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Abstract— We consider the problem of computing analytical
bounds on error probabilities in the setting of networked
nuclear detection based on a likelihood ratio test. The detection
scenario involves a mobile source of known trajectory passing
within the sensing range of a spatially distributed sensor array,
which has to decide on its nature (benign or radioactive)
within a fixed time interval. Exploiting the particular modeling
structure of remote nuclear measurement, and the form that
the likelihood ratio takes in this setting, the paper presents
analytical Chernoff bounds for the error probabilities, which in
turn allow the selection of threshold constants for the likelihood
ratio test in a computationally efficient manner compared to
Monte Carlo simulations.

Keywords— Nuclear detection; Likelihood Ratio Test; Cher-
noff bounds.

I. INTRODUCTION

An important aspect of nuclear detection relates to the
problem of using radiation sensor data to decide, within a
given time interval, whether a radioactive source is present in
the vicinity of the sensor(s). This problem is of significance
not only in the context of national security, but also nuclear
nonproliferation in general. Specifically, it is noted that
currently deployed systems for detecting the transport of
illicit radioactive material are not adequate [1]. The use
of networks of sensors is among the proposed suite of
approaches that could constitute an integrated solution.

The problem set-up in this paper involves a suspect target,
which may or may not be radioactive, which passes through
a finite, spatially distributed array of radiation sensors. Being
mobile, the target is in the vicinity of the sensor array for a
limited amount of time, in which the sensors have to decide
on its nature. The motion of the target is assumed known or
at least measurable accurately enough for its position to be
described as a deterministic function of time. The target is
considered as a source if its radioactivity is estimated above
a given level, and the decision problem that arises is how to
utilize the information gathered at individual sensors so that
a global decision can be made in a timely manner.

Assuming that the sources of radiation are concealed, their
presence is ascertained based on their nuclear emissions.
Such emissions are modeled as discrete events corresponding
to a Poisson point process, i.e. the time interval between
consecutive emissions of particles or gamma rays is expo-
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nentially distributed [2].1 In the case considered here, the
relative motion between the source and sensors causes the
point processes describing the arrival of gamma rays at the
sensors to be time inhomogeneous. Another challenge is that
the signal recorded by the radiation detectors contains, in
addition to possible emissions from the suspected source,
a background radiation component due to cosmic radiation
and naturally occurring radioactive material. It is also highly
likely that an illicit radioactive source, if present, is shielded,
making its perceived intensity at the sensors comparable in
magnitude to that of background radiation. In addition, this
perceived intensity drops with the square of the distance
between sensor and source [2]. To summarize, sensors need
to detect from a distance, a Poisson signal which is buried in-
side another Poisson signal of similar nature and magnitude,
within a short time interval.

Aspects of the problem of deciding between two hy-
potheses regarding point processes, one corresponding to a
message “all clear” and the other to “alarm,” are studied
in [3], [7]–[11]. The common idea in all these works is
finding the right likelihood ratio, computing it based on the
sensor data, and comparing this ratio with a carefully selected
threshold. Depending on whether the ratio is above or below
the threshold, one of the two hypotheses is accepted; this
comparison is known as the likelihood ratio test (LR test). In
the specific context of radiation detection networks, related
work is based on adaptations of the LR test, using either
sequential or fixed-interval testing theory [12], [13], and
Bayesian or Neyman-Pearson approaches [2], [14], [15].
With the exception of [13], sensor observations have been
assumed independent identically distributed (i.i.d.).

In an LR test, there are two errors that can be made: a false
alarm, where the test decides that a source is present when
in fact the “all clear” hypothesis is correct, and a missed
detection in which the test shows “all clear” but a source is
indeed present. Computing the error probabilities analytically
is impractical, and thus upper and lower bounds are sought,
and efforts to this end have been made using Chernoff
bounds [10], [16]–[18]. The use of Chernoff bounds (and
modifications) in performance evaluation of communications
systems is considered in [19]–[22], while connections to the
theory of large deviations are explored in [23]–[25].

This paper leverages recent results [26] regarding the
fixed-time interval detection of weak time-inhomogeneous
Poisson signals buried in (also) Poisson carrier background,
using a network of detectors capable of performing some

1Poisson processes are common in other domains too, such as queueing
theory [3], [4], optical communications systems [5], and the generation of
electrical pulses in neurons [6].



limited local computation. The main conclusion of [26] (see
Section III), is that the likelihood ratio used in a threshold test
for detection can be computed as a direct product of factors
computed locally at sensors. As a result, with decentralized
local computation, the performance of centralized detection
can be matched without either local decisions at the sensor
level, or streaming the entirety of raw sensor data to some
designated fusion center. The present paper takes a step
forward in this direction, deriving analytical Chernoff bounds
on the probabilities of missed detection and false alarm,
which allow the selection of threshold constants for the LR
test in a more efficient manner compared to Monte Carlo-
type analysis.

II. PROBLEM DESCRIPTION

Consider a planar (for simplicity) array of k radiation
sensors. The location of sensor i, 1 ≤ i ≤ k, is expressed by
the pair (xi, yi). A suspected source of intensity a > 0 moves
in the (x, y) plane with position given by (xs(t), ys(t)).

Let ri(t) be the distance between the source and sensor i
at time t. Thus,

ri(t) =
√

(xs(t)− xi)2 + (ys(t)− yi)2 . (1)

The intensity due to the source as seen at sensor i is modeled
by νi(t) = χa

χ+ri(t)2
, where χ is a sensor-specific cross-

section coefficient. If βi(t) is the background activity at the
location of sensor i (assumed known), the question is to
decide whether the sensor observations are governed by the
intensities βi(t) or βi(t) + νi(t), 1 ≤ i ≤ k, corresponding
to the target being benign versus radioactive, respectively.

III. PRELIMINARIES

In this section, we recall the setup from [26], which
provides the starting point for the analysis in this work.
Consider the following detection problem: a network of k
spatially distributed sensors observes a time-inhomogeneous
Poisson process and has to decide—at the end of a fixed
time interval [0, T ]—between two hypotheses, H0 and H1,
regarding the statistics of the observed process. To this end,
each sensor transmits at time T a locally processed summary
of its information in the form of a likelihood ratio—not
a decision—to a fusion center, which then combines these
messages to arrive at an optimal decision in the Neyman-
Pearson framework. The resulting test compares the (global)
likelihood ratio LT against a threshold γ > 0, deciding H1

if LT ≥ γ, and H0 otherwise.
The probabilistic setup is as follows. We have a mea-

surable space (Ω,F ), on which a k-dimensional vector of
counting processes Nt = (Nt(1), . . . , Nt(k)), t ∈ [0, T ]
is defined. For the problem at hand, Nt(i) represents the
number of counts registered at sensor i ∈ {1, 2, . . . , k} up
to (and including) time t ∈ [0, T ]. The two hypotheses H0

and H1 regarding the state of the environment correspond
to two distinct probability measures on (Ω,F ). Hypothesis
H0 corresponds to a probability measure P0, with respect
to which the Nt(i), 1 ≤ i ≤ k, are independent Poisson
processes over t ∈ [0, T ] with intensities βi(t), respectively.

Hypothesis H1 corresponds to a probability measure P1, with
respect to which the Nt(i), 1 ≤ i ≤ k, are independent
Poisson processes over t ∈ [0, T ] with intensities βi(t) +
νi(t), respectively. The decision problem is thus one of
identifying the correct probability measure (P0 versus P1) on
(Ω,F ), based on a realization of the k-dimensional process
Nt = (Nt(1), . . . , Nt(k)).

Analysis motives the following requirements on βi and νi:
Assumption 1: For 1 ≤ i ≤ k, βi : [0, T ] → [βmin, βmax]

is a bounded, continuous function with 0 < βmin < βmax <
∞, βmin, βmax independent of i ∈ {1, 2, . . . , k}.

Assumption 2: For 1 ≤ i ≤ k, νi : [0, T ]→ [νmin, νmax] is
a bounded, continuous function with 0 < νmin < νmax <∞,
νmin, νmax independent of i ∈ {1, 2, . . . , k}.

Let (FN
t : 0 ≤ t ≤ T ) be the filtration generated by

the process Nt.2 Then, for any event A ∈ FN
t , an observer

of the sample path s 7→ Ns, 0 ≤ s ≤ t, knows at time t
whether or not the event A has occurred. The σ-field FN

T

thus represents the information generated by the totality of
sensor observations up to t = T ; to wit, the information on
which the decision must be based.

A test for deciding between hypotheses H0 and H1 on
the basis of FN

T observations can be thought of as a set
A1 ∈ FN

T with the following significance: if the outcome
ω ∈ A1, decide H1; if ω ∈ A0 , Ω \ A1, decide H0.
For a test A1 ∈ FN

T , two types of errors might occur. A
“false alarm” occurs when the outcome ω ∈ A1 (i.e. decide
H1) while H0 is the correct hypothesis. A “miss” occurs
when ω ∈ Ω \ A1 (i.e. decide H0) while H1 is the correct
hypothesis. Clearly, the probability of false alarm is given by
P0(A1), while the probability of a miss is given by P1(Ω \
A1). Then, the probability of detection is given by P1(A1) =
1− P1(Ω \A1).

In the Neyman-Pearson framework, one is given an ac-
ceptable upper bound on the probability of false alarm
α ∈ (0, 1), and the problem is to find an optimal test: a
set A∗1 ∈ FN

T which maximizes the probability of detection
over all tests whose probability of false alarm is less than
or equal to α. The following result provides an optimal
test that employs local information processing at the sensor
level, to enable decisions at the fusion center that recover the
optimal performance of a centralized Neyman-Pearson test.
The underlying probabilistic setup is as described above.

Theorem 1 ([26]): Consider a network with k sensors and
a fusion center connected in a parallel configuration. For
1 ≤ i ≤ k, let Nt(i), t ∈ [0, T ] denote the observation at
sensor i over the time interval [0, T ] and let (τn(i) : n ≥ 1)
be the jump times of Nt(i). Assume that at decision time T ,
sensor i transmits to the fusion center the statistic

LT (i) , exp

(
−
∫ T

0

νi(s)ds

)
NT (i)∏
n=1

(
1 +

νi(τn(i))
βi(τn(i))

)
computed on the basis of its observation t 7→ Nt(i), t ∈

2Definition: for t ∈ [0, T ], FN
t = σ(Ns : 0 ≤ s ≤ t) is the smallest

σ-field on Ω with respect to which all the (k-dimensional) random variables
Ns, 0 ≤ s ≤ t, are measurable.



[0, T ]. Then, the test A∗1 = {LT ≥ γ} performed at the
fusion center, with LT ,

∏k
i=1 LT (i), and γ > 0 satisfying

P0(LT ≥ γ) = α, is optimal for FN
T -observations in the

sense that for any A1 ∈ FN
T with P0(A1) ≤ α, we have

P1(A∗1) ≥ P1(A1).
Remark 1: Note that the threshold γ in Theorem 1 may

not exist for every α ∈ (0, 1).3 The classical Neyman-
Pearson result covers such cases by allowing tests with
randomization [27], [28]. However, what is actually required
for the problem of nuclear detection is that α be of a
certain order of magnitude, rather than a specific number
(for instance, one might require that α be of order 10−4).
Therefore, we will not consider randomized test, and assume
in the sequel that we have the flexibility to first choose γ,
with the proviso that α = P0(LT ≥ γ) is of the right order
of magnitude.

IV. CHERNOFF BOUNDS ON ERROR PROBABILITIES

The performance of the test {LT ≥ γ} can be measured
by the probabilities of false alarm and miss defined by

PF , P0(LT ≥ γ) and PM , P1(LT < γ), (2)

respectively. In many cases of interest, however, the exact
computation of these error probabilities is mathematically
intractable, motivating the need for good upper bounds which
are easily computable. Theorem 2, stated below, derives
explicitly computable bounds on PF and PM based on
Chernoff’s inequalities. To state the theorem, we define

Λ(p) , log E0[LpT ] = log E0[ep `T ] , (3)

where `T , logLT is the log likelihood ratio. Thus Λ(p) is
the cumulant generating function of `T under H0. Let

µi(t) , 1 +
νi(t)
βi(t)

(4)

for 1 ≤ i ≤ k, t ∈ [0, T ]; thus, µi(t) is the ratio of intensities
for H1 versus H0. The intensities at sensor i at time t
under H0 and H1 can now be written as βi(t), µi(t)βi(t),
respectively. The proof of the following result is at the end
of the section.

Theorem 2: Let η , log γ ∈ R. The Chernoff bounds on
PF and PM are given by

PF ≤ exp
(

inf
p>0

[Λ(p)− pη]
)

PM ≤ exp
(

inf
p<1

[Λ(p) + (1− p)η]
) (5)

where Λ(p) is explicitly computable via

Λ(p) =
k∑
i=1

∫ T

0

[µi(s)p − pµi(s) + p− 1]βi(s)ds (6)

for p ∈ R.

3If one were dealing instead with a continuous random variable Z
admitting a density f(x), one could always find γ by solving

R∞
γ f(x)dx =

α.

Remark 2: The explicit analytical formula for Λ(p) in
(6) is a consequence of the assumption of deterministic
intensities, which allows us to circumvent the intricate fil-
tering analysis in [10] needed to accommodate stochastic
intensities.

We prove Theorem 2 through a series of steps. The
principal result in this direction is Proposition 1, stated next,
whose application at t = T , in conjunction with (3), yields
(6). To start, we introduce a stochastic process whose value
at time T is the likelihood ratio LT . Let (Lt : t ∈ [0, T ]) be
the process

Lt ,
k∏
i=1

exp
(∫ t

0

[1− µi(s)]βi(s)ds
)Nt(i)∏

n=1

µi(τn(i))

 ,

(7)
where by convention,

∏0
n=1(·) = 1.

Proposition 1: For any p ∈ R, t ∈ [0, T ], we have

E0[Lpt ] = exp

(
k∑
i=1

∫ t

0

[µi(s)p − pµi(s) + p− 1]βi(s)ds

)
.

(8)

Proposition 1 is proved using Lemmas 1 and 2 below,
whose proofs are given in the Appendix.

Lemma 1: For any p ∈ R, t ∈ [0, T ], it is E0[Lpt ] <∞.

Lemma 2: For any p ∈ R, t ∈ [0, T ], we have

Lpt = 1 +
k∑
i=1

∫ t

0

Lps− [µi(s)p − 1] dMs(i)

+
k∑
i=1

∫ t

0

Lps− [µi(s)p − pµi(s) + p− 1]βi(s)ds (9)

where Mt(i) , Nt(i)−
∫ t

0
βi(s)ds.

Proof: [Proof of Proposition 1] Note that for each 1 ≤
i ≤ k,

∫ t
0
Lps− [µi(s)p − 1] dMs(i) in (9) is a zero-mean P0-

martingale by [3, Theorem II.3.T8].4 Taking expectations in
(9), we get

E0[Lpt ] =

1+
∫ t

0

E0[Lps−]

(
k∑
i=1

[µi(s)p − pµi(s) + p− 1]βi(s)

)
ds,

where we have used Lemma 1 to interchange integral
and expectation. The stated result now follows from [3,
Theorem A4.T4] with x(t) = E0[Lpt ], a(t) = t, u(t) =∑k
i=1 [µi(t)p − pµi(t) + p− 1]βi(t).

Proof: [Proof of Theorem 2] Writing E0[LpT ] = eΛ(p),
γ = eη , the Markov inequality together with Lemma 1 easily
yields (5); see, for example [28, Section III.C.2]. Equation
(6) is a direct consequence of (3) and Proposition 1 above.

4Equations (16) and (17), together with [3, Theorem I.3.T5], ensure that
[3, Theorem II.3.T8] does in fact apply.



V. REALIZING THE PROBABILITY BOUNDS

To effectively use Theorem 2, one needs to know where,
if at all, the infima in (5) are realized. Moreover, for the
bounds in (5) to be non-trivial, it is necessary that these
infima be negative. Proposition 2 below assures us that if η
is chosen to lie in the open interval (Λ′(0),Λ′(1)) (where
Λ′(0) < 0 < Λ′(1)), then there is a unique p∗ ∈ (0, 1)
satisfying Λ′(p∗) = η, for which both the infima in (5) are
achieved and are negative.

To state Proposition 2, we introduce the following nota-
tion. Define the functions EF , EM mapping (0, 1) to R by

EF (p) , Λ(p)− p Λ′(p) (10a)

EM (p) , Λ(p) + (1− p) Λ′(p). (10b)

Proposition 2: Fix η = log γ ∈ (Λ′(0),Λ′(1)). Then,
there is a unique p∗ ∈ (0, 1) given by Λ′(p∗) = η such
that

inf
p>0

[Λ(p)− pη] = EF (p∗) < 0,

inf
p<1

[Λ(p) + (1− p)η] = EM (p∗) < 0.
(11)

The tightest error probability bounds for the decision test
{LT ≥ γ} are given by

PF ≤ exp[EF (p∗)], PM ≤ exp[EM (p∗)]. (12)
Proof: (sketch) Due to lack of space, we give an

overview of the proof. One can use (6) to show that Λ′(0) <
0 < Λ′(1), and that Λ(·) is C2 with Λ′′(·) > 0, the latter
implying strict convexity of Λ(p). Since Λ′(·) is continuous
and strictly increasing, for any η ∈ (Λ′(0),Λ′(1)), there is
a unique p∗ ∈ (0, 1) with Λ′(p∗) = η. The strict convexity
of Λ(p)− pη and Λ(p) + (1− p)η implies that the infima in
(5) are attained at p∗. The negativity of EF (·), EM (·) over
(0, 1) can be shown using convexity. Equation (12) follows
from Theorem 2.

VI. APPLICATION TO NUCLEAR DETECTION

For concreteness, we consider the following scenario. We
have five sensors deployed along the x-axis at locations
(x1, y1) = (−3, 0), (x2, y2) = (−1, 0), (x3, y3) = (0, 0),
(x4, y4) = (1, 0), (x5, y5) = (3, 0). A potential source with
intensity a > 0 circles the point (0, 2) with radius R = 0.5,
moving with angular velocity 4π/5. The coordinates of the
source are thus given by

xs(t) = 0.5 cos
(

4πt
5

)
, ys(t) = 2+0.5 sin

(
4πt
5

)
. (13)

We assume uniform background radiation with βi(t) ≡ β.
For a = 5 and β = 13 counts per second, T = 10 seconds,

χ = 1 m2, Fig. 1 compares (the Monte Carlo estimates of)
the error probabilities PF and PM , with the corresponding
Chernoff upper bounds, for various values of the threshold.

From thefigure, we see that for both PF and PM , the
Chernoff bounds and Monte Carlo estimates follow the same
trend. In addition, the gap between the Monte Carlo estimate
and the Chernoff bound, which at its maximum seems to
be in the order of 75%, is reduced near the boundaries
of the threshold range as a result of the probability being
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Fig. 1. The comparison between Chernoff bound and Monte Carlo
simulation. Both probability of false alarm and miss are calculated for
different threshold using both methods. The Chernoff bounds of probabilities
are marked with black dots. The 95% confidence intervals of Monte Carlo
estimations are marked with bars.

bounded in the [0, 1] interval. Typically in nuclear detection,
the probability of false alarm is desired to be very small,
in the order of 10−6 or smaller, and in that range the gap
between the Monte Carlo estimates and the Chernoff bounds
falls to acceptable levels.

VII. ANALYTICAL THRESHOLD SELECTION

Consider the decision problem posed in Section III with
general βi(·), νi(·), 1 ≤ i ≤ k, and time horizon T . Theorem
1 tells us that for γ > 0, the LR test {LT ≥ γ} is optimal (in
the Neyman-Pearson sense) among all tests with probability
of false alarm less than or equal to α = P0(LT ≥ γ). This
leads to the question: how does one select γ to conform with
the desired performance requirements?

The problem of selecting the threshold γ is nontrivial, both
analytically and numerically. From the analytic standpoint, it
can be difficult to specify the distribution of LT—especially
in a multidimensional, time-inhomogeneous problem such
as ours—greatly complicating any attempts to obtain closed-
form expressions for the error probabilities PF , PM defined
in (2). One may opt, therefore, to numerically test various
values of γ with the goal of converging towards a choice
for which PF , PM are of the right order of magnitude.
This, however, presents us with the two following problems.
The first is the sizeable computational burden. Indeed, if
one selects any particular γ, and uses a basic Monte Carlo
method to estimate (say) PF to an accuracy of 10−3 (not
unreasonable if the desired probability of false alarm is set at
10−2) with 95% confidence, then at least 1

2×10−6 ln
(

2
0.05

)
≈

1 844 439.73 simulation runs are needed [29]. The second
problem is that a numerical computation of error probabilities
as a function of threshold, as in Fig. 1, is tied to a very
specific source motion and sensor configuration. Should any
of the parameters change, the numerical computation has to
be repeated.



In such instances, the Chernoff bounds provide a simple,
elegant method for selecting η = log γ, at the expense of
some sharpness. The idea here is to use the upper bounds on
PF and PM as proxies for the corresponding probabilities.
One formulates the problem as follows: Suppose α ∈ (0, 1)
is given. Knowing the tightest bounds on PF , PM for given η
(through Proposition 2), how should η be chosen to minimize
the tightest upper bound on PM while ensuring that the tight-
est upper bound on PF does not exceed α? The identification
of η is thus reduced to a tractable (deterministic) constrained
optimization problem.

Proposition 2 assures us that for every η ∈ (Λ′(0),Λ′(1)),
there is a unique p∗ ∈ (0, 1) (satisfying Λ′(p∗) = η) where
the tightest bounds on PF , PM for the LR test {LT ≥ eη} are
attained. Since there is a one-to-one correspondence between
(0, 1) and (Λ′(0),Λ′(1)) given by the strictly increasing
continuous function p 7→ Λ′(p), one can pose the search for
suitable η ∈ (Λ′(0),Λ′(1)) in terms of a search for suitable
p ∈ (0, 1), with the understanding that for any p ∈ (0, 1),
the corresponding η is given by η = Λ′(p). Recalling (10a),
(10b), we have the constrained minimization problem

minimize EM (p) over p ∈ (0, 1) with EF (p) ≤ logα. (14)

Proposition 3, stated next, says that if α is not too small,
there is a unique p† ∈ (0, 1) that is the solution to (14).

Proposition 3: Suppose

logα > −Λ′(1). (15)

Then, there is a unique p† ∈ (0, 1) which solves the equation
EF (p) = logα. Moreover, p† minimizes EM (p) over all p ∈
(0, 1) which satisfy EF (p) ≤ logα. This minimum value
of EM is given by EM (p†) = logα+ Λ′(p†). Choosing η =
Λ′(p†), i.e. taking γ = eΛ′(p†) in the decision test {LT ≥ γ},
we have PF ≤ α, PM ≤ α eΛ′(p†).

Proof: One can show that, on the interval (0, 1), EF is
strictly decreasing while EM is strictly increasing, with

inf
p∈(0,1)

EF (p) = −Λ′(1), sup
p∈(0,1)

EF (p) = 0,

inf
p∈(0,1)

EM (p) = Λ′(0), sup
p∈(0,1)

EM (p) = 0.

Thus, in order that there exist p ∈ (0, 1) with EF (p) ≤
logα, it is necessary (and sufficient) that α satisfy logα >
−Λ′(1). With this restriction in place, there is a unique p† ∈
(0, 1) with EF (p†) = logα, where we have used the fact that
logα < 0. Since EM is strictly increasing, we see that p† is
the unique solution to the constrained minimization problem
(14). As discussed, η should be chosen to equal Λ′(p†). The
bounds on PF , PM follow from Theorem 2.

VIII. CONCLUSIONS

For an LR test applied to networked nuclear detection
where a mobile source is to be detected by a spatially
distributed array of radiation sensors, the error probabilities
can be conservatively estimated using Chernoff bounds. The
paper provides analytic expressions for these bounds, by uti-
lizing accepted models of remote nuclear measurement, and

combining them with the form of the time-inhomogeneous
statistics of radiation counts at sensor sites. These bounds
are shown not to be overly conservative compared to alter-
native Monte Carlo-based simulation studies, and provide a
pathway to the selection of threshold constants for an LR
test.

APPENDIX

Proof: [Proof of Lemma 1] The result is obviously
true for p = 0. Suppose first that p > 0. Let Kp ,
(1 + νmax/βmin)p. Recalling Assumptions 1 and 2, we have

Lpt ≤
k∏
i=1

KNt(i)
p . (16)

Thus, E0[Lpt ] ≤ E0

[∏k
i=1K

Nt(i)
p

]
=
∏k
i=1 E0

[
K
Nt(i)
p

]
,

the latter equality following from independence. Since Nt(i)
is Poisson with intensity βi(t) under P0, one directly com-
putes that E0

[
K
Nt(i)
p

]
= exp[(Kp − 1)

∫ t
0
βi(s)ds]. Hence,

E0[Lpt ] ≤ exp
[
(Kp − 1)

∑k
i=1

∫ t
0
βi(s)ds

]
< ∞. Now

suppose p < 0. Noting that
∏Nt(i)
n=1

(
1 + νi(τn(i))

βi(τn(i))

)p
≤ 1,

we have

Lpt ≤ exp

(
−p

k∑
i=1

∫ t

0

νi(s)ds

)
, (17)

implying that E0[Lpt ] <∞.
Proof: [Proof of Lemma 2] Note that the result is clearly

true for p = 0. For p ∈ R \ {0}, t ∈ [0, T ], we have

Lpt =
( k∏
i=1

Nt(i)∏
n=1

[µi(τn(i))]p
)
·ep

Pk
i=1

R t
0 [1−µi(s)]βi(s)ds.

Let x(t) ,
∏k
i=1

∏Nt(i)
n=1 [µi(τn(i))]p, and y(t) ,

ep
Pk

i=1

R t
0 [1−µi(s)]βi(s)ds, with the convention that∏0

n=1(· · · ) = 1. For t ∈ (0, T ], 1 ≤ i ≤ k, let
∆Nt(i) , Nt(i) − Nt−(i) be the jump in Nt(i) at time t.
Since Nt(i) and Nt(j) are independent for i 6= j, they have
no common jumps (see Remark 3):∑

0<t≤T

∆Nt(i) ·∆Nt(j) = 0, P0-a.s. (18)

Hence, for t ∈ (0, T ] and n ≥ 1,

x(t) =

{
x(t−)µi(t)p if t = τn(i), i ∈ {1, . . . , k}
x(t−) otherwise

(19)

with x(0) = 1. Thus, x(t) is right-continuous, monotone
(non-decreasing if p > 0, non-increasing if p < 0) and
piecewise constant with ∆x(t) , x(t)− x(t−) satisfying

∆x(t) =
k∑
i=1

∑
n≥1

x(t−) [µi(t)p − 1] 1(t=τn(i)).

Note also that y(t) is differentiable with y′(t) =
y(t) · p

∑k
i=1[1 − µi(t)]βi(t). By the Product Formula [3,

Theorem A4.T2], x(t)y(t) = x(0)y(0) +
∫ t

0
x(s−)dy(s) +



∫ t
0
y(s)dx(s). Now,

∫ t
0
y(s)dx(s) is written as∑k

i=1

∑
n≥1 1(τn(i)≤t)y(τn(i))x(τn(i)−) [µi(τn(i))p − 1] =∑k

i=1

∫ t
0
y(s)x(s−) [µi(s)p − 1] dNs(i), where the latter

integrals are defined as follows: for a stochastic process
Ct, we have

∫ t
0
CsdNs(i) ,

∑
n≥1 Cτn(i)1(τn(i)≤t),

for t ∈ [0, T ], 1 ≤ i ≤ k. Also,
∫ t

0
x(s−)dy(s) =∫ t

0
x(s−)y(s) ·

(
p
∑k
i=1[1− µi(s)]βi(s)

)
ds.

Noting that y(s) = y(s−) for all s ∈ [0, T ] (owing to the
continuity of y(·)), we get

Lpt = 1 +
k∑
i=1

∫ t

0

Lps− [µi(s)p − 1] dNs(i)

+ p

k∑
i=1

∫ t

0

Lps− [1− µi(s)]βi(s)ds (20)

Since Mt(i) = Nt(i)−
∫ t

0
βi(s)ds, we have∫ t

0

Lps− [µi(s)p − 1] dMs(i) =
∫ t

0

Lps− [µi(s)p − 1] dNs(i)

−
∫ t

0

Lps− [µi(s)p − 1]βi(s)ds.

Using the latter in equation (20) yields the stated result.
Remark 3: The claim in (18) can be verified as follows.

Let (L̃t : t ∈ [0, T ]) be the process

L̃t ,
k∏
i=1

exp
(∫ t

0

[βi(s)− 1]ds
)Nt(i)∏

n=1

1
βi(τn(i))

 .

Since 0 < βmin ≤ βi(t) ≤ βmax < ∞ for all t ∈ [0, T ],
1 ≤ i ≤ k, one can check that the equation dQ/dP0 = L̃T
defines a probability measure Q on (Ω,F ) such that Q and
P0 are mutually absolutely continuous—thus Q is absolutely
continuous with respect to P0 (denoted Q � P0) and P0 is
absolutely continuous with respect to Q (denoted P0 � Q)—
with dP0/dQ = 1/L̃T . Moreover, with respect to Q, the
Nt(i)’s are independent Poisson processes with intensity
1. Since, by [30, Proposition XII.1.5],

∑
0<t≤T ∆Nt(i) ·

∆Nt(j) = 0, Q-a.s., we must have (18), owing to P0 � Q.
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