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Abstract— This article presents a decentralized approach to
motion planning for a group of aerial vehicles that combines
deliberate and reactive planning strategies to ensure multi-
vehicle interception of a moving target and coordinated tracking
while keeping a desired formation. A new on-board receding
horizon planning and control architecture realizes each ve-
hicle’s motion plan by generating and tracking dynamically
feasible trajectories, while also incorporating a reactive collision
avoidance feature that allow them to avoid collisions with each
other and with a priori unknown obstacles. The ability of the
architecture to safely steer the vehicles to their intercepting
formation time-varying positions is demonstrated in realistic
Gazebo simulations.

I. INTRODUCTION

Transit of illicit nuclear material can potentially be de-
tected by networks of micro aerial vehicles (MAV) equipped
with lightweight commercial off the shelf (COTS) radiation
detectors. In cases where the emitted radioactivity is weak
enough to blend with naturally occuring background radia-
tion, the aerial sensor platforms will need to come as close
as possible to the suspected mobile target and stay with
it for as long as needed for a confident decision to be
reached about the latter’s nature. (Note that the radiation
detection problem is different from a radiation mapping
problem, e.g. [6]) Such a hypothetical mission will require
the MAVs to autonomously navigate in some potentially
partially known cluttered environment, intercept their target,
and fly in formation in proximity to it. This paper’s planning
and control strategy aims to achieve precisely that.

The binary hypothesis decision-making problem (i.e. is
the target radioactive or not) is treated elsewhere [13], [23],
and optimal (from a detection perspective) aerial vehicles
formations have been identified [21]. This paper is con-
cerned primarily with the question of how the MAvs will
provably and safely achieve such formations, even when the
environment in which they operate is partially known. An
example of the partial environment knowledge contemplated
here is a case where the vehicles may be equipped with a
map of an urban area that identifies buildings and other large
man-made structures, but does not necessarily includes, trees,
crane structures, vehicles or pedestrians.

Existing approaches to MAV formation control in cluttered
environments involve several different techniques, including
vision-based control [12], coordinated multi-MAV formation
trajectory planning and control [18], as well as distributed
formation control with obstacle avoidance [1], [2]. In the lat-
ter approaches, the MAVs navigate their cluttered workspace
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by collectively identifying the largest obstacle-free convex
region, and then moving while keeping the convex-hull of
their positions within the identified safe region. The final
MAV configuration is obtained by minimizing the error with
respect to a desired formation. The key difference of the
problem setup in this paper compared to the aforementioned
work is that here the desired MAV formation needs to move
and track a designated target.

When one approaches the problem from a MAV target
tracking viewpoint, they encounter work in literature that
examines the case where a single MAV is tracking a specific
target [S], [17]. As a result, there is little consideration of how
different MAV may interact with each other. Recent reports in
literature where MAV formations are tasked to track a moving
target are scarce (cf. [19]), unless one traces early work that
involves formation control based on virtual structures [4],
[8]. Still, very little is known about how groups of MAV can
achieve dynamic formations when operating in constrained
and partially known environments.

Feedback-based provably convergent MAV navigation in
cluttered environments is challenging. Setting aside com-
binatorial or sampling techniques who have demonstrated
results [11] but cannot enjoy the robustness of feedback,
recent extension of navigation function techniques [15] that
incorporate elements of reactive behavior and on-line adapta-
tion based on sensor data have shown promise [3], [20], but
have not yet been demonstrated to be effective for dynamic
and high-speed MAvV flight; in addition, convergence to a
moving destination has not been formally established in this
framework.

In contrast, there has been work that formally extends the
navigation function formulation explicitly along the direction
of moving destinations, and has been experimentally vali-
dated with aerial (albeit relatively slow) flight [16] (cf. [9]).

This paper builds on the body of knowledge of navigation
functions with moving destinations, and integrates them
within a comprehensive MAV flight planning and control
architecture which utilizes receding horizon control and
incorporates the full aerial vehicle dynamics, and includes
a reactive, sensor-based collision avoidance component. The
key contribution of the work is to develop a single motion
planning strategy that can be used by a small team of
aerial vehicles to track a moving target in a formation while
avoiding the obstacles encountered during the interception or
the tracking phase.

The planning and control approach starts from an initial
condition where the desired dynamic formation around a
given target has been determined and the position of each
vehicle in this formation has been identified [21] and extends



the state-of-the-art on the problem of cooperative dynamic
target interception and tracking in cluttered environments in
the following directions: (i) enables the MAVs to navigate in
a cluttered and partially known environments and reactively
avoid each other and unmapped objects in their workspace,
(ii) offers a formal proof of convergence for the naviga-
tion function-based reference paths that steer the MAVs to
their time-varying desired positions, (iii) allows generation
algorithm to build on these reference paths to produce dy-
namically feasible reference trajectories that minimize MAV
jerk, and finally (iv) integrates all these components in a
new comprehensive MAV receding horizon flight planning
and control architecture that modestly extends a differential
geometric MAV controller [7] to offer an end-to-end solution
to the problem of cooperative autonomous interception and
tracking of moving targets.

Section II and Section III set the motion planning and
control problem in a mathematical basis and give the archi-
tecture of the proposed approach. Section IV-A introduces
the navigation function-based motion planning methodology
that enables each MAV to negotiate known environmental
features and chart a path to its desired configuration to
the formation. This is followed by the receding horizon
based dynamically feasible trajectory generation approach
presented in Section IV-B and IV-C. The simulations results
and conclusions have been presented in Section V and VI
respectively.

II. PROBLEM STATEMENT

Consider N identical MAVs in the form of quadrotors
which move in a shared constrained physical workspace WV,
and assume that there is a fixed inertial frame defined in
this space. The shared workspace is practically 2.5D, and is
populated by fixed cylindrical obstacles, some of which are
known a priori, and some are unknown. The portion of the
workspace which does not overlap with obstacles (known
or unknown) is denoted F and is referred to as the free
workspace.

Denote the mass of MAV ¢ m;, and its moment of inertia
about the principal axes passing through its center of mass,
J;. (The aforementioned principal frame will henceforth be
referred to as the body-fixed frame.) The propeller-generated
thrust (magnitude) and moment about the body-fixed axes
of MAV ¢ are denoted f; and M;, respectively. The MAV
orientation relative to the inertial frame is expressed in the
form of the rotation matrix R; € SO(3), and its Cartesian
position with respect to the inertial frame is represented by
a vector x; € R3. The angular velocity vector expressed in
the body-fixed frame of the MAV is denoted €2;.

If 7: R3 — s0(3) denotes the (hat) operation associating
3D vectors to elements of the 3D Lie algebra, g the accel-
eration of gravity vector, and e3 the unit vector along the
3 Jocal coordinate axis, then the dynamics of MAV ¢ are

expressed, fori =1,..., N, as
m; &y = —m;gesz+ filRe3 (1a)
Ri=R; (1b)

The trajectory generated for each MAV should be dynami-
cally feasible i.e., should be consistent with the higher order
dynamics of the quadrotor, should enable the generation
of smooth control inputs, and yield commanded thrust and
angular velocities within the permissible limits. Let fiin,
fmax and Q. be the limits on thrust and angular speed;
then the dynamical feasibility requirement is cast as the
condition that for every i € {1,..., N}

.fmin S fi S fmax ||Qz|| S Qmax (2)

The goal of the MAV group is to navigate through the
workspace in a collision-free manner and fall into a (moving)
formation where each MAV ¢ has a designated desired goal
g:(t) € R3. It is assumed that both x;(t) and g;(t), for all
i€{1,..., N}, remain in the interior of F for all ¢ > 0.

III. SYSTEM ARCHITECTURE

The structure of the overall architecture for planning,
control and formation generation is shown in Fig. 1. The
arrows indicate the direction of information flow. Different
colored blocks (blue, red and green) represent the software
stack running independently on each MAV. Each MAV is
supplied with the available information about the workspace
topology and its time-varying destination on the formation.
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Fig. 1. System block diagram. Each (identical) colored block represents
the software stack architecture on an individual MAV.

The computation steps (identical to each MAV) in the
cascaded planning architecture depicted in the first two
blocks of Fig. 1, reading from top to bottom, are as fol-
lows. (i) A priori information available about the workspace
is utilized off-line to construct a navigation function for
the particular MAV; (ii) point-cloud data from the MAV’s
RGBD sensor is harnessed by its reactive local planner,
which operates iteratively in a receding horizon fashion at
15Hz, and shares the MAV’s current (estimated) location and
the MAV’s desired destination with the navigation function;
(iii) the navigation function receives the MAV’s current and
desired configuration and produces an initial segment of a
continuous path connecting the current MAV configuration



to its moving goal (assuming no unknown obstacles are
along that path); (iv) the receding horizon local planner
receives the path segment from the navigation function and
utilizing the most current point-cloud information generates
a dynamically feasible minimum-jerk trajectory that fits
this path as tightly as possible while avoiding reactively
any (previously unknown) obstacles detected by the RGBD
sensor; and finally, (v) a small initial component of that
minimum-jerk reference trajectory is faithfully tracked by
a provably stable differential-geometric tracking controller
operating at 100Hz, which starts steering the quadrotor along
the trajectory segment within the FOV.

In a typical receding horizon fashion, before the end of
first trajectory segment is reached, the navigation function
planning block updates the collision-free path segment; sub-
sequently the receding horizon planner updates the reference
trajectory segment and stitches the old and the new trajectory
segments smoothly through an (minimum jerk) optimization
process that is detailed in Section IV-C. The re-planning
and trajectory tracking process is repeated during the entire
target tracking process and terminates when the MAV is the
neighborhood of its moving formation destination.

IV. MAV MOTION PLANNING
A. Deliberate Global Planning

The control objective of MAV i is achieved whenever the
function (dependence on time will be dropped for brevity,
but in the remainder it is understood that g; is a function of
time)

Ji(wi, 9:) = |lzs — gill 3)
converges to zero as time tends to infinity.
It is assumed that all known obstacles j = 1,...,m in W

are spherical with implicit representations of the form
A 2 2
Bi(wi) = |lzi — o5]1° — pj

where o; and p; are their centers and radii, respectively,
whereas the workspace boundary is captured by

Bo(x:) = p§ — llzs — oo

The assumption regarding the spherical shape of obstacles
is not considered particularly restricting since it is known
that there exist diffeomorphisms mapping environments with
more general, star-shaped obstacles, to workspaces with
spherical obstacles like W [15].

Proximity of MAV ¢ to (known) obstacles in WV can be
captured by the scalar function 5(z;) =[]}~ 8;(x:). Then
an artificial potential function can be constructed in the form

Jiz (74, 9:)
1/
[Ji(xi, )% + B(i)] /
and its parameter x can always be appropriately tuned so
that (4) can acquire navigation function properties [9], [16].
This essentially means that g; is the sole unique minimum

of ¢;, and any other critical point in F is a saddle with an
attraction region which is a set of measure zero.

©0i(zi,9:) = 4

Under the assumption that g;(¢) and ¢;(¢) is known, it
can be shown that a gradient descent-based feedback law
with appropriate feedforward can ensure that a hypothetical
single-integrator system &; = u converges to g; from almost
every free workspace initial configuration:

Proposition 1. Consider the dynamics ©; = u;. Then there
exists sufficiently large k., > 0 such that

gz ®)

U; = _ktpi Bazi

results in limy_, o0 2;(t) = g;(¢).

Proof: (Sketch) Note first that ¢; is lower bounded by
0. Its time derivative evaluates to

Gi(zi9i) =
2B(zi) (% — 91), 9i) )
[be _ 973”2’{ +ﬁ($z)j| (1/k)+1

For bounded target speed ¢; within F and outside the
neighborhood S of critical points of ¢;, one can pick

A 26(x:){(zi — gi), G4)
1/k 1
#ER\S [|lz; — gi|2% + B(ai)] T [V |2

so that the squared norm term in (6) dominates, establishing
sign definiteness for ¢;. Now the right-hand-side of (6) is
bounded and uniformly continuous everywhere in JF, while
wi(xi, 9;) € [0,1]. As a result, ¢; — 0 as t — oo, which
implies that x; — g;. O

. 2
9pi _
ox,

i

Pi

ko, >

Note also that since —% always points away from
(known) obstacle surfaces, the paths generated by (5) will
never intersect with the boundaries of the known work space.

Given Proposition 1, now one knows that properly mod-
erated gradient decent paths generated by ¢; through (5) are
guaranteed to connect the current position of MAV ¢ to its
target g; while avoiding (known) obstacles.

A path can now be generated from the current MAV
location to the goal by numerical integrating point mass
dynamics with the control input defined by (5). A small
initial segment of this path is utilized by the reactive planner
introduced in next section.

B. Reactive Local Planning

Given a path segment produced by the navigation function,
and point-cloud input data from the onboard RGBD sensor,
the receding horizon planner’s goal is to continuously gener-
ate feasible, safe, and locally optimal trajectories. Tracking
those trajectories, the MAV can deliberatively steer around
known obstacles, and reactively avoid previously unknown
obstacles within its FOV while making progress toward the
dynamic navigation goal [22]. This section presents a brief
description of the approach followed.

If the components of the position vector x; of MAV ¢ are
denoted (pgi,Pyi, P-i), and 1; denotes its yaw angle, then a
continuously differentiable trajectory in the (x;,1);) space is
ensured to be compatible with the MAV’s dynamics, which
are known to be differentially flat [10]. If, in addition, it so



happens that such a trajectory respects the input feasibility
constraints (2), then the MAV state trajectory that is associ-
ated with the differentially flat trajectory is guaranteed to be
dynamically feasible.

The field of view (FOV) is assumed to be contained in a
right rectangular pyramid, having its apex at the base frame
of the RGBD sensor, with its depth direction aligned with
the local x MAV axis, and its height of determined by the
sensor’s range. For computation purposes, the volume of
the FOV pyramid is discretized and reduced to a grid of
fixed resolution. Then consider a ray cast from the apex
to each of the grid points inside the FOV pyramid volume.
Such rays represent potential local directions of motion for
the MAV. Any ray in proximity to an RGBD point-cloud
element is discarded as non collision-free. Separating the
collision-free rays can be done efficiently using a KD-tree
data structure [22]. Figure 2 shows this process. A path
segment (indicated as magenta line) is received by the
navigation function-based planner of Section IV-A. The end
point of this segment is referred to as intermediate point.

quad

Fig. 2. Checking for collisions. Triad mark the MAV’s current COG and the
intermediate point, which is the end point of the path segment generated by
navigation function (indicated by magenta line). Rays in the FOV intersecting
with obstacles reflected in point cloud data (red) are discarded. Green rays
represent collision-free motion directions and blue ray is the optimal ray
along with reference trajectory is generated.

Which of all the FOV rays will eventually be selected as
the preferred local direction of motion is determined by a
reactive optimization heuristic that strikes a balance between
three desirable factors: (a) collision avoidance, according to
which rays are penalized relative to how close they would
bring the MAV to an obstacle detected within the FOV;
(b) convergence, according to which rays with end points
further away from the intermediate point are penalized; and
(c) inter-MAV coordination, based on which —and in lieu of
any communication between the aerial vehicles— counter-
clockwise maneuvers for avoidance of collision to unknown
obstacles detected within the MAV’s FOV are preferable. The
latter factor (referred to as the directional cost) aims at
resolving situations where two MAV cross paths on their way
to their formation destinations. The counter-clockwise rule
—the actual direction is arbitrary and immaterial; it could be
equivalently set as a clockwise rule— is designed to increase
the distance between a pair of MAVs in a collision course.

In the face of the practical limitations stemming from
(a) the uncertainty regarding the workspace topology, (b) the
very limited FOV of the MAVs, (c) lack of centralized coor-
dination and communication between the MAVs, and (d) the
need to reactively avoid both static (obstacles) and moving
(other MAVS) objects, it is extremely challenging to fully
recover the guarantees of collision avoidance provided by
Proposition 1. Nonetheless, as long as the unknown obstacles
are sparse and of size comparable to that of the MAVs,
the occasional local reactive action becomes an intermittent
perturbation which does not disturb convergence.

Denote p the total number of collision-free rays (assumed
for mere presentation simplicity to be the same for MAVs),
and dj, the Euclidean distance between the end point of the
k'™ ray and the intermediate point, for k = 0, ..., p. This dj,
represents the convergence cost for the ray k.

Set diax 2 maxy dg, and let # > r be an additional
safety margin (uniform inflation around the detected obstacle
boundaries). Letting p; be the minimum distance to the
nearest obstacle out of all interior points on ray k, the
collision cost for ray k is calculated as [22]

2]2

1t [(pr=r)®—7
M T [(pe—r)2 =722

0 otherwise

if Pk —T < 7
Ceoll, =

While the collision and convergence costs are calculated
in the standard MAV body frame, the third factor i.e., the
directional cost is calculated in the (RGBD) sensor’s frame.
This frame has z and y axes aligned to the depth and vertical
sensor directions, respectively, while its x axis distinguishes
clockwise from counter-clockwise turns within the sensor’s
FOV. Let zp;, and .« be the minimum and maximum
local end point x coordinates out of all non-colliding rays.
Then the directional cost of ray k is taken to be

Lk — Tmin
Cdir, = ————————
Tmax — Lmin

Now for positive scalar weights k1, ko, and ks, all in the

(0, 1) range, the total cost of ray k € [0,...,p| is

dy,
dmk + k2 Ceolly, + k3 Cdiry,

a,

Ck=k‘1

The end point of the ray that has the lowest total cost is
called the local goal (because it is within the FOV) of the
reactive local planner (Fig. 2).

C. Receding Horizon Trajectory Tracking

With the local goal in the FOV selected, the problem now
reduces to generating a dynamically feasible and locally opti-
mal reference trajectory from the MAV current 3D position to
the local goal, tracing the optimal ray. In the spirit of receding
horizon control, this reference trajectory has a predefined
planning horizon T, and boundary conditions (in terms of
MAV 4 position, velocity, acceleration, and jerk) denoted
xio = [wly, 2l &, F] " and xir = [a]y, &7, ilp, F]7] T,
respectively, where x;o is matching the current state of the
MAV, x;7 the position of the local goal in the FOV, &;7 the
speed of the target ||¢;|| along the direction of the optimal
ray while ;7 = Z;r := 0. The planning horizon T is



determined adaptively. Assuming a hypothetical trapezoidal
speed profile along the length of the optimal ray using the
aforementioned boundary conditions at x;0 and x;r, and
imposing a constraint on maximum speed consistent with
(2), one can calculate the resulting time to traverse this path
and thus numerically determine a value for 7'.

Let the optimal ray be divided into n, equal segments,
defining waypoints at their endpoints, and let At, denote the
time difference between the time stamp of two successive
waypoints; it follows that T = Zﬁl Aty. Each segment
of the reference trajectory x, : [0, At,] — R'2, for £ =
1,...,n, and x¢(Aty) = x¢41(0), can now be produced as a
solution to a minimum jerk optimization problem [10], [14]

2
. n Ate || g3
argminy, y_,7, o || dt
subject to 7
d"z, _d"meys _
din |Atg_ din lp, n=0,....3

x(0) = xg, x(T) =xg

Problem (7) is converted to a quadratic program (QP) and
efficiently solved using standard solvers. The subscripts for
the MAV is dropped for clarity. Since yaw is dynamically
decoupled from MAV position, the trajectory reference for
1; can be generated independently using a third order
time polynomial [22]. Once the full reference trajectory is
generated at a given receding horizon cycle, it is checked to
ensure that the nominal thrust and angular velocity conforms
to the dynamic constraints (2), and in case of constraint
violation velocities are progressively scaled down to yield
less aggressive but feasible MAV maneuvers. Once the final
reference trajectory is obtained, an initial portion of control
horizon T, < T is tracked through a variation [22] of a
differential-geometric motion controller (cf. [7]), at which
time the receding horizon control cycle is complete and a
new motion planning process is initiated. Figure 3 illustrates
an example of the outcome of the receding horizon strategy
for the case shown in Fig. 2.

unknown obstacle [ '\I

Fig. 3. Trajectory Generation. Dashed green lines show generated reference
trajectories while solid green curve is the trajectory of the MAV as it tracked
the trajectory segments consecutively.

V. RESULTS

This section presents the results of numerical simulation
conducted using ROS and GAZEBO. Figure 4(a) shows a 2.5D
sphere world with six known and two unknown obstacles.
The target moves along a straight (black) line passing through
the center of the workspace and in between the two unknown
obstacles, and two MAVs, their paths marked by the magenta
and green curves, are intercepting and tracking it in a
formation which has them maintain a distance of 1 m in
the « and y directions. The figure insets show the reactive
collision avoidance maneuvers in more detail; the top left
inset illustrates how MAV-2 modifies its trajectory to avoid
MAV-1 which is already in persuit, and the bottom right inset
shows how the vehicle avoids one unknown obstacle.

In Fig. 4(b) one sees the evolution of the navigation
functions of the two MAVs over time. The value of the
navigation function decreases and converges to zero. From
the plot of Fig. 4(b) one can observe a slight initial increase
in the value of the functions that corresponds to the MAVs
taking off their original landing locations, and a temporary
increase (see inset) for one of the MAVs as it performs a
collision avoidance maneuver for the other MAV encountered.
A short video depicting gazebo simulations can be found at

Figure 5 illustrates a more cluttered (in terms of unknown
obstacles) scenario with three MAVs which fall into a triangle
formation as they intercept their target. The inset details an
instance of the MAVs reactively avoiding collisions while
attempting to maintain their formation. A link to GAZEBO
and RVIZ simulations can be found at https://youtu.
be/tRXesdv_DbWk.

VI. CONCLUSIONS

Local reactive, and global deliberate motion planners for
MAVSs, can be effectively combined within a receding horizon
framework to address a problem of completely decentralized
multi-MAV tracking and interception of a moving target in a
partially known environment. Based on available workspace
information, the deliberate global motion planner can offer
guarantees of safety and convergence; given its sensor-
based, and reactive nature the local planner cannot match
this. Nonetheless, a receding horizon control strategy that
concurrently engages both planners in an iterative fashion is
demonstrated to be effective in steering the MAVs to their
desired intercepting states, and due to the feedback nature
of the overall architecture (Fig. 1), the local reactive action
does not inhibit the convergence of MAVs to their target.
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