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Abstract

A system can accomplish an objective specified in temporal logic while interact-

ing with an unknown, dynamic but rule-governed environment, by employing

grammatical inference and adapting its plan of action on-line. The purposeful

interaction of the system with its unknown environment can be described by a

deterministic two-player zero-sum game. Using special new product operations,

the whole game can be expressed with a factored, modular representation. This

representation not only offers computational benefits but also isolates the un-

known behavior of the dynamic environment in a particular subsystem, which

then becomes the target of learning. As the fidelity of the identified environ-

ment model increases, the strategy synthesized based on the learned hypothesis

converges in finite time to the one that satisfies the task specification.

Keywords: Grammatical inference; Temporal logic control; Adaptive systems.

1. Introduction

One of the central problems in developing autonomous systems is to en-

sure that they satisfy their performance specifications even when operating in

unknown, dynamic and potentially adversarial situations. This problem is not
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adequately addressed currently; part of the success of industrial robotics, for5

instance, is that robots operate in structured, known, carefully-controlled envi-

ronments. The underlying theory that supports robot deployment and guaran-

tees performance includes stringent assumptions on the structure and nature of

the robots’ workspace.

This paper shows how algorithmic game theory and grammatical inference10

can be jointly utilized to synthesize adaptive control policies for agents operating

in unknown, dynamic, and potentially adversarial environments with respect

to temporal logic constraints. In this context, agents exhibit behaviors that

can be captured by some abstract, purely discrete deterministic models, such

as automata, Kripke structures, or transition systems [1]. To a single agent,15

all other agents become part of an antagonistic environment. The goal is to

synthesize control policies, or strategies, that ensure that an agent satisfies

a temporal logic specification without fully knowing a priori the environment

which it reacts to.

This type of integration of machine learning with control design can poten-20

tially be applied to the performance analysis and supervision of several complex

industrial systems. In practice, such systems are composed of multiple black-

box, heterogeneous components [2]. Due to imprecise knowledge of the dynamics

of the individual components as well as their specifications, it is difficult to ver-

ify the correctness of supervisory strategies. This paper proposes a paradigm25

for 1. constructing a model for the system using observations and some prior

knowledge of its components, and 2. controlling the overall system in a way that

decouples control from identification. This allows for the application of legacy

supervisory controllers to systems with modified or new components. Potential

applications include fault diagnosis in transportation systems [3], the design of30

air-traffic control systems [4], manufacturing [5], and software verification [6].

From a technical standpoint, much of the work in planning when the en-

vironment dynamics is uncertain can be found in the context of reinforcement

learning (RL) [7, 8, 9, 10], in which the entire system is modeled as a Markov

decision process (MDP). When machine learning is applied for multi-agent co-35
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ordination or strategy development in cooperative or noncooperative games in

the presence of uncertainty [11, 12, 13, 14, 15], in the vast majority of cases the

method of choice is some variant of RL.

In our formulation, uncertainty is rooted in lack of knowledge, not in chance.

The underlying agent models are not MDPs, but deterministic transition sys-40

tems. When environment interaction is uncontrollable and not probabilistic, a

pure two-player game arises. Such a game cannot be reduced to an MDP—

control synthesis for an MDP corresponds to solving a one-player stochastic

game. The two classes of games are fundamentally different [16].

We approach the learning problem through grammatical inference (GI), in-45

stead of RL. Grammatical inference is of particular interest to problems involv-

ing control synthesis with temporal logic because it naturally applies to formal

objects such as automata, formal languages, and discrete transition systems

and provides a class of algorithms that identify them. We use a particular

learning paradigm within GI: identification in the limit from positive data [17].50

This choice is motivated by the fact that in our problem formulation the agent

observes the unknown process without being able to query or being otherwise

informed about what cannot happen. Grammatical inference differs from RL in

at least two main aspects: in RL, the sets of states and transitions of the entire

system are known, and the dynamics of the environment are stochastic; in our55

problem setting, the environment is modeled as a deterministic transition sys-

tem with unknown states and transition relation. Another conceptual difference

is that RL addresses the question of what actions maximize a reward related to

the given objective, while GI aims at identifying the unknown context in which

the system operates.60

Although it might be possible, it is not clear how RL methods could be

applied to the scenarios studied here. One challenge is how to specify the re-

ward functions with respect to tasks specified in terms of temporal logic. There

is some limited work in this direction [18], but it remains a open question.

Grammatical inference conveniently decouples learning from planning and con-65

trol, because it does not dictate the strategy but merely identifies the unknown
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components of the dynamics. Whatever the control method of choice, as GI

progressively increases the fidelity of the model, the effectiveness of the control

strategy is bound to increase too.

The paper is organized as follows. Section 2 provides a general, high-level70

overview of the technical formulation and elaborates on the technical challenges

that its development has presented. Section 3 introduces the relevant nota-

tion and terminology and lays the mathematical foundation for the subsequent

technical discussion. Section 4 presents a factor-based algorithm for control

synthesis with respect to temporal logic constraints. In Section 5, grammatical75

inference is integrated with control synthesis to construct a reactive, adaptive

controller in an unknown environment. Here we prove the correctness of the

strategy computation and the convergence of the learner. We demonstrate this

convergence using an example case study in Section 6. Section 7 concludes

the paper by reviewing the approach in a more general context and discusses80

alternative formulations and future extensions.

2. Overview

The paper deals with the following technical problem.

Problem 1. Consider an agent A1 with a task specification ϕ, interacting with

an unknown, dynamic, and hostile environment A2. How can A1 come to know85

the nature of A2 and use this knowledge to determine whether a plan of action

for A1 exists that ensures ϕ is satisfied?

Part of the challenge in the proposed approach to this problem is the in-

tegration of theoretical elements from different fields—particularly, temporal

logic control and grammatical inference—into a cohesive methodology. Our ap-90

proach is to combine the various elements of the overall system in a modular

way. Let us follow Fig. 1: at the high level, we abstract the concrete system

and its dynamical environment into finite-state transition systems. Then, in

order to combine the system, its task specification, and its unknown dynamic

environment, into a two-player game, we defined novel product operations.95
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Since the true environment is unknown, the agent hypothesizes a model

for it and the game being played. Then, based on the game hypothesis, the

agent synthesizes a strategy (i.e., controller) to satisfy its specification (i.e.,

the winning condition). The environment model may be crude and naive in the

beginning, but as the agent collects more observations, its grammatical inference100

module refines the environment model. Under certain conditions, correct prior

knowledge for the model and a characteristic set for the observation data and

the model structure, the fidelity of the continuously updated model increases

to a point where the agent can compute sure-winning strategies to achieve the

goal, whenever these exist.105
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Figure 1: The architecture of hybrid planning and control with a module for gram-

matical inference. The products that combines a model of the system, a model of a

dynamical environment and a temporal logic control objective are defined in page 11.

The advantages of this approach are fourfold. First, we can exploit the struc-

ture of the individual system components so that the representation of the total

game is polynomially smaller in the number of factors. Second, we show that

a winning strategy can be computed directly from this factored representation

of the game. Third, we can isolate the unknown behavior of the dynamic en-110
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vironment into a single model, which is the target of the learning algorithm.

Fourth, different types of GI algorithms can be applied to learn the behavior of

the environment under different conditions without imposing constraints on the

method to be used for control: learning is decoupled from planning.

3. Mathematical Preliminaries for Formal Languages115

In this section, we introduce some technical background on formal languages

and automata theory [19]. Readers familiar with this material may skip this

section on a first reading and refer to it as needed.

Let Σ denote a fixed, finite alphabet, and Σn, Σ≤n, Σ∗, Σω be sequences over

this alphabet of length n, of length less than or equal to n, of any finite length,120

and of infinite length, respectively. The empty string is denoted λ, and the

length of string w is denoted |w|. A language L is a subset of Σ∗. The prefixes

of a language L are denoted Pr(L) = {u ∈ Σ∗ | (∃w ∈ L)(∃v ∈ Σ∗)[uv = w]}.

A word w ∈ Σω is called an ω-word. Given an ω-word w, Occ(w) denotes the set

of symbols occurring in w, and Inf(w) is the set of symbols occurring infinitely125

often in w. Given a finite word w ∈ Σ∗, last(w) denotes the last symbol of w.

We refer to the i+ 1th symbol in a word w by writing w(i); the first symbol in

w is indexed with i = 0.

An semiautomaton (SA) deterministic in transitions is a tuple A = 〈Q,Σ, T 〉

where Q is a finite set of states, Σ is a finite alphabet, and T : Q × Σ → Q is130

the transition function. The transition T (q1, σ) = q2 is also written as q1
σ
→ q2,

and is expanded recursively in the usual way. We write T (q1, σ) ↓ to express

that T (q1, σ) is defined. An active event function Γ : Q → 2Σ is defined as

Γ(q) := {σ ∈ Σ | T (q, σ) ↓}. We denote with ΓA(·) the active event function of

SA A. A run of A on a word (resp. ω-word) w = w(0)w(1) . . . ∈ Σ∗ (resp. Σω)135

is a finite (resp. infinite) sequence of states ρ = ρ(0)ρ(1)ρ(2) . . . ∈ Q∗ (resp. Qω)

where ρ(i) ∈ Q for each i and ρ(i + 1) = T (ρ(i), w(i)), i ≥ 0. A run of A on

word w is denoted ρw. An SA A can be completed by adding a state sink such

that for all q ∈ Q, and for all σ ∈ Σ \ ΓA(q), T (q, σ) = sink. For all σ ∈ Σ, let
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T (sink, σ) = sink. This operation ensures that ∀(q, σ) ∈ Q× Σ, T (q, σ) ↓.140

Consider now a quintuple A = 〈Q,Σ, T, I,Acc〉 where 〈Q,Σ, T 〉 is an SA

deterministic in transitions, I is the set of initial states, and Acc is the acceptance

component. Different types of Accs give rise to [20]:

• finite state automaton (FSA), in which case Acc = F ⊆ Q, and A accepts

w ∈ Σ∗ if the run ρw ∈ Q∗ satisfies ρw(0) ∈ I and last(ρw) ∈ F , and145

• Büchi automata, in which case Acc = F ⊆ Q, and A accepts w ∈ Σω if

the run ρw ∈ Qω satisfies ρw(0) ∈ I and Inf(ρw) ∩ F 6= ∅.

The set of (in)finite words accepted by A is the language of A, denoted L(A).

An automaton is deterministic if it is deterministic in transitions and I is a

singleton. In this case, with a slight abuse of notation, we denote with I the150

single initial state. A deterministic finite-state automaton with the smallest

number of states recognizing a language L is called a canonical automaton

(acceptor) for L. Unless otherwise specified, we understand that A is the SA

obtained from a fsa A by unmarking the initial state and final states in A.

Let AP be a set of atomic logical propositions. A labeled finite-state transi-155

tion system, also known as aKripke structure [1], is a tuple TS = 〈Q,Σ, T,AP, LB〉

where 〈Q,Σ, T 〉 is a SA, and LB : Q → 2AP is a labeling function that maps

a state q ∈ Q into a subset of AP . A Kripke structure can be obtained as an

abstraction of some concrete dynamical system, through a variety of different

abstraction methods [21, 22, 23, 24].160

Given a set of atomic propositions, we use Linear Temporal Logic (LTL)

formulae [25] to specify a set of desired system properties such as safety, reach-

ability, and liveness. In particular, we consider a fragment of LTL; a formula in

this fragment can be equivalently expressed as a language over 2AP , accepted by

a deterministic FSA (dfa) or a deterministic Büchi automaton (DBA). In cases165

when the specification is represented by a dfa, we have a reachability objective;

for a DBA, it is Büchi.
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4. Strategizing in a game using its factors

In this section, we see how the winning strategies (i.e., controllers) of a player

with reachability or Büchi objectives can be computed, if they exist. Though the170

solution to the strategy synthesis problem for two-player zero-sum games with

these objectives is known [20], the algorithms computing these strategies take

a complete representation of the game as input. This poses problems when not

every aspect of the game is known in advance. Therefore, section 5 will revisit

this problem after relaxing the requirement of full knowledge of the game.175

4.1. Two-player deterministic games

First, we briefly review the definition of deterministic, turn-based, two-player

zero-sum games with perfect information and the solution of such games. For

more details, the reader is referred to [20].

Definition 1 ([20]). A two-player turn-based zero-sum game is a tuple G =180

〈V1 ∪V2, Σ1 ∪Σ2, T, I, F 〉, where 1) Vi is the set of states where player i moves,

2) Σi is the set of actions for player i, V1 ∩ V2 = Σ1 ∩ Σ2 = ∅, V = V1 ∪ V2;

3) T : Vi ×Σi → Vj is the transition function where (i, j) ∈ {(1, 2), (2, 1)}; 4) I

is the set of initial game states, and 5) F ⊆ V1 ∪ V2 is the winning condition:

in reachability (resp. safety or Büchi) games: a run ρ is winning for player 1 if185

Occ(ρ) ∩ F 6= ∅ (resp. Occ(ρ) ⊆ F for safety, and Inf (ρ) ∩ F 6= ∅ for Büchi).

An initialized game, denoted (G, v0), is the game G with a designated initial

state v0 ∈ I. A memoryless, deterministic strategy for player i in game G is a

function Si : Vi → Σi which for a given state v ∈ Vi, outputs an action σ ∈ Σi

enabled from v for player i to take. Player i follows strategy Si if it plays the190

action Si(v) at state v.

For reachability and Büchi games, a memoryless winning strategy always

exists for one of the players [20]. Thus, in this paper, when a strategy is men-

tioned, we mean memoryless, deterministic strategy. A strategy WSi is winning

for player i, if and only if for every finite prefix ρ ∈ V ∗Vi in (G, v0), if player i195

follows WSi, then player i wins the game, obtains a payoff 1, and its opponent
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obtains a payoff −1. The winning region of player i, denoted Wini, is the set of

states from which she has a winning strategy.

Reachability and Büchi games are determined, and only one player has a

pure winning strategy. For these games, strategies are deterministic because the200

initial configuration of the game determines exactly one of two players has a win-

ning strategy [20, 26]. Given the game starting at the state v ∈ V , policy Si for

player i, i = 1, 2, the value of the game is Valv(S1, S2) ∈ {(1,−1), (0, 0), (−1, 1)},

where (u1, u2) is the payoff vector, u1 for player 1 and u2 for player 2. For any

state v, if neither player plays his winning strategy even if it is in his winning205

region, then Valv(S1, S2) = (0, 0). If v is in the winning region of player 1, for

any strategy S2 for player 2, Valv(WS1, S2) = (1,−1). If v is in the winning re-

gion of player 2, then for any strategy S1 for player 1, Valv(S1,WS2) = (−1, 1).

By the worst case assumption on the behavior of player 2, player 2 follows WS2

whenever WS2 is defined from the current state. If v is in the winning region of210

player 1 yet player 1 follows S1 6= WS1, then it will run into a state in Win2 for

which WS2 is defined and the value of the game under S1,WS2 is again (−1, 1).

For a game G = 〈V1 ∪V2, Σ1∪Σ2, T, I, F 〉 and for a set of states X ⊆ V , the

attractor [20] of X , denoted Attr(X), is the largest set of states W ⊇ X in G

from which player 1 can force a run into X . It is defined recursively as follows.

Let W0 = X and set

Wi+1 := Wi ∪
{

v ∈ V1 | (∃σ ∈ ΓG(v) ) [T (v, σ) ∈ Wi ]
}

∪
{

v ∈ V2 | (∀σ ∈ ΓG(q) ) [T (v, σ) ∈ Wi ]
}

, for i ≥ 0, i ∈ N . (1)

Let WS1(v) = σ for the state v ∈ V1 and action σ ∈ ΓG(v) identified above.

Since G is finite, there exists a smallest m ∈ N such that Wm+1 = Wm =

Attr(X) and the strategy WS1 obtained above ensures player 1 can reach a state215

in X in finitely many steps.

If G is a reachability game, the winning region of player 1 is Win1 = Attr(F )

and the winning region of player 2 isWin2 = V \Win1. Player 1 has a memoryless

winning strategy if the game starts at some initial state v0 ∈ Win1 ∩ I. In the

case where G is a Büchi game, the winning region of player 1, Win1, is the220
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attractor of a recurrent set, which is the set of states player 1 can force the

game to visit infinitely often [20]. For both reachability and Büchi games,

the attractor is central to determining the winning region of player 1. The

time complexity of solving reachability and Büchi games are O(m + n) and

O(n(m+ n)), respectively, where m is the total number of transitions and n =225

|V | in G.

4.2. Constructing the game

LetAP be the set of atomic propositions describing world states (or the state

of the combined agent-environment system). Given AP , a literal ℓ is defined to

be either an atomic proposition α ∈ AP or the negation of a proposition ¬α.230

The set of world states C is defined to be the set of all conjunctions of literals,

i.e. C = {c = ℓ1 ∧ ℓ2 . . . ∧ ℓn | (∃α ∈ AP)(∀i ∈ [1, . . . , n])[ℓi = α ∨ ℓi = ¬α]},

such that, for any c ∈ C, each proposition in AP appears at most once.

Assume now that the behavior of both the agent (player 1) and its envi-

ronment (player 2) can be captured by some labeled transition system (LTS),235

A1 = 〈Q1,Σ1, T1,AP, LB1〉 for player 1, and A2 = 〈Q2,Σ2, T2,AP , LB2〉, for

player 2, where for i = 1, 2, each component 〈Qi,Σi, Ti〉 is a SA, and LBi :

Qi → C is a labeling function. We assume the actions of both players have

conditional effects over AP , which means that an action σ ∈ Σi can be taken if

a certain pre-condition Pre(σ) ∈ C over AP is satisfied; then after the action240

is concluded, a certain post-condition Post(σ) ∈ C is known to be satisfied.

The labeled transition system Ai resembles a Kripke structure overAP , only

here the definition of labeling function is slightly different. For any σ ∈ ΓAi
(q),

LBi(q) =⇒ Pre(σ), and for any σ ∈ Σi and q ∈ Qi, if there exists q′ ∈ Qi

such that Ti(q
′, σ) = q, then we have LBi(q) =⇒ Post(σ).245

Without loss of generality, we assume that the alphabets of A1 and A2 are

disjoint, i.e. Σ1∩Σ2 = ∅. Player i can give up his turn, in which case she “plays”

a generic (silent) symbol ǫ ∈ Σi. In the specific games discussed in this paper,

player 1 is not allowed to give up turns (since it would be disadvantageous to

do so), but player 2 (the adversary) can. Therefore, we have ǫ /∈ Σ1 and ǫ ∈ Σ2.250
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To capture how each player can interfere with the other, we define the in-

teraction functions Ui : Qi ×Qj → 2Σj , for (i, j) ∈ {(1, 2), (2, 1)} as

Ui(qi, qj) =
{

a ∈ ΓAj
(qj) | LBi(qi) ∧ LBj(qj) =⇒ ¬Pre(a)

}

.

An interaction function Ui maps a pair of states (qi, qj) to the set of actions

which player j can no longer initiate at state qj .

Definition 2 (Turn-based product). Given a LTS for each player,255

A1 = 〈Q1,Σ1, T1,AP , LB1〉 and A2 = 〈Q2,Σ2, T2,AP , LB1〉, and their interact-

ing functions U1, U2, the turn-based product P = 〈Qp,Σ1 ∪ Σ2, Tp,AP , LBp〉 is

an LTS denoted A1 ◦A2, defined as follows:

Qp = Q1 × Q2 × {0,1} is the set of states, where the last component is a

Boolean variable B ∈ {0,1} denoting whose turn it is to play: B = 1 for260

player 1, B = 0 for player 2.

Tp is the transition relation. Tp

(

(q1, q2,B), σ
)

= (q′1, q2,0) if B = 1, q′1 =

T1(q1, σ), with σ /∈ U2(q2, q1) and Tp

(

(q1, q2,B), σ
)

= (q1, q
′
2,1) if B =

0, q′2 = T2(q2, σ), with σ /∈ U1(q1, q2).

LBp : Qp → C is the labeling function, where for (q1, q2,B), LBp(q1, q2,B) =265

LB1(q1) ∧ LB2(q2).

The time complexity of constructing P is O(|Q1 × Q2| × k), where k =

max(|Σ1|, |Σ2|).

If one includes a silent action ǫ in Σi for i = 1, 2, the players may not

necessarily play in turns—as in the specific case of agent-environment interaction270

considered here. We let Pre(ǫ) = Post(ǫ) = True, that is, we assume that an

ǫ action cannot change the world state.

The task specification is given as a logical formula Ω over AP. Through the

labeling function LBp, Ω can take the form of a language over Qp, accepted by

a completed deterministic automaton As = 〈S,Qp, Ts, Is, Fs〉 where sink ∈ S.275

Intuitively, the task specification encoded in As specifies a set of histories over

the world states. Here subscript s distinguishes As as the automaton for the

system’s specification—the specification automaton.
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The turn-based product P gives snapshots of different stages in a game. It

does not capture any of the game history that led to this stage. We overcome280

the lack of memory in P by using another product operation.

Definition 3 (Two-player turn-based game automaton). Given the turn-based

product P = 〈Qp,Σ1 ∪ Σ2, Tp,AP , LBp〉 and the specification automaton As =

〈S,Qp, Ts, Is, Fs〉 that encodes formula ϕ, the two-player turn-based game au-

tomaton is a (special) product of P and As, denoted G = P ⋉As = (A1 ◦A2)⋉285

As = 〈V1 ∪ V2,Σ1 ∪Σ2, T, I, F 〉, such that

V1 ⊆ Q1 ×Q2 × {1} × S is the set of states where player 1 makes a move and

V2 ⊆ Q1×Q2×{0}×S is the set of states where player 2 makes a move.

We write V
def
= V1 ∪ V2.

Σi is the set of actions of player i ∈ {1, 2}. We write Σ
def
= Σ1 ∪Σ2.290

T is the transition relation defined as follows:

(

∀(q1, q2,B, s) ∈ V
)[ (

∀σ ∈ ΓP ((q1, q2,B))
)

[ Tp((q1, q2,B), σ) = (q′1, q
′
2,B

′) ∧ Ts(s, (q
′
1, q

′
2,B

′)) = s′

=⇒ T ((q1, q2,B, s), σ) = (q′1, q
′
2,B

′, s′) ]
]

.

The semantics of the transition relation is defined as follows: given a state

(q1, q2,B, s), if there exists an action σ enabled at (q1, q2,B) in the turn-

based product, and Tp((q1, q2,B), σ) = (q′1, q
′
2,B

′), then by taking the action

σ, the game arrives at a state (q′1, q
′
2,B

′, s′). State s′ = Ts(s, (q
′
1, q

′
2,B))

keeps track of the progress made in this transition with respect to the ob-295

jective expressed in As and the previous state s in As.

I = { (q1, q2,1, s) ∈ V | s = Ts(Is, (q1, q2,1)) } is the set of possible initial

game states.

F = { (q1, q2,B, s) ∈ V | s ∈ Fs } is the winning condition. If As is a FSA

and game G is a reachability game, then a run ρ ∈ V ∗ is winning for300

player 1 iff last(ρ) ∈ F ; if As is a DBA, and the game is a Büchi game,

then a run ρ ∈ V ω is winning for player 1 iff Inf(ρ) ∩ F 6= ∅.

The reachability (resp. Büchi) objective for the system is expressed by for-
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mula ϕ. We say player 1 achieves its reachability (resp. Büchi) objective if there

exists a winning strategy for player 1 in the corresponding reachability (resp.305

Büchi) game. With P and As the game automaton G is constructed in time

O(|Qp × S| ×m) where m is the number of transitions in P .

4.3. Synthesis using the game’s factors

Given G, the winning strategy of player 1, if it exists, can be computed with

the methods of Section 4.1. Noting that G is built from separate components310

(factors) G = (A1 ◦A2)⋉As, a natural question to ask is whether there exists a

method for computing the winning strategy WS1 without obtaining the whole

game automaton G: can WS1 be computed using the factors A1, A2,As of G?

The answer is yes. The attractor can be computed for any X ⊆ Q1 × Q2 ×

{1,0} × S using A1, A2, and As by recasting its definition in terms of these315

factors, the interacting functions, and the product operations.

Theorem 1. Consider a game G = (A1 ◦A2)⋉As with states V ⊆ Q1 ×Q2 ×

{1,0} × S and some X ⊆ V . Let Y0 = X and

Yn+1 = Yn ∪
{

(q1, q2,1, s) | (∃σ ∈ Σ1)
[

T1(q1, σ) = q′1 ∧ Ts

(

s, (q′1, q2,0)
)

= s′

∧ σ 6∈ U2(q2, q1) ∧ (q′1, q2,0, s
′) ∈ Yn

]

}

∪
{

(q1, q2,0, s) | (∀σ ∈ Σ2)
[

T1(q2, σ) = q′2 ∧ Ts

(

s, (q1, q
′
2,1)

)

= s′

∧ σ 6∈ U1(q1, q2) ∧ (q1, q
′
2,1, s

′) ∈ Yn

]

}

.

(2)

Let W0,W1, . . . , be the sequence of sets of states obtained from (1) on page 9

with W0 = X. Then for all n ∈ N, Yn = Wn.320

Proof. The proof is by induction on n. First given X ⊆ Q1 ×Q2 × {1,0} × S,

X ∩ V ⊆ V is the set of reachable states in G. W0 = X ∩ V = Y0 ∩ V .

Next we assume Wn = Yn ∩ V and show Wn+1 = Yn+1 ∩ V . Consider any

v = (q1, q2,B, s) ∈ Yn+1 ∩ V :

Case 1. v ∈ Yn ∩ V . Then v ∈Wn and therefore belongs to Wn+1.325
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Case 2. v 6∈ Yn ∩ V and B = 1. Then ∃σ ∈ Σ1, σ 6∈ U2(q2, q1) such that

T1(q1, σ) = q′1 and Ts(s, (q
′
1, q2,0)) = s′ and v′ = (q′1, q2,0, s

′) ∈ Yn.

Moreover, v ∈ V implies v′ ∈ V as v′ is reachable from v. Hence v′ ∈

Yn ∩ V . By definition of the products ◦ and ⋉, it follows that σ ∈ ΓG and

T (v, σ) = v′ ∈Wn. Therefore v ∈ Wn+1.330

Case 3. v 6∈ Yn ∩ V and B = 0. The argument here is similar to case 2.

The cases are exhaustive and in each case v ∈ Wn+1. Hence Yn+1 ⊆Wn+1. The

argument that Wn+1 ⊆ Yn+1 follows similarly.

Corollary 1. There is an m ∈ N such that the fixed point Ym+1 = Ym coincides

with Attr(X).335

Theorem 1 and its corollary show that the computation of the attractor

Attr(X) for a given set of states X can be achieved using the individual factors

of the game. Thus it is not necessary to compute the game automaton G, an

advantage since G can be significantly larger in size than any of its factors.

Below is a procedure which implements the factor-based method to compute340

the attractor. GivenX ⊆ Q1×Q2×{1,0}×S, let Y0 = X , and Yn+1 is computed

from Yn in two-steps:

1. let Pre(Yn) =
⋃

v∈Yn
Pre(v) where Pre

(

(q1, q2,B, s)
)

=







































B = 1 :

{

(q1, q
′
2,0, s

′) | Ts(s
′, (q1, q2,1)) = s ∧ (∃σ ∈ Σ2 \ U1(q1, q

′
2))[T2(q

′
2, σ) = q2]

}

,

B = 0 :

{

(q′1, q2,1, s
′) | Ts(s

′, (q1, q2,0)) = s ∧ (∃σ ∈ Σ1 \ U2(q2, q
′
1))[T1(q

′
1, σ) = q1]

}

.

(3)

In other words, Pre(Yn) includes a set of states of G, from each of which there

exists at least one outgoing transition that leads to a state in Yn.345

2. Yn+1 = Yn ∪
{

Pre(Yn) \ { (q1, q2,0, s) ∈ Pre(Yn) | (∃σ ∈ Σ2 \ U1(q1, q2) )

[T2(q2, σ) = q′2 ∧ Ts(s, (q1, q
′
2,1)) = s′ ∧ (q1, q

′
2,1, s

′) /∈ Yn ] }
}

.
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That is, given state v ∈ Pre(Yn) where player 2 makes a move, if there exists

at least one transition from v that leads to a state outside Yn, then v is not

included in Yn+1. The fixpoint is Ym = Ym+1 = Y and Y ∩ V = Attr(X ∩ V ).350

Since the winning region of a Büchi game is in fact the attractor of a recurrent

target state (see [20]), for both reachability and Büchi games the winning region

of player 1, Win1, can be computed using the factors. This method exploits the

definitions of the two products and the factors of G to directly compute the

attractor for a given set of states. WS1 is the same as if G had been computed.355

The reduction in computational complexity when computing the winning region

is due to the fact that a state in Q1 × Q2 × {0,1} × S is searched only when

it is in the winning region. In the worst case, the winning region Win1 includes

the whole state set of G, and in this case the factor-based method offers no

computational benefit.360

5. Identifying the game

Player 1 can accomplish her task if and only if (1) she has full knowledge of

the dynamics of player 2, and (2) the game starts at the initial state in Win1∩I.

The objective of this section is to show how player 1 can learn the true nature

of the game she is playing, if player 2 is rule-governed. We first introduce the365

notion of identification in the limit of semiautomata and show that, provided

the true model of player 2 is identifiable in the limit in this way, player 1 can

learn the game in the limit and then plan her actions effectively.

5.1. Identification in the limit from positive presentations

We start with some background on the concept of identification in the limit370

from positive presentations. Informally, a positive presentation of a language L

is a sequence of words belonging to the language, interspersed with pauses (i.e.,

moments in time when no information is forthcoming). Formally, a positive

presentation of L is a total function φ : N → L ∪ {#}, where # denotes a

pause, such that for every w ∈ L, there exists n ∈ N such that φ(n) = w [27].375
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A presentation φ can be understood as an infinite sequence φ(0)φ(1) · · · that

contains every element of L. Let φ[i] ≡ {φ(k)}ik=0 ≡ φ(0)φ(1) . . . φ(i) denote

the first i+1 elements of φ, and let SEQ denote the set of all finitely long initial

portions of all possible presentations of all possible L.

Grammars are finite representations of potentially infinite languages. We380

denote with REP the class of possible grammars. Let L(G) be the language

generated by grammar G. A learner (otherwise referred to as a learning algo-

rithm, GIM) takes the first i elements of a presentation and returns a grammar:

GIM : SEQ → REP. The grammar returned by GIM represents the learner’s

hypothesis of the language.385

A learner GIM identifies in the limit from positive presentations a class of

languages L if and only if for all L ∈ L, for all presentations φ of L, there

exists a n ∈ N such that for all m ≥ n, GIM(φ[m]) = G and L(G) = L [17].

When GIM converges on φ this way, we write GIM(φ) = G. The learner does

not necessarily return the target grammar, but rather one that generates the390

same language as the target (i.e., the two grammars are language-equivalent.)

For distinct presentations of L, the language-equivalent grammars returned by

GIM may also be distinct.

To preclude this latter possibility, in this paper we consider normal-form

learners. A GIM which identifies L in the limit from positive presentations is a395

normal-form learner if for all languages L ∈ L and for all distinct presentations

φ, φ′ of L, GIM(φ) = GIM(φ′). Note that any learner for a class of regular lan-

guages can be converted into a normal-form learner by transforming its output

grammars into canonical automata.

A characterization of the language classes that are identifiable in the limit400

from positive data is available in [28]. See also [27] and [29] for additional details

about this learning paradigm and a comparison to alternatives.

5.2. What game am I playing?

We have seen that synthesizing a strategy has a solution if player 1 has

full knowledge of the game being played. Suppose, however, that player 1 has405
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knowledge of her own capabilities and objective, but does not have full knowl-

edge of the capabilities of player 2. How can player 1 plan effectively given her

uncertainty about the game she is playing? Here we let player 1 make inferences

about the game over time based on the actions of player 2. While player 1 may

not make the best moves at first, given enough observations, she will eventually410

determine which game is being played.

In order to define learning of games, it is necessary to be clear about the

kind of data presentations learners must succeed on. This means being equally

clear about the “language of a game.” Intuitively, the data available to game-

learners should be initial, finite sequences of game-play. Therefore we define415

the language of a game G to be L(G) = {w ∈ Σ∗ | T (I, w) ↓}, that is, a set of

strings that generates all possible finite runs in G. The language of an initialized

game (G, v0) is defined as L(G, v0) = {w ∈ Σ∗ | T (v0, w) ↓}. Note that prefixes

of ω-languages of deterministic Büchi automata form a regular languages [26];

therefore, for the kinds of winning conditions and games considered in this420

paper, this definition always defines a regular language. Observe further that

languages of games are always prefix-closed. Under this definition, a learner

cannot distinguish Büchi games from reachability games since both describe

regular languages. With respect to the language of a game L(G), the projection

of L(G) on Σi, denoted Li(G), is the language of player i ∈ {1, 2} in game G.425

The following definition makes explicit the idea of learning two–player de-

terministic games over time.

Definition 4. An algorithm Alg identifies G in the limit from positive presen-

tations if and only if for all positive presentations φ of L(G), there is a m ∈ N

such that for all n ≥ m, Alg(φ[n]) = G. Algorithm Alg identifies a class of430

games GAMES in the limit from positive presentations if and only if, for every

G ∈ GAMES, Alg identifies G in the limit from positive presentations.

The similarities between Definition 4 and identification in the limit from

positive presentations of languages [17] should be clear. However, there is an

important difference. Definition 4 requires the learning algorithm to return the435
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target game, not just a language-equivalent one, which motivates us to seek

solutions in the form of a normal-form learner. This is driven in part by the

fact that our definition of the language of a game above does not distinguish

between Büchi and reachability games.

The question now is whether there are algorithms that can identify classes of440

games in the limit from positive presentations of their plays. The next section

shows how this problem reduces to the problem of identification of languages

in the limit from positive data under certain conditions. Thus, for every class

of formal languages identifiable in the limit from positive data, there are corre-

sponding classes of games which are also identifiable.445

5.3. Incorporating grammatical inference

The whole class of regular languages is not identifiable in the limit from

positive data [17], and so player 1 may eventually have to employ a grammatical

inference module GIM which learns some subclass of the regular languages. This

will be of little solace if the correct model of player 2 is outside this subclass.450

Preferably, the choice of learning algorithm should be made based on some kind

of prior knowledge of player 2.1 We are not concerned with the case when the

model to be learned falls outside of the class of models learnable by a GIM; it

would be unreasonable to ask an algorithm to perform on a case outside its

domain of validity.2 Rather, we focus on demonstrating that when the true455

model is learnable through a GIM, strategies can be computed and eventually

applied effectively as if the model were known in advance.

1In practice, another option is to equip player 1 with multiple learning algorithms which

are each geared toward a different subclass of regular languages. Player 1 can then try to

leverage the multiple hypotheses in some fashion.
2 [29] quotes Charles Babbage at the beginning of chapter 19:

On two occasions I have been asked [by members of Parliament], ‘Pray, Mr.

Babbage, if you put into the machine wrong figures, will the right answers come

out?’ I am not able rightly to apprehend the kind of confusion of ideas that

could provoke such a question.
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Definition 5. Let L be a class of languages identifiable in the limit from positive

presentation by a normal-form learner GIM, the output of which is an FSA. Then

we say that an SA A = 〈Q,Σ, T 〉, where sink /∈ Q, is identifiable in the limit460

from positive presentations if for any q0 ∈ Q, the language accepted by FSA

A = 〈Q,Σ, T, q0, Q〉 is in L, and given a positive presentation φ of L(A), there

exists an m ∈ N such that ∀n ≥ m, GIM(φ[m]) = GIM(φ[n]) = A. The learner

GIMSA for SA A is constructed from the output of GIM by unmarking the initial

and final states.465

Let SA(GIM) be the set of SAs identifiable in the limit from positive presen-

tations by the normal-form learner GIM.

Now given a SA A1, a specification automaton As, and a class of semiau-

tomata SAs, define the class of games

GAMES(A1,As, SAs) =
{

G | (∃A2 ∈ SA ) [G = (A1 ◦A2)⋉As ]
}

.

For this class of games we have the following result.470

Theorem 2. If, for all A2 ∈ SA(GIM), there exists A2 ∈ range(GIM) such that

L(A2) = L2

(

(A1 ◦ A2) ⋉As

)

, then GAMES
(

A1,As, SA(GIM)
)

is identifiable in

the limit from positive presentations.

Proof. For any game G ∈ GAMES
(

A1,As, SA(GIM)
)

and any data presentation

φ of L(G), denote with φ2(n) for n ∈ N the projection of φ(n) on Σ2. Then475

define a learning algorithm Alg as follows:

∀φ, ∀n ∈ N, Alg(φ[n]) =
(

A1 ◦ GIMSA(φ2[n])
)

⋉As .

We show that Alg identifies GAMES
(

A1,As, SA(GIM)
)

in the limit.

Consider any game G ∈ GAMES
(

A1,As, SA(GIM)
)

. Since G is in GAMES,

there is an A2 ∈ SA(GIM) such that G = (A1 ◦ A2) ⋉ As. Consider now any

data presentation φ of L(G). Then φ2 is a data presentation of L2(G). By480

assumption, there exists A2 ∈ range(GIM) such that L(A2) = L2(G). Thus φ2

is also a data presentation of L(A2). Therefore, there is m ∈ N such that for all
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n ≥ m, GIMSA

(

φ2[n])
)

= A2. Consequently, there is m′ = 2m such that for all

n ≥ m′, Alg(φ[n]) = (A1 ◦A2)⋉As = G.

Since G and φ are selected arbitrarily, the proof is completed.485

Once the learning algorithm identifies the game, we can ensure that the

controller synthesized based on the hypothesis of player 1 is correct and wins the

game, no matter the strategy of her opponent. The convergence of the control

law can occur prior to that of the learning algorithm; control strategies can still

be effective even if computed based on slightly inaccurate game hypotheses.490

5.4. Online adaptive synthesis

This section shows how strategies can adapt automatically during play in

repeated games. A proof is given that through this process the strategy of player

1 eventually converges to a winning one, whenever the latter exists. For this to

happen, we need to assume that the game can be played indefinitely, and that495

player 2 keeps playing his best even when he finds himself in a losing position.

While updating the hypothesis for the opponent dynamics by observing game

plays, the agent updates her strategy as shown in Algorithm 1 on page 22. Let us

walk through the steps of the algorithm, making references to the corresponding

line numbers in Algorithm 1. We start the game at a random initial state500

v0 ∈ I, and player 1 computes a winning strategy in its hypothesized game

(line 3). When the current state is within the hypothesized winning region of

player 1, the player takes the action indicated by her winning strategy (line 9).

Otherwise, there are two possibilities for player 1: (i) the current state is actually

in the true winning region, but the incomplete knowledge of the opponent model505

misclassified it, or (ii) the current state is indeed out of the true winning region.

In any case, player 1 can consider exploring the game with a random action

with some probability p (line 14), in which case she can observe the response

of player 2 and update her opponent’s model (line 17). Alternatively, and with

probability 1 − p, she can resign. Then the game is restarted from a random510

initial state (line 12).

20



If the repeated game is played in this way, we can show that player 1 even-

tually learns the true nature of the game and is therefore capable of winning
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the game when possible.

Algorithm 1: LearnToWin

Input: The initial state v0, the agent A1, a task specification As, and an

upper limit N on the number of total turns (including both

players’ turns) to be taken.

Output: The winning region Win1 and winning strategy WS1 in the

agent’s hypothesis; and the number of games won by player 1

in the repeated game play.

1 begin

2 φ(0)← ǫ, i← 0, v ← v0, count← 0, wins← 0;

3 G(i) ← Alg(φ[i]), (Win
(i)
1 ,WS

(i)
1 )← ControlSynthesis (G(i));

4 while count ≤ N do

5 count← count+ 1;

6 if v ∈ V1 /* The agent’s turn */

7 then

8 if v ∈Win
(i)
1 then

9 a←WS
(i)
1 (v);

10 else

11 if Sample ([0, 1]) > p then

12 v ←Sample (I);

13 else

14 a← Sample {σ ∈ Σ1 | σ is enabled on v};

15 else

16 a← S2(v); /* The environment takes an action. */

17 φ[i+ 1]← UpdatePresentation(φ[i], a), i← i+ 1,

G(i) ← Alg(φ[i]), (Win
(i)
1 ,WS

(i)
1 )← ControlSynthesis (G(i));

18 v ← NextState (G, v, a); if v ∈ F then

19 v ←Sample (I), wins← wins+ 1; /* The agent wins, and

the game is restarted. */

20 return Win
(N)
1 ,WS

(N)
1 .

515
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For an initialized game (G, v0), let L2(G, v0) be the language of player 2 in

(G, v0). Then a grammatical inference module, when presented with the actions

of player 2 in repeated gameplay, will eventually converge to a language that

captures that player’s behavior:

Proposition 1. For game (G, v0), and for any x ∈ L2(G, v0), there exists k ∈ N520

such that ∀m ≥ k, x ∈ L2(G(m), v0).

Proof. Consider an arbitrary x ∈ L2(G, v0). There can be two cases:

Case v0 /∈ Win
(i)
1 . By definition of L2(G, v0), there exists an interleaving action

sequence w = σ0σ1 . . . σn ∈ L(G, v0) such that the projection of w onto Σ2 is x.

Player 1 makes a move at random with probability p, and the chance that player525

1 selects σ0 is γ ≥ p
m
, where m is the maximal number of all possible actions

for player 1 or 2 for all game states, i.e., m = maxv∈V |{σ ∈ Σ | T (v, σ) ↓}|.

Conditioned on player 1 playing σ0, player 2 plays σ1 with probability greater

or equal to 1
m
. Then inductively, the probability of the finite action sequence

being w is η ≥ min(γ, 1
m
)|w|. Furthermore, since there is no upper bound on530

the number of games to be repeated, the probability of never playing w is

limN→∞(1− η)N = 0 where n is the number of games played. Thus eventually

w will be played and the learning algorithm will update the hypothesis to G(k)

for some k > i. Since w ∈ L(G(k), v0), it will be x ∈ L2(G(k), v0).

Case v0 ∈ Win
(i)
1 . Whatever player 2 plays, if x ∈ L2(G, v0), then x will be535

observed by player 1 and the hypothesis is updated. Otherwise, if v0 /∈ Win1,

then player 2 will play to win, and player 1 will realize that v0 /∈Win
(k)
1 at some

k ≥ i. Since the game is repeated, in the next round the first case applies.

Basically, the exploratory moves made by player 1 ensure that eventually a

positive presentation of L2(G, v0) is obtained.540

Figure 2 illustrates how the identification in the limit of games evolves,

following the identification of the formal language associated with the dynamics

of player 2. This is essentially what goes on at the high level of the architecture
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shown in Fig. 1, page 5. Through interactions with player 2, player 1 observes

the discrete evolution φ2(i) of the dynamics of player 2. She uses the gim to545

construct and update a hypothesized model A
(i)
2 , together with the labeling

function LB2, and subsequently updates the interacting functions U1 and U2.

Based on the interacting functions and the updated model for player 2, player

1 constructs a hypothesis (model for) G(i), capturing her best guess for the

game being played, and uses this model to devise a winning strategy WS
(i)
1 . As550

the model of player 2 A2 converges asymptotically to the true one, the winning

strategy becomes increasingly more effective. In the limit, player 1 is guaranteed

to learn the game she plays and win when the game’s initial state is in Win1.

Winning Strategy WS
(0)
1 WS

(1)
1 . . . WS

(i)
1 . . . → WS1

↑ ↑ ↑

Hypothesis of the Game G(0) G(1) . . . G(i) . . . → G

↑ ↑ ↑

Hypothesis of Player 2 A
(0)
2 A

(1)
2 . . . A

(i)
2 . . . → A2

↑ ↑ ↑

Data Presentation φ(0) φ(1) . . . φ(i) . . .

Figure 2: Learning and planning with a grammatical inference module

6. Case Study

6.1. The game and its class555

We analyze a specific case which is representative of a class of deterministic

two-player turn-based games with perfect information. This class of games is

chosen because it is one of the simplest, yet non-trivial classes still capable of

illustrating the main features of our analysis. Within this class there are games

in which only one player has a winning strategy given the initial state.560

The game being played is a repeated game; that is, the same stage game is

being played again and again, restarting each time one of the players wins or
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resigns. The stage game takes place in the triangular3 “apartment” configura-

tion of Fig. 3. In this game the purpose of player 1, which in our simulation and

experimental implementations is realized as a small mobile robot, is to visit all565

four rooms. The four rooms are connected with six doors that are controlled by

player 2. Player 2 can close two doors at any given time, according to fixed rules

that determine which door pairs are allowed to be closed and how the transi-

tion from one pair to the next is to take place. Player 2 is played either by a

computer or a human in simulations, and by a human in the actual experiments.570

Figure 3: The triangle room game representation

When it is his turn, player 2 may open and close doors so that again exactly

two doors are closed, or to keep the currently closed doors closed for another

turn. Table 1 on page 26 shows three possible rule regimes for player 2 (others

are possible).

In general, these constraints can be specified as any set of door pairs that575

can be closed at the same time.

Depending on the constraints on player 2, several different games can be

played. An additional parameter of the game is its initial configuration. The

games begin with the robot in a room with exactly two doors closed; these must

be among those player 2 can close. We assume player 1 cannot choose her initial580

location, and that player 2 cannot choose which of the allowable pairs of doors

is closed. In our simulations, the starting configuration is determined randomly.

3We also considered other games with four rooms arranged grid-like so that each room has

two connecting doors and games where player 2 was subject to different kinds of rules.
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Rules Description

Opposite Doors opposite to each other can be closed at any time:

{a, d}, {a, e}, {a, f}, {b, f}, {c, e}, {e, f}

Adjacent Doors adjacent to each other can be closed at any time:

{a, b}, {a, c}, {b, c}, {b, d}, {b, e}, {c, d}, {c, f}, {d, e}, {d, f}

General Any pair of doors can be closed at any time.

Table 1: Some possible constraints on player 2: at each round, player 2 either does

nothing or opens exactly one door and closes exactly one other so that the pair of

closed doors belongs to one of the sets above.

6.2. Factoring the game

Let the set of atomic propositions describing the world states be

AP =
{

αi : robot in room i ∈ {1, 2, 3, 4}
}

∪

{dij : the door connecting rooms i and j is open,

(i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}} .

The robot starts the game under the naive assumption that all open doors

will remain open. The LTS for player 1 is A1 = 〈Q1,Σ1, T1,AP, LB1〉 where585

Q1 = {1, 2, 3, 4} = Σ1, where each element is associated with a controller that

steers the robot to the corresponding room; the transition function is defined

as T1(i, j) = j for (i, j) ∈ {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2),

(3, 4), (4, 1), (4, 2), (4, 3)}; the labeling function is same for all q ∈ Q, LB1(i) =

αi∧ (∧(j,k)∈{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}djk). We abuse notation and denote the590

SA extracted from LTS Ai with the same symbol; the corresponding SA is the

same as the LTS it came from, less AP and LB1.

Figure 4 (left) gives a graphical representation of A1 after the state and

transition relabeling, representing that with all doors open, the robot can move

from any room to any other room by initiating the appropriate motion controller.595
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Suppose that player 2 adheres to the Opposite rule in Table 1. Figure 4

(right) then shows a fragment of the SA A2 that models player 2.

1 2

34

2

1

1

3

4 1 3 2

4

2

4

3

ad af

bf

ef

ǫ ǫ

ǫ

ǫ

...

...

...

...

...

af

ad
ef

af

bf

af

efbf

Figure 4: SA for player 1 (left) and a fragment of the SA for player 2 (right). In A1,

the states are the rooms and the transitions are labeled with the room that player 1

is to enter. For A2, the states are the pairs of doors that are currently closed and a

transition xy indicates that doors x and y are to be closed.

The goal of player 1 (to visit all four rooms in any order) is described as the

language accepted by As = 〈S,Qp, Ts, Is, Fs〉, where Fs = {1234}. The automa-

ton for this objective can be obtained using the minimal dfa that recognizes600

the union of the shuffle ideals4 of the permutations of the string 1234. Each

transition labeled q1 from s1 to s2 can be used to generate a set of transitions

from s1 to s2 with labels {q1}×Q2×{0,1}. Figure 5 shows a fragment of As.

Is 1

13

12

134

123

124

. . .

1234

1

3

2

4

3

4

2

3

4

2

1

1,2

1,3

1,2,3

1,3,4

1,2,4

1,2,3,4

Figure 5: A fragment of As; for clarity, a transition labeled q1 from s1 to s2 represents

a set of transitions from s1 to s2 with labels {q1} ×Q2 × {0,1}.

The interaction functions follow from obvious physical constraints: when

player 2 closes a door, player 1 cannot move through it. The interaction function605

4For w = σ1σ2 · · ·σn ∈ Σ∗, the shuffle ideal of w is Σ∗σ1Σ∗σ2 · · ·Σ∗σnΣ∗.
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U2(d1d2, r) gives the set of rooms player 1 cannot access from room r because

doors d1 and d2 are closed. In Fig. 3, for instance, U2(ab, 1) = {2, 3}. On the

other hand, the actions of player 1 cannot inhibit the behavior of player 2 in

any way, so U1(q) = ∅, ∀q ∈ Q1×Q2. Figure 6 shows a fragment of A1 ◦A2. A

transition in A1 ◦ A2, for example, (3, ad,0)
af
−→ (3, af,1), indicates that when610

the robot is in room 3 with doors a and d closed, if player 2 opens d and closes

f , the game reaches state (3, af,1) at which the robot has to make a move. A

fragment of the game automaton G is shown in Fig. 7, which encodes the task

specification automaton As into A1 ◦A2.

(1,ad,1)

(4,ad,0)

(3,ad,0) (3,af,1)

(4,af,1)

(2,af,0)

(4,af,0)

(1,af,0)

(3,af,0). . .
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1
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Figure 6: A fragment of the turn-based product P = A1 ◦ A2 = 〈Qp,Σ1 ∪

Σ2, Tp,AP , LBp〉. State (r, d1d2,B) means player 1 is in room r, doors {d1, d2} are

closed, and the Boolean variable B indicates whose turn it is.
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Figure 7: A fragment of the game automaton G =

(A1 ◦ A2) ⋉ As = 〈V,Σ1 ∪ Σ2, T, I, F 〉, where I =

{(q1, q2,1, s) ∈ V | q1 ∈ I1, q2 ∈ I2, s = Ts(Is, (q1, q2,1)) ∈ {1, 2, 3, 4}} and

F = {(q1, q2,B, s) ∈ V | s = 1234}.
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6.3. The winning region615

Player 1 has a reachability objective, and therefore the winning region Win1

is the attractor of F , denoted Attr(F ), which is obtained by computing the

fixed point of (1) on page 9 using (3) on page 14. The game automaton, a

fragment of which is shown in Fig. 7, has 309 states and so is small enough to

be computed directly. On the other hand, A1, A2, and As have 4, 6, and 16620

states, respectively. Clearly the factored representation is significantly smaller

than the game automaton.

The set of winning initial states for player 1 is shown below:

I ∩ Attr(F ) =

{

(1, ad,1, 1), (1, ce,1, 1), (2, ad,1, 2), (2, bf,1, 2), (4, ce,1, 4), (4, bf,1, 4)
}

.

Interestingly, |I∩Attr(F )|
|I| makes up a mere 25% of all possible initial config-

urations when player 2 is constrained by the Opposite rule in Table 1. For

instance, player 1 has no winning strategy if she starts in room 3.625

When different door rules are considered, cases can arise where there is no

initial state from which player 1 has a winning strategy. In fact when player 2 is

subject to the constraints of the Adjacent and General regimes (see Table 1),

player 1 can never win, even with complete knowledge of the dynamics of player

2, because in these games Attr(F ) ∩ I = ∅.630

6.4. Employing grammatical inference

We study the case where the behavior of player 2 is characterized as a Strictly

2-Local (SL2) language—which belongs to a subclass of the regular languages—

and player 1 is equipped with an algorithm which identifies SL2 languages in

the limit from positive data. For the interested reader, in the Appendix we give635

a brief review of SL languages and their learners.

The grammar that a SL2 learner outputs is the set of all contiguous sub-

sequences of length 2 (called 2-factors) that can be found in the strings of the

language. Interfacing such a learner with a strategy planner in games requires
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the additional step of extracting an automaton out of this grammar. Any gram-640

mar of 2-factors can be converted into a dfa which recognizes the exact same

SL2 language, which may not necessarily be the canonical acceptor for the lan-

guage, but it is a normal form one (see Appendix).

It now follows from Theorem 2 on page 19 that if player 1 is equipped with

a learning algorithm Alg that identifies SL2 languages in the limit from positive645

data and outputs the normal form automaton for this class, then player 1 can

identify the class of games GAMES
(

A1,As, SA(Alg)
)

in the limit from positive

data.

6.4.1. Implementing the grammatical inference module

There are several ways to implement the grammatical inference in the ex-650

ample considered. First, there are distinct algorithms (GIMs) for learning the

SL2 class [30, 31, 32]. Second, faithfully following the description in Theorem 2

suggests that the game must be recomputed with each new hypothesis of player

2. However, performing the products with each new hypothesis is not always

necessary. In some cases, as with the SL2 case, it is possible to reduce the655

number of computations by precompiling a particularly useful representation

of the hypothesis space for the game and performing computations upon this

representation. This is precisely the manner in which we implemented the sim-

ulations. Again it serves to emphasize the point that in many cases of interest,

the worst-case computational complexity can be significantly eased.660

The basic idea behind our implementation of the learning algorithm Alg

(described in the Appendix) follows from the observation that there is a sin-

gle semiautomaton of which every semiautomaton A2 ∈ SA(Alg) is a subgraph.

This is the semiautomaton obtained from the normal form SL2 acceptor for

Σ∗. Player 1 has this “supergraph” semiautomaton in mind, with every tran-665

sition switched “off.” The moves of player 2 correspond to transitions in this

supergraph. As those moves are observed, player 1 simply follows a path in the

supergraph and switches specific transitions on this graph to “on.” Provided

a data presentation is observed, there is a point at which the graph given by
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the “on” transitions (and states connected to such transitions) is the target670

semiautomaton. We then extend this concept to the entire game automaton

itself. Formally, we construct an SA that accepts (Σ2 \ {ǫ})∗ and keeps track

of the last symbol observed—A
(0)
2 = 〈Q2,Σ2 \ {ǫ}, T2〉 where Q2 = Σ2 \ ǫ and

T2(q2, a) = a—and define a labeling function LB2 : Q2 → C where C is the con-

junction of literals over AP . Informally, given q ∈ Q2 and two doors encoded675

in q, d, d′, then LB2(q) = ¬[d is open] ∧ ¬[d′ is open]. Then we add self-loops

T2(q, ǫ) = q, for all q ∈ Q2. Clearly, A2 can be obtained from A
(0)
2 by removing

transitions.

We can efficiently update player 1’s hypothesis of player 2’s behavior and the

game by introducing a switching function sw : Q2 × Σ2 → {0, 1}. The function680

is initialized as sw(0): (∀q2 ∈ Q2)[sw
(0)(q2, ǫ) = 1] and for all σ labeling the

outgoing transitions from q2 ∈ Q2 and σ 6= ǫ, let sw(0)(q2, σ) = 0. Basically

sw(0) encodes the initial hypothesis of player 1 that player 2 is static. Let sw(i)

denote the refinement of sw made at round i and suppose that at round i + 1,

the adversary plays σ′. This suggests φ(i + 1) = φ(i)σ′. If q2 = T2(I2, φ(i)),685

then for all q ∈ Q2 and σ ∈ Σ2, sw
(i+1) can be defined by

sw(i+1)(q, σ) =











sw(i)(q, σ) if (q, σ) 6= (q2, σ
′)

1 if (q, σ) = (q2, σ
′)

(4)

meaning that the transition from q2 on input σ′ in A2 is now enabled. With an

additional small abuse of notation, we denote with A
(i)
2 the pair

(

A
(0)
2 , sw(i)

)

,

which means SA A
(0)
2 has switching function sw(i). Graphically, A

(i)
2 is the SA

obtained from A
(0)
2 by trimming the “off” transitions (where sw(i)(·) = 0).690

Thus, the originally hypothesized game automaton is G(0) = (A1◦A
(0)
2 )⋉As.

The switching function associated with A
(i)
2 can be extended naturally to G(i) :=

(

G(0), sw(i)
)

in the following way: if sw(i)(q2, σ) = 1 (resp. 0) in A
(i)
2 , then

∀v ∈ V1 ∪ {v ∈ V2 | v = (q1, q2,0, s)} we define sw(i)(v, σ) = 1 (resp. 0) in

G(i). With this extension of the switching function, the game automaton can be695

updated without computing any product during runtime. In this particular case,

the pre-compilation of the game obviates the need to compute the turn-based
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product and game automaton every time A2 is updated (see the complexity

analysis in Section 4.2). In cases where the game automaton is too big to be

computed, we expect that a similar strategy can be used with its factors.700

Remark 1. In this particular example, it happens to be the case that the set

of states in the game has a one to one correspondence with the physical states

of the system and its dynamic environment. However, the general framework of

grammatical inference is not restricted to such cases. For example, consider a

property of the environment which specifies each door cannot be closed for three705

consecutive turns, although the physical state of a closed door does not change,

in the game arena, additional states are required for keeping track of how long a

door has been kept closed. Grammatical inference will identify the set of states

in the game, even though they are different from the world states, which are the

conjunctions of literals.710

6.5. Simulations

The initial conditions—the room where player 1 begins and which pair of

doors is closed—for the game are chosen randomly. Games are played repeatedly

with the most updated game model hypothesis that player 1 has constructed

carrying over from game to game. The simulations below use the Opposite715

rules for player 2. A total of 300 games were played.

The convergence of the learning algorithm is measured by computing the

ratio between transitions that are switched on during the repeated game versus

the total number of enabled transitions in the true game automaton. Figure 8

shows the convergence of learning using the ratio of adversary transitions that720

have been identified by player 1 versus the number of turns the two players

have played. From this figure, we observe that after 125 turns of both players

(approximately 42 games), the robot’s model of the environment converges to

the actual one. In fact, player 1 starts to win after the first 10 games. More-

over, after this point, player 1 wins all games that began in states in her true725

winning region. This result suggests that even though the model for player 2

is incomplete, the strategy synthesized by player 1 based on her hypothesis of
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her opponent’s behavior can still be effective. Hence, the value of the game is

(−1, 1) for the first 10 games and (1,−1) for the rest.

Figures 9 and 10 provide a histogram and error chart showing the result730

of 30 independent experiments, each of which is carried out with 300 turns of

two players. The standard deviation and the numbers of minimal and maximal

number of turns for the learning algorithm to converge are shown in Figure 10.
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7. Concluding remarks

7.1. Conclusions and future work735

This paper shows how particular classes of two-player, deterministic, zero-

sum games with perfect information can be identified in the limit, leading to

sure-winning strategies for the players. The prerequisites for this are 1) player

1 and her objective are known, and 2) the behavior of player 2 corresponds to

a language which belongs to a class of languages identifiable in the limit from740

positive presentations by a normal-form learner. Provided these conditions hold,

it is guaranteed that player 1 can compute a strategy which converges to the

true winning strategy in the limit using positive presentations of the gameplay.

The learning results in this paper are primarily made possible by factoring

the game according to its natural subsystems - the dynamics of player 1, the745

dynamics of player 2, and the objective of player 1 - which isolates the uncer-

tainty in the game to the model of player 2. We also show that the winning

strategy can be computed directly from this factorization, which can allow for a

significantly more compact representation of the game, because the subsystems

structure the game in a way captured by the product operations.750

While this paper has focused on tools for learning subclasses of regular lan-

guages, the field of grammatical inference has made important advances in learn-

ing classes of context-free [33, 34, 35] and context-sensitive [36, 37] languages.
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Players that adopt these learning algorithms will be able to identify behaviors

that are not describable with finite-state descriptions and which could lead to755

games with infinitely many states. Infinite-state games arise in many contexts.

To extend the present research to games with imperfect information, we plan

to integrate the learning methods of partial observable action models (the way

actions affect the world) [38] with grammatical inference. Future work should

also examine non-zero-sum games with multiple players, examine the learnabil-760

ity of games under different learning criteria, and explore the effectiveness of a

variety of learning algorithms in specific scenarios.

7.2. Potential application to industrial systems

Many industrial control systems are assembled from (possibly third party)

embedded components for which the exact dynamics are not modeled or given765

[3, 4, 5, 6]. Grammatical inference can help identify the model of components

as formal objects, such as, finite-state transition systems, automata, languages,

we can facilitate the analysis, and ensure the correctness of control design for

the overall system.

Take a particular example in the context of software verification and model770

checking [6]. State of the art automated model checkers which verify that pieces

of software with millions of lines of code are bug-free, usually employ a divide-

and-conquer strategy: since bugs may lurk deep inside the hierarchy of processes

that call each other, current computational resources of model checkers may

not be sufficient to catch these bugs in a brute-force exhaustive search from the775

initial condition. Then, model checkers can start from a particular process deep

inside the derivation tree, and explore from that point forward until they reach

a pre specified depth cutoff limit [6]. In such instances, the software verification

tool needs to have a model of the environment that calls the process where it

starts working from (referred to as the calling environment). It is often the780

case that large scale software architectures embody pieces of code from third

parties, of which the input-output behavior is not known exactly. In these model

checking applications, which can range from database management to aircraft
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control software, there is a practical need to construct and refine the calling

environment model. The reported methodology may be useful in this large-785

scale model checking context, by treating the entry function and its calling

environment as two adversaries, and contribute to the technology for calling

environment model refinement.

Although in this paper we consider the formulation of a zero-sum game be-

tween a control plant and its dynamic environment, due to the independence790

between the learning module and the control synthesis, the grammatical in-

ference module is not limited to adversarial interactions between components.

With learning, we extract the inter-dependencies and interactions between dif-

ferent components, which are necessary for system integration and analysis.

APPENDIX795

A string u is a factor of string w iff ∃x, y ∈ Σ∗ such that w = xuy. If in

addition |u| = k, then u is a k-factor of w. The k-factor function factork : Σ∗ →

2Σ
≤k

maps a word w to its set of k-factors if |w| > k; otherwise it maps w to {w}.

This function is extended to languages as factork(L) :=
⋃

w∈L factork(w). A

language L is Strictly k-Local (SLk) iff there exists a finite set G ⊆ factork(♯Σ
∗♯),800

such that L = {w ∈ Σ∗ | factork(♯w♯) ⊆ G}, where ♯ indicates the beginning

and end of a string. G is the grammar that generates L.

A language is called Strictly Local if it is Strictly k-Local for some k. There

are many distinct characterizations of this class. For example, it is equivalent to

the languages recognized by (generalized) Myhill graphs, to the languages defin-805

able in a restricted propositional logic over a successor function, and to exactly

those languages which are closed under suffix substitution [39, 40, 41]. Fur-

thermore, there are known methods for translating between automata-theoretic

representations of Strictly Local languages and these others.

Theorem 3 ([30]). For known k, the Strictly k-Local languages are identifiable810

in the limit from positive data.
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Readers are referred to the cited papers for a proof of this theorem. We

sketch the basic idea here with the grammars for Strictly k-Local languages

defined above. Consider any L ∈ SLk. The grammar for L is G = factork({♯} ·

L · {♯}),5 and G contains only finitely many strings. The learning algorithm815

initially hypothesizes G = ∅, and for each word w ∈ L, computes factork(w) to

add these k-factors to its current hypothesized grammar. There will be some

finite point in every data presentation of L such that the learning algorithm

converges to the grammar of L (because |G| is finite). This particular algorithm

is analyzed by [32] and is a special case of lattice-structured learning [42].820

This learning algorithm does not output finite-state automata, but sets of

factors. However, there is an easy way to convert any grammar of factors into

an acceptor which recognizes the same Strictly Local language. This acceptor

is not the canonical acceptor for this language, but it is a normal form. It is

helpful to define a function sufk(L) = {v ∈ Σk | (∃w ∈ L)[(∃u ∈ Σ∗)[w = uv]]}.825

Given k and a set of factors G ⊆ factork({♯} · Σ∗ · {♯}), construct a finite-state

acceptor AG = 〈Q,Σ, T, I,Acc〉 as follows.

• Q = sufk−1(Pr(L(G)))

• (∀u ∈ Σ≤1)(∀σ ∈ Σ)(∀v ∈ Σ∗)[T (uv, σ) = vσ ⇔ uv, vσ ∈ Q]

• I = {λ} if L(G) 6= ∅ else ∅830

• Acc = sufk−1(L(G))

The proof that L(AG) = L(G) is given in [43, p.106].

Nomenclature

GIM : SEQ→ REP A learning algorithm that takes the first i elements of a

presentation and returns a grammar.835

5The operator · : Σ∗ × Σ∗ → Σ∗ concatenates string sets: given S1, S2 ⊆ Σ∗, S1 · S2 =

{xy | x ∈ S1, y ∈ S2}.
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(G, v0) An initialized two-player turn-based game with the initial state v0.

# A pause.

ℓ A literal, which is either an atomic proposition α ∈ AP or the negation

of a proposition ¬α.

Γ : Q→ 2Σ An active event function, mapping a state to a set of actions enabled840

at that state.

ΓA An active event function of semiautomaton A.

λ The empty string.

B A Boolean variable denoting whose turn it is to play: B = 1 for player

1, B = 0 for player 2.845

AP A set of atomic logical propositions.

C The set of world states, defined to be the set of all conjunctions of

literals.

G A two-player turn-based game.

Alg A learning algorithm that identifies a game G in the limit from positive850

presentation.

Attr(X) The attractor for the set X .

LB A labeling function that maps a state q ∈ Q into a subset of AP .

Pr(L) The prefixes of a language L.

REP The class of possible grammars.855

SA(GIM) The set of SAs identifiable in the limit from positive presentations by

the normal-form learner GIM.

SEQ The set of all finitely long initial portions of all possible presentations

of all possible L.
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Si A memoryless, deterministic strategy for player i in the game G.860

WSi A winning strategy for player i.

Ω The task specification, given as a logical formula over AP .

φ : N→ L ∪ {#} A positive presentation of L.

φ[i] The first i + 1 elements of φ.

ρ A run, which is a finite (or infinite) state sequence.865

Σ A finite alphabet.

Σ∗ A set of finite sequences with alphabet Σ.

Σω A set of infinite sequences with alphabet Σ.

Σn A set of sequences with alphabet Σ of length n.

Σ≤n A set of sequences with alphabet Σ of length less than n.870

Post(σ) The post-condition of action σ, which is a conjunction of literals.

Pre(σ) The pre-condition of action σ, which is a conjunction of literals.

Acc The acceptance component of an automaton.

Valv(S1, S2) The value of game from v under strategies S1, S2 for players 1 and

2.875

Wini The winning region of player i.

Ai = 〈Qi,Σi, Ti,AP , LBi〉 An LTS captures the dynamics of the agent (i = 1)

or its environment (i = 2).

L The language, which is a subset of Σ∗.

L(A) The language of A.880

L(G) The language of game G, which is a set of strings that generates all

possible finite runs in G.
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L(G, v0) The language of an initialized game (G, v0).

L(G) The language generated by grammar G.

Li(G) The language of player i ∈ {1, 2} in game G.885

Li(G, v0) The language of player i ∈ {1, 2} in the initialized game (G, v0).

P = A1 ◦A2 The turn-based product with A1 and A2.

Q A finite set of states.

T (q1, σ) ↓ A transition with label σ from q1 is defined.

T : Q× Σ→ Q A transition function.890

Ui The interaction function, which maps a pair of states (qi, qj) to the set

of actions which player j can no longer initiate at state qj .

w(i) The i+ 1th symbol in a word w.

w ∈ Σω An ω-word.

Inf(w) The set of symbols occurring infinitely often in w.895

last(w) The last symbol of w.

Occ(w) The set of symbols occurring in w.

N The set of natural numbers.
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