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Emulating Nuclear Emissions with a Pulsed Laser

Benjamin J. Hockman, Jianxin Sun and Herbert G. Tanner

Abstract—The paper presents an approach to emulate the Poisson
process observed by a sensor when subject to low levels of radiation,
motivated by the problem of detecting a weak source in the presence
of background radiation. We construct a physical emulation of this
process to serve as a means of experimentation for various detection
models involving mobile sensor networks. A pulsing laser emulates the
nuclear emission, and a rotating mirror deflects the pulses in a random
direction. The degree to which the proposed emulation process matches
actual radiation measurement results is assessed experimentally, and the
utility of the device is demonstrated and compared against conventional
methods in a simple detection scenario.

Note to Practitioners—This paper describes the design principles of a
pulsed laser apparatus that emulates the emission of radioactivity. The
device allows one to experiment with methods for radiation detection
and measurement without the need to handle and store potentially
hazardous radioactive material. From the perspective of a user that
counts events (rather than in terms of the physical signal expressing the
energy deposited on the sensor) the experimental apparatus described
here behaves very similarly to a pair of radioactive source and Geiger
counter.

Index Terms—Poisson process, radiation detection, sequential testing.

I. INTRODUCTION

This paper presents a mechanism that physically emulates nuclear
emission, for the purpose of analysis and testing of algorithms
for low-level radiation detection, without the need for handling
radioactive material. The physics of gamma ray emissions is very
similar in nature to that of radiation at other frequencies, but it
is the intensity and timescale of these emissions that make them
unique from an observational standpoint. Visible light, for example,
is actually a stream of discrete photons and electromagnetic waves,
but the intensity is typically large enough that they can be well
approximated by an averaged intensity or flux. However, if the lights
are dimmed low enough, the “average photon flux” becomes difficult
to estimate because the separation between photons is large. This
is the region that is most prevalent when dealing with low level
gamma radiation. As an analogy, think of visible light as a steady flow
of water through a hose and gamma radiation as a slowly dripping
faucet. We would need different measurement techniques to estimate
the flow rate of each.

The discrete process of gamma ray arrivals at a Geiger counter
closely conforms to Poisson statistics. Typically, a Poisson process
is characterized by its intensity (λ)—or average number of events
per unit time. This particular stochastic process is defined by the
exponential probability density function (PDF) for the time between
events with mean 1/λ given by

P (x;λ) = λe−λx, x ≥ 0 . (1)

It turns out that Poisson processes are ubiquitous in modeling
natural phenomena and are by no means restricted to describing ra-
dioactive decay. Generally, most continuous-time counting processes
with independently occurring events can be well modeled with this
process; some examples include the number of points scored during
a basketball game, hits on a web page, and the number of raindrops
falling within a specified area [1].

Now consider the following regime: we have two radiation sources
generating independent Poisson emissions in parallel with intensities
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Fig. 1: A simulation of Poisson process with λ1 = 300 Hz at t > 0 and
λ2 = 600 Hz at t > 1.

λ1 and λ2. At t0, λ1 is turned on and at t1 = 1 s, λ2 is turned on.
They both emit gamma rays, so a nearby sensor can only pick the
sum of both emissions λ1 +λ2. Now suppose that this sensor—with
no knowledge of the binary states of each source—needs to decide
between two hypotheses H0 and H1 at a given time T after the
second source is turned on, where (i) H0: only λ1 is turned on, and
(ii) H1: both λ1 and λ2 are turned on. This is an instance of an
inverse problem, posed as a binary hypothesis decision problem.

An example of what this sensor might observe in this fixed interval
detection paradigm is illustrated in Fig. 1 for three values of T . These
three plots illustrate why the ability of a sensor to make a decision
between H0 and H1 is highly dependent on the observation interval
T . The naked eye can tell that there is clearly a change in count
rate for T = 1, but it becomes less obvious at T = 0.1 and almost
indistinguishable at T = 0.01. Similarly, any decision made between
H0 and H1 exhibits a confidence level roughly proportional to T .
Indeed, the fundamental goal of the binary detection problem is to
make a decision between the two hypotheses as quick as possible
while minimizing the chances of error.

This scenario is common in the problem of timely detection of a
radiation source. There, λ1 ≡ β corresponds to the activity rate of
background radiation that is confounding the source to be detected,
the activity of which is expressed by λ2 ≡ R. In general, the
background intensity β is non-homogeneous and position dependent
(i.e. β = β( ~X, t), ~X ∈ R3), but for most cases we can assume β
to vary only with position, and its spatial distribution can either be
assumed known or it can be measured [2].

The radiation due to the source is also non-homogeneous in nature.
It is generally assumed to be proportional to the square of the distance
of the sensor from the source (i.e. R ∝ 1/r2)1 [3]. The relationship
reflects the dispersion of gamma ray density from a point source in
R3, and suggests that an approach to detection of low-level radiation
is not necessarily specific to weak sources, but is also applicable
to cases of more active sources, which may either be shielded
or sufficiently far away from the sensor. In fact, many important
applications of low-level detection such as mobile searches for dirty
bombs or passive surveillance screening for hazardous radioactive
materials [4] deal with shielded sources observed at a distance over
a short period of time, making them difficult to detect.

In this paper, we describe the design, fabrication and validation
of an apparatus that emulates the mechanism of nuclear decay and
radiation measurement without using fissile material. We demonstrate
its use for detection in experiments, and compare the results with
those obtained by a Geiger counter. The solution proposed consists
of a laser that produces short pulses of light to mimic the emission
of discrete gamma rays, coupled with a reconfigurable mirror used to
scatter the laser beams in random directions, and a photo-detector in
the role of the radiation counter. The laser pulses are modulated by a
computer controlled relay switch that determines the source intensity

1The relationship suggests that R increases unboundedly as r → 0, but
is valid under the assumption that the sensor maintains a minimum distance
δ > 0 from the source.
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by varying the mean frequency of pulses. Our goal is to meaningfully
capture the statistics of nuclear measurement, and faithfully replicate
the dependence of the observation statistics on the distance between
sensor and source, in a framework where we have absolute control
over the parameters of the emulated physical process.

A. Related Work

The mathematics of decision theory has grown significantly over
the past few decades. Some of the work done in the detection
of signals that follow Poisson statistics can be attributed to its
application in optical communications. It turns out that an avalanche
photodiode (APD) attempting to pick up a modulated optical signal
transmitted through a noisy medium often faces the same type of
detection regime as a radiation sensor attempting to pick out a
weak signal from background noise [5]–[9]. The roots of sequential
hypothesis testing were established in the early 1950s with Wald’s
sequential probability ratio test (SPRT) [10]. The test provides a time-
optimal strategy for hypothesis testing of continuous processes such
as the Poisson process. However, applying this method to different
applications often requires more specific formulations, with adapted
time-optimal solutions. For example, a Bayesian inference solution
for the decision between two intensity values (λ1 or λ1 + λ2) under
the regime outlined in Section I is found in [11]. An alternative
formulation for this binary decision problem is the Neyman-Pearson
test [12]. A formal solution to the Neyman-Pearson formulation can
be adapted from a Bayesian approach and can be found in [13]
(see also [3], [14] for network variants). There are also different
ways to define the detection specifications within each hypothesis
formulation. For the case of radiation detection, we can think of a
case where a sensor is given a finite time interval in which it must
make a decision (fixed-interval test [15], [16]), or another case in
which the sensor will only make a decision if its confidence level
exceeds a threshold [17].

For the general problem of detecting a mobile source that traverses
a restricted area of observation in 2D, we know how to interpret
the data gathered from a single static sensor, and even how to fuse
data from multiple sensors [3], but the problem of detection with
mobile sensor networks is still open. Introducing mobility into sensor
networks may significantly enhance their detection capabilities. It
also raises many new questions such as how to optimally configure
sensor positions and plan trajectories to gather a maximum amount
of information or how to fuse data from a network of stationary
and mobile sensors. These are the questions that we are beginning
to ask in order to advance the frontier of understanding in radiation
detection.

B. Scope and Organization

There is a need for an experimental platform on which theory and
algorithms for radiation detection can be tested without having to
handle hazardous material. To this end, we suggest to controllably
emulate the physics of radiation emission in a way such that sensor
observations mimic the response of a Geiger counter in the pres-
ence of radiation. The ability to precisely control various physical
parameters—from both an emission and detection standpoint—is the
essence of why we desire this emulation. Aside from providing
feedback on the effectiveness of our detection models, the data
gathered from this emulation experiment offer insight into how
our models can be improved, since a number of different problem
parameters are easily tunable, from the source activity to the size
and sensitivity of the sensor. The remainder of this paper discusses
how this is achieved. Section II outlines the problem scope more
thoroughly and breaks down the problem into smaller sub-problems to

be addressed. Section III describes exactly how the emulation works,
how it meets the design specifications, and its various capabilities and
limitations. Section IV outlines the experimental results that verify
the system performance, and the paper concludes with Section V.

II. PROBLEM STATEMENT

A Poisson process is a continuous-time counting process, where
{N(t), t ≥ 0} denotes the number of events—in our case, gamma
rays—that are observed. The process has the following properties:

Zero at initial time N(0) = 0.
Independent intervals: the number of events in disjoint intervals is

mutually independent. That is if t1 < t2 < t3 < t4, then
NA(t2−t1) and NA(t4−t3) are independent for a given Poisson
process.

Stationary increments: the probability distribution of events in any
sub-interval (τ ) is only dependent of the length of the interval
N ≡ N(|τ |).

No counted events occur simultaneously.
The probability distribution of N(t) is a Poisson distribution

P(N(t) = k) =
m(t)k

k!
e−m(t), where m(t) =

Z t

0

λ(u) dx .

The probability of time between events is exponentially distributed
given by (1).

The two Poisson processes we deal with in detection theory are
defined as β ≡ β( ~X), where ~X ∈ R3, and

Ri(r, t) , f(ri)λi(t), f(ri) ,
1

1 + ( ri
K1/2

)2
(2)

Here, the background intensity β is only a function of spatial
position, and is known to the sensor. Variable Ri is the intensity
observed by the sensor from source i and is factored into functions
of position and time.2 Variable ri is the distance of the sensor from
source i, and K1/2 is the distance at which its intensity falls off to
half its maximum value λi. This form of f(ri), suggested in [18],
incorporates the 1/r2 falloff but does not blow up at ri → 0.

In our emulation we would like to have control over the follow-
ing variables: (a) Intensity and distribution of background Poisson
process β; (b) Total source emission as a function of time λi(t);
(c) Half-intensity distance is controlled by the area of the sensor
K1/2; (d) Radial distance between the source and sensor ri. In
designing a device that emulates such a process, we attempt to isolate
these variables as much as possible.

III. TECHNICAL APPROACH

A. Challenges

Putting a radioactive source in the vicinity of a Geiger counter,
and measuring the response directly, has limitations which may
render it impractical in some cases. For instance, the intensities
of radiation sources are not easily controlled because they depend
on material composition, while background levels are environment-
dependent. Furthermore, low-level sources that are not hazardous
have a small detectable range, which limits the physical scale of
potential experiments. For example, a weakly radioactive Uranium
oxide bead is only detectable to a distance of approximately 4cm.
This range is not large enough to incorporate sensor mobility on
robotic platforms.

2We will often take λi(t) to be constant, but this is the more general non-
homogeneous representation.
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Fig. 2: SolidworksTM rendering of the experimental setup: r is the
distance between sensor and mirror; w is the detectable width of sensor.

B. Generating the Poisson Process

The solution proposed is to physically emulate the gamma-ray
emission process using pulses from a controlled laser light source.
The apparatus designed to implement this solution produces short
pulses of light. These pulses are modulated by a computer controlled
relay switch that determines the source intensity by varying the mean
frequency of pulses. The laser beam is then reflected at a 90◦ angle by
a mirror. This mirror is fixed to the shaft of a stepper motor which
rotates randomly. As a result, each pulse of the laser is redirected
in a random planar direction to create a 360◦ emission spectrum.
Finally, a light sensor (or array of sensors) is positioned in the plane
of emission such that it picks up only a fraction of pulses. Figure 2
depicts a SolidWorksTM rendering of the device. The binary states of
the laser are controlled by software, which uses the desired source
intensity λ as an input (in Hz or pulses/sec), and generates the Poisson
process by creating a random array of time between pulses that is
exponentially distributed with mean 1/λ.

C. Pulse Detection

The light sensor positioned in the emission plane of the laser
reports high light intensity when the laser beam is incident on it,
and ambient levels at all other times. The capabilities of the sensor
are important to the type of detection strategies it can handle. In
our case, the sensor is not a counter, but it merely returns the
light intensity value when interrogated by software. This exposes
a challenge, because if the sensor has no prior knowledge of when
the laser will flash, it can only sample finite instants in time when
checking for an event occurrence. We address this issue by controlling
the laser and sensor through the same software process, in a way that
the sensor only checks for a light pulse if the laser is told to pulse. In
this manner, we can ensure that the detector is “on” when the laser
sends a pulse.

D. Composing Background and Source Emissions

The apparatus we have constructed (see Fig. 4) has only one
emitting source. However there are a few ways in which we can
effectively generate two parallel Poisson processes (β and λ). For the
most restricted case of a fixed sensor and source (i.e. dr

dt
= 0), we can

have the laser generate both β and λ by superposing their intensities
such that the total intensity is given by Λ(t) = λ(t) + β. For a
more general case in which sensors are mobile (or they are static but
the source is moving) we cannot generate β with the laser, because
its intensity would scale with 1/r, just as the source’s. The most

direct way to create the background emission would be to simulate
the background signal and send it directly to the detector. This can
be done without using the light sensor, as long as the detector cannot
tell if an event is coming from β or from λ. Knowing the position of
the sensor at a given time (via a priori knowledge or sensory input),
a radiation map β( ~X) can also be incorporated [2].

E. Distance of Sensor

Recall that the intensity of radiation incident on a sensor exhibits
a 1/r2 falloff given by (2). For simplicity, our emulation process is
restricted to emissions in R2, so the falloff is instead proportional to
1/r. This is due to the fact that in R3 the sensor area creates a solid
angle as viewed by the source (measured in radians squared), whereas
a sensor in R2 creates a standard angle to the source. Since the solid
angle is given by Ω ≈ α2 and α ∝ 1

r
(α � 1), it follows that the

fractional incidence in R3 is proportional to 1/r2, but in R2 it is
only proportional to 1/r. Keeping this in mind, one can extrapolate
the effects observed in R2 into the R3 domain.

Fig. 3: (a) Schematic of laser emission in R2, (b) element of laser beam
scattering

Let us examine more closely how well this relation holds. Figure 3
a shows a simplified schematic of the laser and sensor with a view
orthogonal to the emission plane. At close range, the fractional
incidence function f(r) is given by f(r) = 1

π
tan−1

`
w
2r

´
. However,

as w
r
→ 0, we have that limw/r→0 f(r) = w

2πr
. Practically,

this approximation is accurate to within 1% when w < 3r. This
relationship also relies on two assumptions concerning the laser beam
(refer to Fig. 3b): (i) the width of the laser beam is significantly
smaller than the sensor width, i.e., ε � w, and (ii) the scattering
angle of the beam is significantly less than the incidence angle, i.e.,
α� θi. In our case, both assumptions are valid. For 1) we have that
for practical ranges (r < 10 ft) it is εmax ≈ 5 mm, wmax ≈ 100
mm; while for 2) it is true that for this combination of laser and
mirror, α ≈ 10−3 rad, θimin ≈ 0.02 rad (at r = 10 ft). In summary,
the sensor incidence will be proportional to 1/r if 3 < r

w
< 100 and

w > 2 inches. These requirements may be relaxed if a more focused
laser is used.

F. Scaling: The Equivalent Sensor

The equation that models how perceived intensity at the sensor’s
end scales with distance from the source,3

Ri =
χα

1 + ri
(3)

reveals possibilities for emulating a wide range of detection scenarios
by varying the apparatus design parameters. For example, a milligram
of Potassium (present in bananas) would register roughly α = 0.031
counts per second (almost two per minute) at point-blank range,
whereas a milligram of Caesium-136 would theoretically register
more than α = 3× 109 counts per second. Shielding such quantities

3In 3D, the ri term in the denominator is squared.
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Fig. 4: Physical setup of emulation: (a) battery pack (b) USB cables to
computer (c) Phidget Interface Kit (d) laser (e) solid state relay switch
(f) wires to power supply (g) stepper controller (h) light sensor (i) mirror
(j) enclosed sensor housing (k) stepper motor.

can drop their perceived emission rates by orders of magnitude. De-
spite how much different in scale these activities are, for appropriate
ranges between source and detector, they may still be emulated using
the same laser source by adjusting the characteristic surface constant
χ and range ri in the apparatus, so that the perceived activities (3)
at sensor i in emulation and real-life cases, match.

Moreover, the proposed scheme is capable of emulating a col-
lection of detectors distributed on the plane—in R3, the scaling is
different, but the same principles apply. For clarity of presentation,
assume n identical4 detectors of characteristic surface constant χ,
positioned at ranges r1, . . . , rn from a source of activity α. This
distributed collection of sensors register counts at a rate equivalent
to a single, bigger, “equivalent” sensor at a distance r0, which has
characteristic surface constant χ0. If r0 is given, then χ0 can be
determined from (3) as follows.

Virtually relocate sensor i from its current range ri to the desired
equivalent sensor’s range r0, scaling its characteristic surface from
χ to χi in a way that the ratio of (3) remains constant; from that
relation, χi is determined:

χα

1 + ri
=

χiα

1 + r0
=⇒ χi =

χ(1 + r0)

1 + ri
.

Then the characteristic surface constant of the equivalent sensor, χ0 is
obtained by assuming that all these virtual sensors are fused together
in a way that their surfaces are added up. The latter is found by
computing he “equivalent” component of each sensor when it is
moved from distance ri to distance r0:

χ0 =

nX
i=1

χ(1 + r0)

1 + ri
,

and a single equivalent sensor at range r0, with that surface constant
will be subject to the same measurement source photon arrival
statistics as the collection of the distributed detectors.

However, the background photon arrival statistics do not scale
in the same way with range. For simplicity, let us assume that
background radiation is uniform over the plane. Then, the background
photon arrival (Poisson) statistics at the equivalent sensor should be
taken with mean

β0 = β
χ0

χ
= β

nX
i=1

1 + r0
1 + ri

.

G. Directional Randomness

Rays emitted by a high-energy nucleus are theoretically distributed
uniformly around it. Our emulation device, driven by a stepper

4The assumption can be easily relaxed.

motor, can achieve finite, but adequate resolution at 6400 steps per
revolution. In the device described, the stepper motor is synchronized
with laser emission, so that it rotates to a (uniformly) random location
immediately after each pulse. Thus, the laser emits pulses only
while the mirror is stationary, but still the direction of emission
remains random. This approach also allows for the possibility of
imposing directional bias or non-uniformity in the emission such that
λ = λ(θ, t). To generate some arbitrary (directional) intensity λ(θ, t),
it suffices to control the stepper motor so that it rotates the mirror to
random positions skewed along a particular direction.

H. Computation Delay Errors

The time between laser pulses is specified in a vector of random
samples from the exponential distribution. However, software’s com-
putational overhead induces a—roughly uniform—error and skews
the Poisson process. Effectively, the computation time in each iter-
ation, denoted δτ , adds to the desired dwell time, resulting in an
effective wait time between pulses of τaverage = 1

λ
+ δτ , where λ is

the desired intensity. The lag is determined by how computationally
intensive the loop is, and includes any additional overhead imposed
by reporting and logging application requirements. Since the desired
value for τaverage is 1

λ
, a lower value of λ can practically eliminate

the error that the computation lag induces. There is a lower bound,
however, to how much this lag can be reduced, since it also includes
the laser pulse duration which may not be under the direct control
of the designer.

IV. EXPERIMENTAL RESULTS

A. Emulation of Nuclear Emission

To verify that this emulation accurately models radioactive emis-
sions, we run experiments to compare the sensor data to observations
from an actual Geiger counter. We confirm that the time between
counts follows the exponential distribution and that the source inten-
sity falls off as 1/r.

Initially, a background sample is taken from the Geiger counter
over a 24 hour period—long enough to discern a stable mean intensity
and robust distribution. The output from the Geiger counter is a
chronological timestamp vector of gamma ray events, which is then
processed to give the times between two consecutive events. The data
is sorted into one second bins and normalized to fit an exponential
PDF. As expected, the exponential regression is a very strong fit, with
a correlation coefficient approximately equal to one (see Fig. 5).

Fig. 5: A 24-hour sample of background radiation (n ≈ 20, 000) from a
Geiger counter. Exponential PDF fit shows a very strong correlation.

A three-hour trial with about 6000 samples on the emulation device
provides a data set that yields an exponential regression correlation
coefficient of R2 = 0.997 (Fig. 6). A computational lag of magnitude
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Fig. 6: A three-hour sample from device emitting Poisson background
(n ≈ 6, 000). The curve is shown shifted 0.1 s left to compensate for the
time lag of laser emission.

between 0.05 and 0.1 seconds is observed due to laser transmission—
the time between two pulses can be no shorter than the duration of
each pulse—and sensor recording. This effect would normally shift
the exponential regression curve to the right, but is compensated for
in the data reported in Fig. 6. The significance of this lag, in terms
of skewing the observed event occurrence distribution, is roughly
proportional to the mean intensity, and is is more pronounced at
higher intensities. An intensity scale-back mitigation strategy can thus
be effective (see Section III-H). Comparison of Figs. 5 and 6 indicates
that the emulation device reproduces the Poisson process.

We now validate the range-scaling behavior. The radioactive source
used in conjunction with the Geiger counter is a small bead of
vaseline glass—only detectable to a distance of about 4 cm. Five
separate trials are conducted within this range for about 20 minutes
each. The data shown in Fig. 7 strongly suggests a 1/r2 relationship,
with a correlation coefficient of R2 = 0.975. The fit is expected
to be better with larger samples. The inverse square law observed
for the case of vaseline glass and Geiger counter is not surprising,
because both the Geiger counter and the glass bead operate in R3,
and especially at these small ranges, the detector surface is associated
with a significant solid angle. The intercept of the linear regression
represents the background intensity, which is consistent with the
background measurements of Fig. 5.

The variable distance scenario is emulated on the device for
distances ranging between 8 inches and 28 inches. The emissions
generated are a superposition of a source of constant intensity plus
background. The background intensity has to be adjusted on the laser
side at different distances to maintain a constant intensity on the
sensor side. Each trial runs for about 3 hours and all mean intensities
are shown in Fig. 8. Linear regression suggests a strong relationship
between mean intensity and 1/r, and the y-intercept value reflects
the expected background intensity. Recall from Section III-E that the
distance fall-off for this device is proportional to 1/r because the
emissions are restricted to a plane (R2).

B. Application to Detection

The goal of having such device is to extend the possible range of
detecting radioactive sources in emulation. To this end, we compare
a fixed-interval detection emulation scenario to the case of detecting
the vaseline bead with the Geiger counter.

The standard likelihood ratio test5 (see [12]) forms a ratio based on
collected data and compares it to a preset threshold. If the likelihood
ratio is above the threshold, the hypothesis supporting the presence
of a source of given activity is verified; otherwise, the hypothesis

5Its optimality origins dating back to [19].

Fig. 7: Geiger counter samples in range of radioactive glass bead.

Fig. 8: Mean count frequency at sensor for distances between 8 and 28
inches from the mirror. The 1/r relationship is very strong.

is rejected. The likelihood ratio LT in this fixed time-interval [0, T ]
detection problem is [18]

LT = e−νTµNT ,

where ν = χα
r2

, is the perceived source intensity at the sensor,
µ = 1 + ν

β
, and NT is the total number of arrival events registered

until time T , which is the time at which a decision between the two
hypothesis needs to be made.

There are two types of errors that can be made in the decision
process: a false alarm, and a missed detection. The two are linked,
in the sense that for a given false alarm rate, there is an optimal
threshold value for the ratio test for which the probability of detection
is maximized [19]. In the test we run here, we treat the threshold as
an independent variable, and we estimate through a large number
observations for a known source, the probability of detection at
different distances. A different probability-threshold curve is drawn
for various ranges between light sensor and mirror (Fig. 9(a)).

To validate the laser device as an effective proxy, the curves
of Fig. 9(a) should match the ones created based on detection
experiments with the radioactive vaseline glass bead and the Geiger
counter. The latter are placed at distances varying from 1 to 3 cm,
and different 100 minute-long samples (each containing 100 decision
tests) are collected at each distance. The total number of gamma
rays captured by the Geiger counter is recorded for each sample.
With prior knowledge of α, χ, and β, we calculate for each distance
the parameters ν, µ, and the likelihood ratios. In Fig. 9(b), each
curve shows the probability of detection at that distance, with the
latter calculated as the ratio of successful detections over the total
number of samples at that distance. As expected, the data shows an
inverse relationship between detection probability and threshold. The
detection probability also drops faster at longer distances. Achieving
a desired detection probability, requires using increasingly smaller
thresholds as the distance increases.
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(a) Probability of detection (in percentage) vs. likelihood ratio threshold (log10
scale) from experiments with the laser device at distances 4, 9, 16, 25, and 36
inches.

(b) Probability of detection (in absolute value) vs. likelihood ratio threshold
(log10 scale) in bead experiment at distances 1, 1.5, 2, 2.5, and 3 cm.

Fig. 9: Comparison of detection results between emulation and exper-
iment. Figures (a) and (b) report results at different distances because
emissions from the bead are 3D while those from the laser device occur
in the plane. The distances used in one test map to those in the other
using the scaling relationship between the sensor solid angles in 2D and
3D: χgeiger αsource

r2geiger

= χlaser αlaser
rlaser

.

To reproduce these results with the laser device, we apply the
transformations of Section III-F to match the ν and µ values of the
bead–Geiger combination at five different distances. Parameters that
achieve this are the ones corresponding to a 4 inch sensor scope, a
pulse frequency of 2.78 Hz, and a sample time of 60 seconds. Since
the laser device has a 1/r falloff effect, distances of 4, 9, 16, 25, and
36 inches are used with the laser device to achieve the same ν values
as the 1, 1.5, 2, 2.5, and 3 cm distances with the bead and Geiger
counter, respectively. The signal measured by the light sensor is added
to an independent background Poisson process to produce similar µ
and NT values. The results are shown in Fig. 9(a), confirming the
match in performance of the likelihood ratio test between emulation
and physical experiment with the radioactive source.

V. CONCLUSION

This paper contributes to the analysis of the detection algorithms
for weak discrete-event signals such as nuclear emissions, by propos-
ing an experimental setup that is capable of emulating faithfully the
statistics of the (Poisson) process to be detected. The experimental
device consists of a laser, modulated to create short pulses of light that
follow Poisson statistics, and a rotating mirror reflects each pulse in

a random planar direction. The Poisson statistics and the directional
randomness of the nuclear emission phenomena are captured. As a
result, detection methods can equivalently be tested and validated
using the proposed device, instead of the need to experiment with
potentially hazardous sources of radiation. We envision the proposed
setup having applications beyond the ones demonstrated in this paper,
involving static sources and sensors. Specifically, we believe that
the proposed methodology for emulating nuclear emissions can have
applications in instances where moving signal sources are to be
detected by networks of potentially mobile sensors.
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