shows the trajectory generated
by global planner when none of the additional obstacles (pillars and tree)
are known to it. Magenta curve shows the actual trajectory followed by the
quadrotor.

Fig. 5: Workspace with 3 pillars and one tree previously unknown to the
global planner. These obstacles are avoided reactively by the local planner
as they become visible in the FOV of the camera.

onboard calculations, and relies exclusively on inexpensive
and lightweight sensor payloads, allowing for MAV naviga-

tion and flight at relatively high speeds. It should also be
noted that although the approach is demonstrated here in
2.5D environments, it can be fully implemented in three
dimensions in a straightforward way.
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