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Abstract

A collection of static and mobile radiation sensors is tasked with deciding, within a fixed time interval, whether a moving
target carries radioactive material. Formally, this is a problem of detecting weak time-inhomogeneous Poisson signals (target
radiation) concealed in another Poisson signal (naturally occurring background radiation). Each sensor locally processes its
observations to form a likelihood ratio, which is transmitted once—at the end of the decision interval—to a fusion center. The
latter combines the transmitted information to optimally (in the Neyman-Pearson sense) decide whether the measurements
contain a radiation signal, or just noise. We provide a set of analytically derived upper bounds for the probabilities of false alarm
and missed detection, which are used to design threshold tests without the need for computationally intensive Monte Carlo
simulations. These analytical bounds couple the physical quantities of interest to facilitate planning the motion of the mobile
sensors for minimizing the probability of missed detection. The network reconfigures itself in response to the target motion, to
allow more accurate collective decisions within the given time interval. The approach is illustrated in numerical simulations,
and its effectiveness demonstrated in experiments that emulate the statistics of nuclear emissions using a pulsed laser.
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1 Introduction

This paper proposes a theoretical framework for
network-based decision making, tailored to the problem
of detecting nuclear material in transit within a given
time interval, using a network of small and inexpensive
static and mobile radiation sensors. This is an instance
of a general problem of detecting a signal buried in noise,
which is found for either single sensor or sensor net-
work settings in a surprisingly rich application domain,
from nuclear detection [39, 43] and optical communica-
tions [57], to radar [64] and acoustic [32] surveillance,
to medical sensing [15] and neuroscience [24], to natural
disaster early warning systems [17], and to high-energy
experimental physics [12].

A network approach to deploying and managing data
from radiation sensors can be one out of several layers
in a comprehensive, integrative system for nuclear de-
tection [5, 55]. The sensor of choice is a Geiger counter;
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larger and more sophisticated sensors (providing spec-
troscopy information), are prohibitively expensive to be
deployed on a large scale [56], and too big to be mounted
on mobile platforms. In addition, any active (e.g. X-ray)
interrogation technology cannot be used to check vehi-
cles that carry passengers or livestock [55].

A first challenge in detecting the presence of radioactive
material with this type of sensors is that such a detector
not only picks up the signal coming from the material,
but also another one from ubiquitous cosmic and natu-
rally occurring background radiation. From the sensor’s
perspective, the two signals are of identical nature and
once superimposed, it is impossible to tell them apart.
A second challenge relates to attenuation: although a
kilogram of Highly Enriched Uranium (heu) can emit
as many as 4× 107 gamma rays per second [5], shielding
and attenuation [39] limit the effective detection range
to a few feet, and require detection times that can range
from minutes to hours [55]. In fact, a study performed on
the radiation emitted by actual nuclear missiles [19] con-
cluded that for the type of warheads containing heu, the
gamma ray emission just 25 cm away from the warhead
casing is comparable to background. In a similar study
[18], it was concluded that a nuclear cruise-missile is
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practically undetectable by portable gamma-ray detec-
tors at a distance of more than 5 meters. And although
remote count-based detection with vehicle-mounted sen-
sors is possible [18], the required sensor sensitivity and
resolution is beyond that of common portable detectors
which would most likely form the basis of a mobile sensor
network. The problem is exacerbated when the source
of the signal that needs to be detected is in motion. Not
only does the stochastic process describing the signal be-
come time-inhomogeneous from the detector’s perspec-
tive [39], but the detector(s) only have a limited amount
of time to make a decision before the potential target
disappears from sight. They are called to detect within
a small time interval a Poisson signal, buried inside an-
other comparable Poisson signal.

Networks of spatially distributed sensors have been rec-
ognized as an important component of a multi-layered
approach to nonproliferation, security and defense [5].
The potential of static sensor networks for the detection
of stationary [7, 9, 49] or moving [39] radiation sources
has been examined. In this context, the value of sensor
mobility in nuclear measurement has recently been rec-
ognized [11,31,36], but the problem setup has been dif-
ferent from the one in this paper. Either sensor motion
was random and the objective was network coverage [36],
or detector motion was controlled and the objective was
radiation mapping [10, 11], or sensor paths were prede-
termined [33], or the source was static [31,51,52].

In a general setting, detection is a decision problem
between two alternative hypotheses (source plus back-
ground vs. background only) and a fair amount of litera-
ture in signal processing exists [2,13,23,25,47,59]. A like-
lihood ratio test (lrt) is a common approach, according
to which a certain ratio computed based on collected sen-
sor data is compared to a constant threshold; if this ratio
is above the threshold, we decide that a source is present
(else, we decide a source is absent). Nuclear emission is
modeled as a Poisson process, and the approaches for de-
tecting Poisson signals using networks of detectors, gen-
erally follow either a Bayesian [3,6,37,39] or a sequential
formulation [14, 30]. 1 Typically, data collected at indi-
vidual sensors is assumed to be independent identically
distributed (i.i.d.) (a notable exception is [56]). Sequen-
tial Probability Ratio Test (sprt) approaches [8,27] are
not comparable to the one presented here for the follow-
ing reason. In the sprt setting, data is typically collected
until such time as a decision can be made with sufficient
accuracy. In our setting, however, the data is only avail-
able over a fixed time interval (while the target is within
sensing range), at the end of which a decision necessar-
ily has to be made. Networked Bayesian formulations,
on the other hand, tend to be computationally intensive
to the point that current computing power would limit

1 Arguably, both have common theoretical underpin-
nings [28,62].

the scale of networks that can implement them in real-
time, to single-digit network sizes [3]. Neyman-Pearson
formulations [28, 62] can be alternative to Bayesian ap-
proaches, but have not yet been adapted to the case of
time-inhomogeneous Poisson processes like the ones re-
sulting from relative motion between sensor and source.

Sensor mobility changes the dynamics of nuclear mea-
surement. We now understand how and why closing the
distance between sensor and source affects the informa-
tion content of the sensor measurement [39]: the signal-
to-noise ratio scales with the inverse square of the dis-
tance. In this sense, bringing a small sensor closer to the
source has an effect equivalent to that of using a much
bigger sensor at a greater distance. Sensor mobility can
be exploited [11,31,33,36] in the context of nuclear mea-
surement, but it is not entirely clear what exact purpose
it should serve. For example, in [31, 33] the variance of
the assumed mean count rate at each spatial bin was
taken as a performance measure, while [10, 51, 52] used
various information-theoretic measures. Although these
choices are intuitive, they may be considered equally ar-
bitrary from the perspective of the decision maker. What
is more, it is not always clear how the performance met-
ric depends explicitly on sensor mobility, and how the
latter can optimally be utilized.

This paper formulates the fixed-interval detection prob-
lem of a mobile source by a reconfigurable sensor net-
work as an lrt developed within the Neyman-Pearson
framework [42]. In such a test, two types of errors can
occur: the first is to decide that a source is present
when there is not, and this constitutes a false alarm;
the second is to decide that there is nothing when in
fact there is a source, which is a case of missed detec-
tion. The Neyman-Pearson test is designed to minimize
the probability of missed detection for a given accept-
able probability of false alarm. The contribution of the
paper is in showing explicitly how the relative distance
between sensor and source affects the error probabilities
in a fixed-interval lrt, formulated for detecting weak,
time-inhomogeneous Poisson processes buried in Pois-
son background noise. Since the error probabilities can-
not be analytically computed, however, this hinders their
use in a sensor motion optimization scheme that would
aim directly at improving the accuracy of the lrt. The
paper addresses this problem by deriving appropriate
Chernoff bounds as proxies for these error probabilities,
and utilizes an optimal (motion) control approach to
steer the sensors, as well as to derive the optimal thresh-
old values for the decision test, as a function of sensor
and source trajectories. Chernoff bounds [16, 25, 40, 54]
are used in robust detection for scalar Poisson processes
with uncertain intensities in [23]. The bounds are also
employed in performance evaluation of communications
systems [38, 41, 46, 60]. Connections between Chernoff
bounds and large deviations are explored in [4, 29,53].

Section 2 recalls from [42] the (Neyman-Pearson) opti-
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mal decision rule for our problem of interest. Section 3
derives analytical probability bounds for the fixed-
interval detection test, tightens them, and validates
them by comparing them to estimates obtained through
Monte Carlo simulations. Section 4 exposes the relation
between the bounds and the threshold value for the lrt.
In Section 5, bound derivation and threshold selection
are integrated into an optimal control formulation, aim-
ing at steering mobile sensors along paths that enable
measurements which support more confident decisions
regarding the presence or absence of a source. Section 6
illustrates the application of this method through exper-
iments conducted using a device that emulates nuclear
emission. Section 7 summarizies the main points in the
approach and outlines the contributions.

2 Problem Description

The problem is set as follows. A network of k radia-
tion sensors is deployed over a spatial region of interest
with the objective of deciding whether a moving vehicle
(target) carries a radioactive source. The network ob-
serves a time-inhomogeneous Poisson process and has
to decide—at the end of a fixed time interval [0, T ]—
between two hypotheses, H0 (absence of source) and H1

(presence of source), regarding the statistics of the ob-
served process. The optimal Neyman-Pearson test to de-
cide between H0 and H1 involves comparing a global
likelihood ratio LT accumulated over the interval [0, T ]
against a suitably chosen threshold γ > 0, deciding H1

if LT ≥ γ, and H0 otherwise.

Of particular importance in the present work is the re-
lationship between sensor mobility and decision-making
accuracy, the latter being reflected through the error
probabilities. To determine how controlled mobility en-
hances the performance of decision making, we focus on
two closely related questions. First, what is the quanti-
tative dependence of the error probabilities on the prob-
lem parameters, including those related to motion, and
second, how should the mobile sensors be steered to im-
prove decision-making accuracy. The first question fits
into the larger framework of performance analysis of de-
tection systems and is difficult to answer exactly. In fact,
it is extremely hard (if not impossible) to obtain closed-
form expressions for error probabilities when assuming
arbitrary relative motion between source and sensors.
We therefore resort to Chernoff bound techniques to
characterize the effect of mobility on decision accuracy.
Then, we utilize the bounds to design optimal motion
controllers so that decision accuracy is enhanced.

2.1 Probabilistic Setup and Detection

We start with a measurable space (Ω,F ), support-
ing a k-dimensional vector of counting processes
Nt = (Nt(1), . . . , Nt(k)), t ∈ [0, T ]. For our problem,
Nt(i) represents the number of counts registered at sen-
sor i ∈ {1, 2, . . . , k} up to (and including) time t ∈ [0, T ].
The two hypotheses H0 and H1 regarding the state of

the environment correspond to two distinct probabil-
ity measures on (Ω,F ). Hypothesis H0 corresponds to
a probability measure P0, with respect to which the
Nt(i), 1 ≤ i ≤ k, are independent Poisson processes
over t ∈ [0, T ] with intensities βi(t), respectively. Hy-
pothesis H1 corresponds to a probability measure P1,
with respect to which the Nt(i), 1 ≤ i ≤ k, are indepen-
dent Poisson processes over t ∈ [0, T ] with intensities
βi(t) + νi(t), respectively. The decision problem is thus
one of identifying the correct probability measure (P0

versus P1) on (Ω,F ), based on a realization of the
k-dimensional process Nt = (Nt(1), . . . , Nt(k)). The
following requirements are imposed on βi and νi.

Assumption 1 For 1 ≤ i ≤ k, βi : [0, T ]→ [βmin, βmax]
is a bounded, continuous function with 0 < βmin <
βmax <∞, βmin, βmax independent of i ∈ {1, 2, . . . , k}.

Assumption 2 For 1 ≤ i ≤ k, νi : [0, T ]→ [νmin, νmax]
is a bounded, continuous function with 0 < νmin < νmax <
∞, νmin, νmax independent of i ∈ {1, 2, . . . , k}.

Let (FN
t : 0 ≤ t ≤ T ) be the filtration generated by the

process Nt.
2 Then, for any event A ∈ FN

t , an observer
of the sample path s 7→ Ns, 0 ≤ s ≤ t, knows at time
t whether or not the event A has occurred. The σ-field
FN
T thus represents the information generated by the

totality of sensor observations up to t = T ; to wit, the
information on which the decision must be based.

A test for deciding between hypotheses H0 and H1 on
the basis of FN

T observations can be thought of as a set
A1 ∈ FN

T with the following significance: if the outcome

ω ∈ A1, decide H1; if ω ∈ A0 , Ω \ A1, decide H0.
For a test A1 ∈ FN

T , two types of errors might occur.
A “false alarm” occurs when the outcome ω ∈ A1 (i.e.
decide H1) while H0 is the correct hypothesis. A “miss”
occurs when ω ∈ Ω \ A1 (i.e. decide H0) while H1 is
the correct hypothesis. Clearly, the probability of false
alarm is given by P0(A1), while the probability of a miss
is given by P1(Ω\A1). Then, the probability of detection
is given by P1(A1) = 1− P1(Ω \A1).

In the Neyman-Pearson framework, one is given an ac-
ceptable upper bound on the probability of false alarm
α ∈ (0, 1), and the problem is to find an optimal test:
a set A∗1 ∈ FN

T which maximizes the probability of de-
tection over all tests whose probability of false alarm is
less than or equal to α. The following result describes
the optimal test. The underlying probabilistic setup is
as described above.

Theorem 3 ([42]) Consider a network with k sensors
and a fusion center connected in a parallel configura-

2 Thus, for t ∈ [0, T ], FN
t = σ(Ns : 0 ≤ s ≤ t) is the small-

est σ-field on Ω with respect to which all the (k-dimensional)
random variables Ns, 0 ≤ s ≤ t, are measurable.
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tion. 3 For 1 ≤ i ≤ k, let Nt(i), t ∈ [0, T ] denote the
observation at sensor i over the time interval [0, T ] and
let (τn(i) : n ≥ 1) be the jump times of Nt(i). Assume
that at decision time T , sensor i transmits to the fusion
center the statistic

LT (i) , exp

(
−
∫ T

0

νi(s)ds

)
NT (i)∏
n=1

(
1 +

νi(τn(i))

βi(τn(i))

)

computed on the basis of its observation t 7→ Nt(i),
t ∈ [0, T ]. Then, the test A∗1 = {LT ≥ γ} performed at

the fusion center, with LT ,
∏k
i=1 LT (i) and γ > 0 satis-

fying P0(LT ≥ γ) = α, is optimal for FN
T -observations

in the sense that for any A1 ∈ FN
T with P0(A1) ≤ α, we

have P1(A∗1) ≥ P1(A1).

Remark 4 There may not exist a γ for every α ∈
(0, 1). 4 The classical Neyman-Pearson result covers
such cases by allowing tests with randomization [34,45].
Randomization does not fit this problem well because in
nuclear detection, α is in a certain order of magnitude,
rather than a specific number (for instance, one might
require that α be of order 10−4). Therefore, we will as-
sume in the sequel that we have the flexibility to first
choose γ, with the provision that α = P0(LT ≥ γ) is of
the right order of magnitude.

Remark 5 To avoid cases of singular detection [45], we
assume that P1 is absolutely continuous with respect to
P0, denoted P1 � P0, i.e. for anyA ∈ F with P0(A) = 0,
we have P1(A) = 0. In fact, given the probability measure
P0, one can define P1 by the relation dP1/dP0 = LT .

2.2 Enhancing Decision Accuracy through Mobility

As stated earlier, the principal motivating application
is reliable detection of moving nuclear material by net-
works of static and mobile sensors. Naturally, we would
like a framework that allows for inclusion of inputs that
control sensor motion. The discussion here and in Sec-
tion 5 describes how such control inputs can be incor-
porated into our mathematical model, and justifies the
validity of the results in this more general setting.

For simplicity, we focus on a planar scenario; note how-
ever that the proposed framework can be applied to ac-
commodate three-dimensional configurations with mi-
nor modification. As noted, we have a network of k radi-
ation sensors distributed in the (x, y)-plane with the ob-
jective of deciding whether a moving target vehicle car-
ries a radioactive source. Sensors in the network can be

3 Thus, each sensor can only communicate with a central
unit called the fusion center; see [58].
4 If one were dealing instead with a continuous random
variable Z admitting a density f(x), one could always find
γ by solving

∫∞
γ
f(x)dx = α.

static or mobile. Let xi(t) ∈ R4 be the value of the state
vector at time t ∈ [0, T ] of sensor i, 1 ≤ i ≤ k, which
includes the location (xi(t), yi(t)) ∈ R2 of the sensor
with respect to a reference frame and the corresponding
velocity (ẋi(t), ẏi(t)) ∈ R2. If x(t) ∈ R4k denotes the
augmented state at time t of the totality of sensors, the
dynamics of the network can be written as

ẋ(t) = f(x(t),u(t)) (1)

where u(t) ∈ Rm, for some m ≥ 1, is the value of the
control input at time t and f : R4k × Rm → R4k is a
vector field satisfying certain regularity conditions that
guarantee the existence and uniqueness of solutions of
(1) in the classical sense; in the context of the applica-
tions considered in this work, f is assumed to be smooth
in x and u. Finally, the following requirement is imposed
on the class of admissible control inputs u that steer the
motion of the mobile sensors.

Assumption 6 The class U of admissible controls is
contained in the space of bounded, piecewise-continuous
functions u : [0, T ]→ Rm, m ≥ 1.

Next, we examine how the introduction of dynamics (1)
in the network affects the formulation of the detection
problem of Section 2.1. First, note that if we allow for
background activity that is spatially varying (assuming
a radiation map is available) and possibly time vary-
ing, the intensity due to background at sensor i, denoted
βi(t,u), will depend 5 on u through its dependence on
the spatial location of sensor i. We suppose further that
for each u ∈ U , the map t 7→ βi(t,u) satisfies Assump-
tion 1; this is certainly true if the background is spatially
and temporally uniform, as in Section 5.

In the case where a radioactive source is present, the
corresponding intensity is modeled as in [39]. In partic-
ular, if (xs(t), ys(t)) denotes the position at time t of a
radioactive source of intensity a > 0, the intensity at
sensor i is given by

νi(t,u) =
χa

χ+ ri(t,u)2
, (2)

where χ is a sensor-specific cross-section coefficient and
ri(t,u) = [(xs(t)− xi(t))2 + (ys(t)− yi(t))2]1/2, the dis-
tance between the target vehicle and sensor i at time t.
Again, the dependence of ri on u is implicit, and it stems
from the dependence of (xi, yi) on the input u through
(1). Since ri(t,u) is necessarily a continuous function of
t for each u ∈ U , and the map r 7→ χa/(χ + r2) is
bounded, Assumption 2 holds.

5 The dependence of βi on u is implicit, through the solution
of (1). With a slight abuse of notation, u explicitly appears
as an argument of βi to emphasize the effect of the input
on how the background intensity is perceived by a mobile
sensor.
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With these assumptions on the dynamics of the sen-
sor motion, Theorem 3 applies with the likelihood ratio
LT = LT (u) obtained by replacing βi, νi by βi(·,u),
νi(·,u), respectively. Note that the probability measures
P0 and P1 depend on u. Indeed, for each u ∈ U , Pu

0 is a
probability measure on (Ω,F ) with respect to which the
Nt(i)’s are independent Poisson processes with intensi-
ties βi(t,u). It follows from [42] that for each u ∈ U ,

dPu
1

dPu
0

= LT (u) (3)

defines a probability measure Pu
1 on (Ω,F ) with Pu

1 �
Pu

0 such that with respect to Pu
1 , theNt(i)’s are indepen-

dent Poisson processes with intensities βi(t,u)+νi(t,u).

In order to exploit sensor mobility for greater decision ac-
curacy, one would ideally like to find an optimal u ∈ U
which minimizes the probability of miss, subject to the
constraint that the probability of false alarm not exceed
some given α ∈ (0, 1). As noted earlier, however, the
difficulty of finding closed-form expressions for the error
probabilities seriously hinders this quest. As an alterna-
tive, we pose in Section 5 the following optimal control
problem: Find u ∈ U which minimizes the Chernoff
upper bound on the probability of miss, while ensuring
that the corresponding bound on the probability of false
alarm does not exceed α.

Remark 7 For notational convenience, we will drop the
dependence on u in Sections 3 and 4 as we develop the
bounds and related machinery, writing βi(t) for βi(t,u),
νi(t) for νi(t,u), etc. As will be explained at the beginning
of Section 5, the results of Sections 3 and 4 are valid for
each fixed u ∈ U . The notational dependence on u will
be revived in Section 5, when we optimize over u. We also
note that the calculations in Sections 3 and 4 are valid in
a general detection setting which may not accommodate
motion control of the sensors.

3 Bounds on the Error Probabilities

The performance of the test {LT ≥ γ} can be measured
by the probabilities of false alarm and miss defined by

PF , P0(LT ≥ γ) and PM , P1(LT < γ), (4)

respectively. In many cases of interest, however, the ex-
act computation of these error probabilities is mathe-
matically intractable, motivating the need for good up-
per bounds which are easily computable. Theorem 8,
stated below, derives such bounds on PF and PM us-
ing Chernoff’s inequalities, and Proposition 13 provides
conditions on achieving the tightest bounds for the test
{LT ≥ γ} given a threshold γ .

3.1 Chernoff Bounds

To state the main result of this section, we define, for
p ∈ R,

Λ(p) , logE0[LpT ] = logE0[ep `T ], (5)

where `T , logLT is the log likelihood ratio, and Ei de-
notes expectation with respect to probability measure
Pi, i ∈ {0, 1}. Λ(p) is thus the cumulant generating func-
tion of `T under H0. Lemma 10 below assures us that
Λ(p) is well-defined for all p ∈ R. We also let

µi(t) , 1 +
νi(t)

βi(t)
(6)

for 1 ≤ i ≤ k, t ∈ [0, T ]; thus, µi(t) is the ratio of
intensities for H1 versus H0. The intensities at sensor i
at time t under H0 and H1 can now be written as βi(t)
and µi(t)βi(t), respectively.

Theorem 8 Let η , log γ ∈ R. The Chernoff bounds
on PF and PM are given by

PF ≤ exp

(
inf
p>0

[Λ(p)− pη]

)
,

PM ≤ exp

(
inf
p<1

[Λ(p) + (1− p)η]

)
,

(7)

where for p ∈ R, Λ(p) is explicitly computable via

Λ(p) =

k∑
i=1

∫ T

0

[µi(s)
p − pµi(s) + p− 1]βi(s)ds (8)

Before continuing with a proof of Theorem 8, it is re-
marked that the explicit analytical formula for Λ(p) in
(8) is a consequence of the assumption of deterministic
intensities, which allows us to circumvent the intricate
filtering analysis in [25] needed to accommodate stochas-
tic intensities.

We prove Theorem 8 through a series of steps. The prin-
cipal result in this direction is Proposition 9, stated next,
whose application at t = T , in conjunction with (5),
yields (8). To start, we introduce a stochastic process
whose value at time T is the likelihood ratio LT . Let
(Lt : t ∈ [0, T ]) be the process

Lt ,
k∏
i=1

exp

(∫ t

0

[1− µi(s)]βi(s)ds
)Nt(i)∏

n=1

µi(τn(i))

 ,

with µi(t) given by (6). By convention,
∏0
n=1(·) = 1.
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Proposition 9 For any p ∈ R, t ∈ [0, T ], we have

E0[Lpt ] = exp

(
k∑
i=1

∫ t

0

[µi(s)
p − pµi(s) + p− 1]βi(s)ds

)
.

Proposition 9 is proved using Lemmas 10 and 11 below,
whose proofs are given in Appendix A.

Lemma 10 E0[Lpt ] <∞ for all p ∈ R, t ∈ [0, T ].

Lemma 11 For any p ∈ R, t ∈ [0, T ], we have

Lpt = 1 +

k∑
i=1

∫ t

0

Lps− [µi(s)
p − 1] dMs(i)

+

k∑
i=1

∫ t

0

Lps− [µi(s)
p − pµi(s) + p− 1]βi(s)ds (9)

where Mt(i) , Nt(i)−
∫ t

0
βi(s)ds.

Equipped with Lemmas 10 and 11, we provide

PROOF. [Proof of Proposition 9] Note that for each

1 ≤ i ≤ k,
∫ t

0
Lps− [µi(s)

p − 1] dMs(i) in (9) is a zero-
mean P0-martingale by [2, Theorem II.3.T8]. Taking ex-
pectations in (9), we get

E0[Lpt ] = 1

+

∫ t

0

E0[Lps−]

(
k∑
i=1

[µi(s)
p − pµi(s) + p− 1]βi(s)

)
ds ,

where we have used Lemma 10 to interchange integral
and expectation. The stated result now follows from [2,
Theorem A4.T4] with x(t) = E0[Lpt ], a(t) = t,

u(t) =
∑k
i=1 [µi(t)

p − pµi(t) + p− 1]βi(t).

To complete the proof of Theorem 8, we use a general
fact about the lrt [25,40,45] stated in Lemma 12 below;
see cited references for the proof.

Lemma 12 For γ > 0, we have

PF ≤ inf
p>0

(
1

γp
E0[LpT ]

)
, PM ≤ inf

p<1

(
1

γp−1
E0[LpT ]

)
.

Finally, we have

PROOF. [Proof of Theorem 8] WritingE0[LpT ] = eΛ(p),
γ = eη, Lemma 12 yields (7). Equation (8) is a direct
consequence of (5) and Proposition 9 above.

3.2 Realizing the Probability Bounds

To effectively use Theorem 8, one needs to know where,
if at all, the infima in (7) are realized. Moreover, for the
bounds in (7) to be non-trivial, it is necessary that these
infima be negative. Proposition 13 below assures us that
if η is chosen to lie in the open interval (Λ′(0),Λ′(1)),
where

Λ′(p) =

k∑
i=1

∫ T

0

[µi(s)
p logµi(s)− µi(s) + 1]βi(s)ds

(10)
and Λ′(0) < 0 < Λ′(1), then there is a unique p∗ ∈ (0, 1)
satisfying Λ′(p∗) = η, for which both the infima in (7)
are achieved and are negative.

To state Proposition 13, we introduce the functions EF ,
EM mapping (0, 1) to R by

EF (p) , Λ(p)− p Λ′(p) (11a)

EM (p) , Λ(p) + (1− p) Λ′(p). (11b)

Proposition 13 Fix η = log γ ∈ (Λ′(0),Λ′(1)). Then,
there is a unique p∗ ∈ (0, 1) given by Λ′(p∗) = η such that

inf
p>0

[Λ(p)− pη] = EF (p∗) < 0,

inf
p<1

[Λ(p) + (1− p)η] = EM (p∗) < 0.
(12)

The tightest error probability bounds for the decision test
{LT ≥ γ} are given by

PF ≤ exp[EF (p∗)], PM ≤ exp[EM (p∗)]. (13)

PROOF. We employ here a collection of Lemmas from
Appendix B. Note that by Lemmas 16, 17, 18, Λ′(·) is
continuous and strictly increasing with Λ′(0) < 0 <
Λ′(1). Hence, for any η ∈ (Λ′(0),Λ′(1)), there is a unique
p∗ ∈ (0, 1) with Λ′(p∗) = η. Since the C2 functions
p 7→ Λ(p)− pη and p 7→ Λ(p) + (1− p)η are also strictly
convex by Lemma 17, they have unique global minima at
p∗. Lemma 19 implies (12). Equation (13) follows from
Theorem 8.

3.3 Error Probabilities: Bounds and Monte Carlo Esti-
mates

To provide some indication regarding the ability of the
bounds derived in Proposition 13 to capture the corre-
sponding error probabilities, this section compares these
bounds against Monte-Carlo estimates of PF and PM
defined by (4). The comparison is performed in the con-
text of the following example. Consider k = 4 identical
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1 2 4

moving source

sensor array

3

Fig. 1. A planar sensor array detecting a moving source.
Thick dashed arrows mark gamma rays emitted by the
source, while thin dashed arrows are background.

sensors (see Fig. 1) with cross-section coefficient 6 χ = 1
m2. The sensors, stationary at planar coordinates (in m)
(0, 0), (0.5, 0), (1.5, 0), (2.5, 0), are labeled 1 through 4
respectively. A source of intensity a = 2 counts per sec-
ond (cps) is initialized at coordinates (3.0, 0.5) m, and
starts moving parallel to the x axis, in a negative di-
rection, from sensor 4 toward sensor 1, with a constant
speed of 0.03 m/s. The background is β = 0.167 cps and
the decision time is T = 100 s.

To generate samples of a nonhomogeneous Poisson
process, we use the method of thinning [35, 44]. In
more detail, to simulate a Poisson process with time-
dependent intensity λ(t), we first find a constant inten-
sity λd > 0 which dominates λ(t), i.e. 0 ≤ λ(t) ≤ λd
for all t ∈ [0, T ]. Assumptions 1 and 2 ensure that a
suitable λd can be found. We next generate a sample
path of a homogeneous Poisson process with intensity
λd. Suppose that T ∗1 , T

∗
2 , . . . , T

∗
n are the event times

(corresponding to jumps of the Poisson process) over
(0, T ]. Each event time T ∗j is retained with probability
λ(T ∗j )/λd and deleted with probability 1 − λ(T ∗j )/λd.
The retained event times now correspond to a sample
path of a Poisson process with time-dependent intensity
λ(t) [35], [44, Theorem 3]. Notice that in our problem,
λ(t) will be of one of the two forms βi(t) and µi(t)βi(t).

With this procedure at hand for generating samples of
nonhomogeneous Poisson processes, we will estimate
PF = P0(LT ≥ γ) and PM = P1(LT < γ) for LT com-
puted as in Theorem 3 and for different values of the
threshold γ > 0. To estimate the probability of false
alarm PF and the probability of miss PM , let

Aγ , {ω ∈ Ω : LT (ω) ≥ γ}
Acγ , Ω \Aγ = {ω ∈ Ω : LT (ω) < γ} .

We draw n samples ω1, ω2, . . . , ωn from Ω according to
the probability measure P0, and n samples ω′1, ω

′
2, . . . , ω

′
n

from Ω, now according to the probability measure P1.
This corresponds to generating n realizations of the (k-
dimensional) process Nt = (Nt(1), . . . , Nt(k)) over time
t ∈ [0, T ], where the Nt(i)’s are independent Poisson

6 The values for these calculations are chosen to match the
experimental parameters of Section 6; they are not to be un-
derstood in themselves as typical in a real nuclear detection
scenario, although their relative scale can produce compu-
tational results that are—see [26].

processes with intensities given by β, and µi(t)β, respec-
tively. For each such realization, the likelihood ratios
LT = LT (ωi) and LT = LT (ω′i) can be computed as in
Theorem 3. The probability of false alarm PF = P0(Aγ),
and the probability of miss PM = P1(Acγ), can now be
approximated by

PF ≈
1

n

n∑
i=1

1Aγ (ωi) , PM ≈
1

n

n∑
i=1

1Acγ (ω′i) . (14)

To ensure that the estimates in (14) are sufficiently close
to P0(Aγ), P1(Acγ) with high enough probability, we need
to choose n (number of samples) large enough. Indeed,
for ε, δ ∈ (0, 1), taking n ≥ 1

2ε2 ln 2
δ ensures [61] that the

quantities in (14) estimate the corresponding probabili-
ties to accuracy ε > 0 with confidence 1− δ:

P0

(∣∣∣∣∣ 1n
n∑
i=1

1Aγ (ωi)− P0(Aγ)

∣∣∣∣∣ ≤ ε
)
≥ 1− δ ,

P1

(∣∣∣∣∣ 1n
n∑
i=1

1Acγ (ω′i)− P1(Acγ)

∣∣∣∣∣ ≤ ε
)
≥ 1− δ .

For instance, to approximate the probabilities to within
1% (corresponding to ε = 0.01), with a confidence of
95% (corresponding to δ = 0.05) we need 18 445 runs.

Figure 2 compares (the Monte Carlo estimates of) the
error probabilities PF and PM with the corresponding
Chernoff upper bounds, for various values of the thresh-
old. Clearly, for both PF and PM , the Chernoff bounds
and Monte Carlo estimates tend to agree around the
values of 0 and 1 (the two ends of the horizontal axis).
Due to the constraint imposed on the probability of false
alarm (typically, far below 0.1), realistic instantiations
of these bounds are more likely to occur at values of
PF close to zero, suggesting large thresholds, further to
the right than the depicted scale in Fig. 2. Extrapolat-
ing from the graphs of the figure—which could not be
easily extended to this part of the threshold domain,
due to numerical difficulties in obtaining reasonable es-
timates using the Monte-Carlo method—indicates that
the Chernoff bound for the probability of false alarm,
maintaining its decreasing trend, will further close the
distance between itself and the actual false alarm prob-
ability. For example, based on Fig. 2, and for an accept-
able false alarm rate of less than 5%—still quite big—the
error in approximating this probability using the Cher-
noff bound is in the order of 20%. But, what is more im-
portant in the context of sensor mobility optimization is
the fact that the slopes of the curves of both bounds and
Monte Carlo probability estimates are consistent, indi-
cating that using the bounds as a proxy for the true—
but unknown—error probabilities may not significantly
affect the performance of optimal controllers.
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4 Analytical Threshold Selection

This section discusses a procedure for selecting the
threshold γ so that the lrt {LT ≥ γ} conforms with
desired performance requirements, typically character-
ized by the probability of false alarm PF being less
than or equal to a given level α. To avoid the complex-
ity associated with obtaining closed-form expressions
for the error probabilities, one may resort to numeri-
cal computations. This, however, presents at least two
significant challenges. The first is the sizeable compu-
tational burden. Indeed, if one selects any particular γ,
and uses a Monte Carlo method to estimate (say) PF
to an accuracy of 10−3 (not unreasonable, if the desired
probability of false alarm is set at 10−2) with 95% con-
fidence, then at least 0.5 × 106 ln

(
2

0.05

)
≈ 1 844 439.73

simulation runs will be required [61]. The second chal-
lenge is that numerical computations of the error prob-
abilities as a function of threshold—as in Fig. 2, for
example—are tied to a specific source motion and sen-
sor configuration. Should any of the parameters change,
the numerical computation has to be repeated.

In such instances, the Chernoff bounds derived in Propo-
sition 13 provide a simple and elegant method for se-
lecting the threshold η = log γ, at the expense of some
sharpness. The idea is to use the upper bounds onPF and
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Fig. 2. Comparison between our Chernoff bounds and Monte
Carlo simulation estimates of the error probabilities —false
alarm (PF), and probability of miss (PM)—for a range of
different likelihood ratio thresholds. The Monte Carlo prob-
ability estimates are shown in piecewise linear curves, while
Chernoff bounds curves are smooth. Solid curves denote es-
timates on the probability of false alarm, and dashed curves
correspond to probability of miss estimates. The 95% confi-
dence intervals are marked over Monte Carlo estimate points.
The emission rates for source and background are taken equal
to the ones used in Section 6: a = 2 cps for the source, and
β = 0.167 cps for background. These activity numbers may
be artificial, selected to match our (slow) emission rates of
our emulation apparatus of Section 6, but their ratio matches
the order of magnitude of intensities in real-life detection
scenarios [18].

PM as proxies for the corresponding probabilities and
formulate the problem as follows: Suppose α ∈ (0, 1) is
given. Knowing the tightest bounds on PF , PM for given
η by (13), how should η be chosen to minimize the tight-
est upper bound on PM while ensuring that the tightest
upper bound on PF does not exceed α? The identifica-
tion of η is thus reduced to a tractable (deterministic)
constrained optimization problem.

In more detail, Proposition 13 ensures that for every
η ∈ (Λ′(0),Λ′(1)), there is a unique p∗ ∈ (0, 1), satisfying
Λ′(p∗) = η, where the tightest bounds on PF , PM for the
lrt {LT ≥ eη} are attained. Since there is a one-to-one
correspondence between (0, 1) and (Λ′(0),Λ′(1)) given
by the strictly increasing continuous function p 7→ Λ′(p),
one can pose the search for suitable η ∈ (Λ′(0),Λ′(1))
in terms of a search for suitable p ∈ (0, 1), with the
understanding that for any p ∈ (0, 1), the corresponding
η is given by η = Λ′(p). Recalling (11a)–(11b), we have
the constrained minimization problem

Min EM (p) over p ∈ (0, 1) with EF (p) ≤ logα . (15)

Proposition 14, stated next, says that for sufficiently
large α, there is a unique solution p† ∈ (0, 1) to (15).

Proposition 14 Suppose logα > −Λ′(1). There is a
unique solution p† ∈ (0, 1) to the equation EF (p) = logα.
This p† minimizes EM (p) over all p ∈ (0, 1) which satisfy
EF (p) ≤ logα. The minimum value of EM is given by
EM (p†) = logα+ Λ′(p†). For η = Λ′(p†), i.e.,

γ = eΛ′(p†) (16)

in the decision test {LT ≥ γ}, we have

PF ≤ α , PM ≤ α eΛ′(p†) .

PROOF. Lemma 19 in Appendix B implies that on
the interval (0, 1), EF is strictly decreasing, while EM is
strictly increasing with

infp∈(0,1) EF (p) = −Λ′(1) , supp∈(0,1) EF (p) = 0 ,

infp∈(0,1) EM (p) = Λ′(0) , supp∈(0,1) EM (p) = 0 .

Thus, in order that there exist p ∈ (0, 1) with
EF (p) ≤ logα, it is necessary (and sufficient) that α
satisfy logα > −Λ′(1). With this restriction in place,
there is a unique p† ∈ (0, 1) with EF (p†) = logα, where
we have used the fact that logα < 0. Since EM is strictly
increasing, we see that p† is the unique solution to the
constrained minimization problem (15). As discussed, η
should be chosen to equal Λ′(p†). The bounds on PF ,
PM follow from Theorem 8.
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5 Optimal Control of Mobile Sensors

Controlled sensor mobility can be utilized to enhance the
accuracy of detection with respect to that achieved in the
static setting of Section 3.3. The framework developed
above provides an analytically tractable way to design
the motion of the mobile sensors so that the upper bound
on the probability of a miss is minimized while the upper
bound on the probability of false alarm is guaranteed to
be smaller than a pre-specified desired level.

As described in Section 2.2, incorporating sensor dy-
namics (1) that depend on a control input u ∈ U sat-
isfying Assumption 6, renders the likelihood ratio (3)
an (implicit) function of u. Consequently, the lrt er-
ror probabilities, as well as the corresponding Chernoff
bounds, depend on u as well. To see how this plays out
analytically, observe that the error probabilities PF (u),
PM (u) are given by (4), but with LT (u) in place of LT .
By Theorem 8, the Chernoff bounds on PF (u), PM (u)
are given by (7), with the modification that Λ(p)—now
denoted Λu(p)—is obtained by replacing βi(·) and µi(·)
in (8) with βi(·,u) and µi(·,u) , 1 + νi(·,u)/βi(·,u),
where νi(·,u) is computed using (2). The tightest bounds
are still given by Proposition 13, but with the interval
(Λ′u(0),Λ′u(1)) depending on u. We use EF (p,u) and
EM (p,u) for the quantities in (11a)–(11b).

Suppose now that α ∈ (0, 1) is given, and that for each
u ∈ U , logα > −Λ′u(1). Then, Proposition 14 assures
us that for each fixed u ∈ U , there is a unique p†(u) ∈
(0, 1) which satisfies

EF (p†(u),u) = logα . (17)

Moreover, p†(u) minimizes EM (p,u) over all p ∈ (0, 1)
which satisfy EF (p,u) ≤ logα. This minimum value of
EM is given by

EM (p†(u),u) = logα+ Λ′u
(
p†(u)

)
. (18)

Thus, using threshold γ(u) = eη(u), where η(u) =
Λ′u(p†(u)), we have PF (u) ≤ α, PM (u) ≤ αγ(u) for
every u ∈ U .

The above observation motivates the statement of the
control design problem for the network dynamics (1) as
an optimal control problem. The idea here is that the
utilization of sensor mobility can potentially reduce the
probability of decision error. The main challenge in di-
rectly doing so (without the aforementioned analysis) is
that these error probabilities are impossible to compute
analytically, and their explicit dependence on control is
unknown. The results of Section 3 circumvent this prob-
lem by exposing the explicit dependence on control of
specific bounds on these error probabilities. This explicit
dependence allows us to formalize decision performance
metrics in terms of the bounds, and optimize motion
with respect to them.

In view of (18), therefore, an optimal control problem
can now be stated as follows: Find u to minimize the
cost J(u) , EM

(
p†(u),u

)
− logα = Λ′u

(
p†(u)

)
, which

is expressed analytically as

J(u) =

k∑
i=1

∫ T

0

[µi(u)
p†(u)

logµi(u)−µi(u)+1]βi(s)ds ,

subject to the sensor dynamics and (17), with the latter
now written as

k∑
i=1

∫ T

0

[p†(u)µi(u)
p†(u)

logµi(u)−µi(u)
p†(u)

+1]βi(s)ds

= − logα .

It is emphasized that the µi’s in the equations above are
also functions of time.

To see how sensor mobility can be exploited in this
way, consider an example similar to that of Sec-
tion 3.3, only now we have k = 5 sensors with 1
and 5 being mobile. The five sensors are originally
at locations (x1, y1) = (−3, 0), (x2, y2) = (−1, 0),
(x3, y3) = (0, 0), (x4, y4) = (1, 0), (x5, y5) = (3, 0). We
set x = (x1, y1, x2, y2, . . . , x5, y5)ᵀ, with

(
x1(t), y1(t)

)
,(

x5(t), y5(t)
)

evolving according to the dynamics

ẍ1 = u1 , ÿ1 = u2

ẍ5 = u3 , ÿ5 = u4
(19)

with initial conditions
(
x1(0), y1(0)

)
= (−3, 0),(

x5(0), y5(0)
)

= (3, 0), and u = (u1, . . . , u4)ᵀ. We fur-
ther assume that the velocity and acceleration of the
mobile sensors are subject to the constraints

|ẋi| ≤ 1 , |ẏi| ≤ 1 , |ui| ≤ 5 . (20)

The target now follows a circular trajectory of radius
R = 0.5 m centered at the point (0, 2), with maximum
velocity vmax

s = 1.26 m/s and maximum acceleration
amax
s = 3.16 m/s2:

xs(t) = 0.5 cos

(
4πt

5

)
, ys(t) = 2 + 0.5 sin

(
4πt

5

)
.

(21)

In this example, to emphasize the effectiveness of mo-
bility in improving decision accuracy, we will reduce the
ratio of source to background intensities by an order of
magnitude compared to the value used in Sections 3.3
and 6; we will assume that the target is indeed a source
of radiation with activity a = 8 cps, while background
is at a level of β = 13 cps. The signal we are called to
detect is now really buried in the noise. In addition, we
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also reduce the length of the decision time interval from
100 to 10 seconds.

The optimal control laws u are numerically computed
[1, 20–22, 48]. Figure 3 presents the closed-loop paths
for the mobile sensors 1 and 5 under the influence of
the optimal control u. It is evident that, under the op-
timal control input u, sensors 1 and 5 move so as to
minimize their instantaneous distance from the target,
but due to their velocity bounds they cannot follow ex-
actly the target’s circular path. This is also evident in
Fig. 4, that shows the history of the horizontal speeds
of sensor 1 and the target (the source). While the sen-
sor’s speed is confined in the [−1, 1] interval, the tar-
get’s speed periodically exceeds that limit, forcing the
sensor to cut its circular reference path trying to keep
up with the faster source. With sensors 1 and 5 chas-
ing the target along paths generated by the optimal
control u∗, the optimal value for the optimization cost
turns out to be J∗ = EM

(
p†(u∗),u∗

)
= −2.07, with the

probability of false alarm being constrained to remain
below 7 α = 10−3. This amounts (see (18)) to having
η(u∗) = −2.07, yielding, according to Proposition 14,
an upper bound on the probability of missed detection
of 1.26× 10−4.

In this scenario, the sensors’ controlled mobility offered
them an order of magnitude improvement in their Signal-
to-Noise Ratio (snr). We compute this snr using the
expression S√

S+B
, where S denotes the (estimated) inte-

grated source count rate, and B is the integrated back-
ground count rate [39]. Had all sensors remained station-
ary during the 10 second time window, the snr for de-
tectors 1, . . . , 5 would have been 0.4980, 1.1434, 1.3617,
1.1434, and 0.4980, respectively. With sensors 1 and 5
chasing the target, they improve their snr to 4.6843.

6 Experimental Results in One Dimension

We validate the utility of the error probability bounds
through experimentation with custom-built hardware
that emulates radioactivity on the plane without impos-
ing any health risks. In particular, we emulate the statis-
tics of radioactive decay as perceived by a Geiger counter
using a novel device that emits laser beams in random
directions on a horizontal plane, triggered at random
times that are exponentially distributed. Of course, nu-
clear emission is truly three-dimensional and a planar
emulation system cannot fully and faithfully capture the
nature of this phenomenon. It has been shown, how-
ever, that along a fixed plane of motion for the detector,
the statistics of the events incident to the sensor can be
adequately approximated. Details of the emulation de-
vice design and validation against real radiation mea-

7 Approximate current nuisance alarm rate at U.S. border
crossings is reported as 10−4 [63].
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Fig. 3. Source path and optimal paths for mobile sensors 1
and 5. The source is circling at a radius of 0.5 around point
(0,2), and is approached by sensor 1 from the left, and sensor
5 from the right. The two sensors cannot keep up with the
source due to their motion constraints, so they “cut” the
source’s circular path along rounded inscribed rectangles.
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Fig. 4. Horizontal velocity of target (source) and sensor 1
over time. The sensor’s absolute speed is upper bounded by
1, while the target’s periodically exceeds that bound. The
sensor cannot track the motion of the faster source perfectly.

surements from a Geiger counter are documented else-
where [26].

6.1 Experimental Setup

The experimental setting is shown in Fig. 5. In this set-
ting, the laser device is mounted on top of the white
round mobile robot, acting as a surrogate source of ra-
diation. The sensors are realized via long rectangular
boxes containing light detectors, configured to pick up
a laser emission. There are four static sensors, arranged
along the same line at the edge of the gray floor mat,
and a single mobile sensor, mounted on top of a black
square mobile robot, which is steered along a line paral-
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lel to that of the static sensors, and at the same distance
with respect to the target.

Fig. 5. The experimental setup that realizes a one dimen-
sional detection scenario. In the static network tests, only
sensors 1, . . . , 4 are used, while in the mobile network tests
we utilize the spatial symmetry of the configuration to re-
place the static sensor 1 with the mobile sensor 5.

The stationary sensors 1, . . . , 4 are located at spatial
coordinates (0, 0), (0.5, 0), (1.5, 0), (2.5, 0), respectively,
with coordinates measured in m. In Fig. 5, the leftmost
sensor in the upper left corner is sensor 1. The mobile
sensor, sensor 5, is initially at rest at location (3, 1). The
source is initialized at coordinates (3.0, 0.5), and starts
moving parallel to the x axis, in a negative direction,
from sensor 4 toward sensor 1, with a constant speed of
0.03 m/s. The source’s intensity is a constant a = 2 cps,
while the background rate is at β = 0.167 cps. The time
interval for the detection is a window of 100 s, and the
acceptable probability of false alarm is set at α = 10−3.

Note that in the two dimensional setting of Fig. 5, the
source intensity as perceived by a sensor is no longer
inversely proportional to the square of the distance, as
typically considered for the three-dimensional case [39].
Now the solid angle in χ scales linearly with the dis-
tance [26]; in both cases, the perceived intensity is in fact
inversely proportional to the solid angle associated with
the volume between the source and the sensor’s surface.
This solid angle scales with the square of the radius in
three dimensions, but linearly on the plane. The per-
ceived intensity ν is obtained as ν = aφ

2π . This intensity
varies between 0.03 cps and 0.24 cps, which is compa-
rable to the background rate of β = 0.167 cps.

To simulate that uniform background rate—it cannot be
reproduced by the laser device, for it would experience
the same attenuation as the source signal—the count
output of each sensor is superimposed externally with a
temporal sequence of samples drawn from a Poisson dis-
tribution with mean β. We can thus know what percent-
age of the total average count rate is attributed to the
source, but the detection algorithm is unaware of this;

instead, it is presented with the count sum, and this is
what it uses to compute the likelihood ratios.

6.2 Results and Discussion

To assess the contribution of mobility to the accuracy
of detection, we run experiments for two cases: one in
which the data collected from four static sensors 1, . . . , 4
are utilized to make a decision, and one in which static
sensor 1 is replaced with the mobile sensor 5 so that the
total number of sensors is constant and equal to four in
both cases; see Fig. 5.

Thirty-two different runs are performed. For each run,
finite-interval lrts with a range of different threshold
values, from 10−4 to 106, are conducted. The error prob-
abilities for each threshold value are estimated as empir-
ical averages over the set of all 32 lrts conducted with
that same threshold value.

Figure 6 compares the empirical average of the proba-
bility of miss for lrts conducted over a range of differ-
ent threshold values for 32 different experimental trials
with 4 static sensors, against Monte Carlo estimates of
this probability, and the proposed Chernoff bound. Fig-
ure 6 indicates that empirical averages from the exper-
iments with the static network remain close to Monte
Carlo estimates, suggesting an agreement between ex-
perimental and simulation results. In this context, the
Chernoff bounds are shown to be tight in the region of
low thresholds, while becoming more conservative for
higher threshold values.
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Fig. 6. Comparison between Chernoff bound, Monte Carlo
and Experiment estimates for probability of miss in Case I
when all sensors are static. The bars show the confidence
interval of estimates of probabilities using both Monte Carlo
and experimental data.

Table 1 lists the detection results over a set of the 32
static and mobile sensor network configuration trials,
when the optimal controls u∗, and optimal thresholds
γ(u∗) are utilized. The third column in Table 1 lists the
computed Chernoff bounds on the probability of missed
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Table 1
Optimal lrt parameters, and detection results for the static
and mobile sensor network configurations

network
topology

optimal
threshold

Chernoff
bound

missed
sources

empirical
probability

static 540.70 0.541 4 0.125

mobile 27.98 0.028 0 –

detection, while the two rightmost columns document
the frequency of missed detection errors. For the case
of the mobile sensor, the resulting threshold is much
smaller compared to that of the static case. The Cher-
noff bound on the probability of missed detection is lower
than 3%, and agrees with experimental data where the
source is detected in all 32 tests. In contrast, the static
case Chernoff bound (54.1%) is conservative compared
to the actual error probability results (12.5%), due to the
inherent conservativeness of the bounds. Nonetheless,
Table 2 that reports the snr for the two cases computed
using the same expression used in Section 5, suggests a
clear three-fold improvement in the signal-to-noise ra-
tio due to sensor mobility, corroborating the simulation
results of Section 5.

Table 2
snr of individual sensors in the experimental tests, for static
and mobile sensor network configurations

network
topology

snr 1 snr 2 snr 3 snr 4 snr 5

static 1.25 1.79 2.03 1.78 –
mobile – 1.79 2.03 1.78 3.78

7 Conclusions

This paper proposes a detection method for a network
of mixed static and mobile sensors tasked with decid-
ing whether a moving target carries a weakly emitting
radioactive source. It is a problem of detecting a time-
inhomogeneous Poisson process concealed in another
Poisson process. Because of the analytical intractability
of obtaining closed-form expressions for the error prob-
abilities for the optimal likelihood ratio test, the paper
suggests upper bounds for these quantities, which can
subsequently be used to steer the mobile sensors along
paths that enable more accurate network decisions. Ex-
plicit expressions for these bounds are derived in a form
that incorporates the relative motion between the mov-
ing target and the mobile sensors, and are then used
to facilitate the design of (sub)optimal control laws for
the mobile sensors to significantly enhance the perfor-
mance of decision making. The ability of the bounds
to capture the underlying probabilities is discussed in
detail through Monte Carlo simulations in the context
of specific detection scenarios. Experiments in a planar
setting using a device that emulates nuclear emission,
demonstrate the benefits of using mobile sensors with

suitably designed motion, and show a significant in-
crease in detection performance.
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A Proofs

PROOF. [Proof of Lemma 10] The result is obviously

true for p = 0. Assume first that p > 0. Let Kp ,
(1+νmax/βmin)

p. Recalling Assumptions 1 and 2, we have

Lpt ≤
∏k
i=1K

Nt(i)
p . Thus, E0[Lpt ] ≤ E0

[∏k
i=1K

Nt(i)
p

]
=∏k

i=1 E0

[
K
Nt(i)
p

]
, the latter equality following from inde-

pendence. Since Nt(i) is Poisson with intensity βi(t) un-

der P0, we have E0

[
K
Nt(i)
p

]
= exp[(Kp − 1)

∫ t
0
βi(s)ds].

Hence, E0[Lpt ] ≤ exp
[
(Kp − 1)

∑k
i=1

∫ t
0
βi(s)ds

]
< ∞.

If p < 0, given
∏Nt(i)
n=1

(
1 + νi(τn(i))

βi(τn(i))

)p ≤ 1, we have Lpt ≤
exp

(
− p

∑k
i=1

∫ t
0
νi(s)ds

)
, implying that E0[Lpt ] <∞.

PROOF. [Proof of Lemma 11] Note that the result is
clearly true for p = 0. For p ∈ R\{0}, t ∈ [0, T ], we have

Lpt = exp
(
p

k∑
i=1

∫ t

0

[1−µi(s)]βi(s)ds
) k∏
i=1

Nt(i)∏
n=1

µi(τn(i))p .

Let x(t) ,
∏k
i=1

∏Nt(i)
n=1 [µi(τn(i))]p and let y(t) ,

exp
{
p
∑k
i=1

∫ t
0
[1− µi(s)]βi(s)ds

}
, with the convention

that
∏0
n=1(. . . ) = 1. For t ∈ (0, T ], 1 ≤ i ≤ k, let

∆Nt(i) , Nt(i) − Nt−(i) be the jump in Nt(i) at time
t. Since Nt(i) and Nt(j) are independent for i 6= j, they
have no common jumps (see Remark 15):∑

0<t≤T

∆Nt(i) ·∆Nt(j) = 0, P0-a.s. (A.1)

Hence, for t ∈ (0, T ],

x(t) =

{
x(t−) · µi(t)p if t = τn(i), n ≥ 1, 1 ≤ i ≤ k,

x(t−) else

with x(0) = 1. Thus, x(t) is right-continuous, monotone
(non-decreasing if p > 0, non-increasing if p < 0) and

piecewise constant with ∆x(t) , x(t) − x(t−) satis-

fying ∆x(t) =
∑k
i=1

∑
n≥1 x(t−) [µi(t)

p − 1] 1(t=τn(i)).

Note also that y(t) is differentiable with y′(t) =

12



y(t) · p
∑k
i=1[1 − µi(t)]βi(t). By the Product For-

mula [2, Theorem A4.T2], x(t)y(t) = x(0)y(0) +∫ t
0
x(s−)dy(s) +

∫ t
0
y(s)dx(s). If, for a stochastic pro-

cess Ct, we define
∫ t

0
CsdNs(i) ,

∑
n≥1 Cτn(i)1(τn(i)≤t)

for t ∈ [0, T ], 1 ≤ i ≤ k, then it is easily seen that∫ t
0
y(s)dx(s) =

∑k
i=1

∫ t
0
y(s)x(s−) [µi(s)

p − 1] dNs(i).

Also,
∫ t

0
x(s−)dy(s) =

∫ t
0
x(s−)y′(s)ds, where y′

is as given above. Noting that y(s) = y(s−) for
all s ∈ [0, T ] (owing to the continuity of y(·)),
we get Lpt = 1 +

∑k
i=1

∫ t
0
Lps− [µi(s)

p − 1] dNs(i) +

p
∑k
i=1

∫ t
0
Lps− [1− µi(s)]βi(s)ds. SinceMt(i) = Nt(i)−∫ t

0
βi(s)ds, we now get the stated result.

Remark 15 The claim in (A.1) can be verified

as follows. Let (L̃t : t ∈ [0, T ]) be the process

L̃t ,
∏k
i=1

{
exp

(∫ t
0
[βi(s)− 1]ds

)∏Nt(i)
n=1

1
βi(τn(i))

}
.

Since 0 < βmin ≤ βi(t) ≤ βmax < ∞ for all t ∈ [0, T ],

1 ≤ i ≤ k, one can check that the equation dQ/dP0 = L̃T
defines a probability measure Q on (Ω,F ) such
that Q and P0 are mutually absolutely continuous 8

with dP0/dQ = 1/L̃T . Moreover, with respect to
Q, the Nt(i)’s are independent Poisson processes
with intensity 1. Since, by [50, Proposition XII.1.5],∑

0<t≤T ∆Nt(i) · ∆Nt(j) = 0, Q-a.s., we must have

(A.1), owing to P0 � Q.

B Properties of Λ(p)

We establish here certain properties of Λ(p) which play
an important role in our analysis.

Lemma 16 The function p 7→ Λ(p) is C2 and

Λ′(p) =
∑k
i=1

∫ T
0

[µi(s)
p logµi(s)− µi(s) + 1]βi(s)ds ,

Λ′′(p) =
∑k
i=1

∫ T
0
µi(s)

p[logµi(s)]
2βi(s)ds .

PROOF. For each fixed s ∈ [0, T ], the integrand in
(8) is smooth in p. From (6) and Assumptions 1, 2, it
follows that one can take arbitrarily many derivatives of
Λ(p) with respect to p by simply differentiating under
the integral sign.

Using the expression for Λ′′(p) in Lemma 16 and recall-
ing (6) and Assumptions 1, 2, it follows that

Lemma 17 For all p ∈ R, we have Λ′′(p) > 0. Conse-
quently, the function p 7→ Λ(p) is strictly convex.

8 Thus, Q is absolutely continuous with respect to P0 (de-
noted Q� P0) and P0 is absolutely continuous with respect
to Q (denoted P0 � Q).

Lemma 18 We have Λ′(0) < 0, Λ′(1) > 0.

PROOF. Since ex−1 = 1+(x−1)+ (x−1)2

2! + (x−1)3

3! +. . . ,

we have ex−1 > x for x > 1. Taking logarithms and
rearranging, we get log x − x + 1 < 0 for all x > 1.
Recalling that µi(s) > 1, βi(s) > 0 for 0 ≤ s ≤ T ,
1 ≤ i ≤ k, we set p = 0 in the expression for Λ′ in Lemma
16 to get Λ′(0) < 0. Let g(x) , x log x−x+1. Noting that
g′(x) = log x and g(1) = 0, we get g(x) =

∫ x
1

log y dy
for x > 1. Thus, g(x) > 0 for x > 1. Setting p = 1 in the
expression for Λ′ in Lemma 16, we get Λ′(1) > 0.

Lemma 19 The differentiable function EF : (0, 1)→ R
defined by (11a) is negative, strictly decreasing with

infp∈(0,1) EF (p) = −Λ′(1) , supp∈(0,1) EF (p) = 0 .

The differentiable function EM : (0, 1) → R defined by
(11b) is negative, strictly increasing with

infp∈(0,1) EM (p) = Λ′(0) , supp∈(0,1) EM (p) = 0 .

PROOF. Let’s first prove that EF , EM are in fact neg-
ative on (0, 1). Since Λ is strictly convex, we have Λ(q) >
Λ(p) + Λ′(p)(q− p) for all p, q ∈ R with p 6= q. Thus, for
p ∈ (0, 1), taking q = 0 and q = 1, we get Λ(p)−pΛ′(p) <
Λ(0) = 0 and Λ(p) + (1 − p) Λ′(p) < Λ(1) = 0, respec-
tively. Noting that EF , EM are differentiable by Lemma
16, we directly compute that E ′F (p) = −p Λ′′(p) < 0 for
p ∈ (0, 1), and E ′M (p) = (1− p) Λ′′(p) > 0 for p ∈ (0, 1).
This proves that EF is strictly decreasing on (0, 1), while
EM is strictly increasing on (0, 1). The claim now follows.
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[59] Sergio Verdú. Asymptotic error probability of binary
hypothesis testing for poisson point-process observations.
IEEE Transactions on Information Theory, 32(1):113–115,
1986.
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