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Abstract This paper approaches from an optimal con-

trol perspective the problem of fixed-time detection of

mobile radioactive sources in transit by means of a col-

lection of mobile sensors. Under simplifying assump-

tions on the motion and geometry of the source, the

sensors, and the surrounding environment, the optimal

control problem admits an intuitive, analytic closed-

form solution. This solution is obtained thanks to ana-

lytic expressions for bounds on the probabilities of de-

tection and false alarm for a Neyman-Pearson detection

test. The intuition derived from this analytic solution

supports the development of a motion control law that

steers (suboptimally) the sensors to a given neighbor-

hood of the suspected source, while navigating among

stationary obstacles in their environment. This motion

controller closes the loop at the acceleration level of
a heterogeneous collection of sensor platforms. Exper-

imental studies with these platforms corroborate the

theoretical convergence results.

1 Introduction

This paper derives analytic optimal motion strategies

for mobile sensors aiming at detecting weak radioactive

sources in transit. It then investigates provably conver-

gent relaxations which afford hardware implementation

in constrained environments under constraints on actu-

ation. The risk associated with this detection problem is

encoded in two types of errors that can be made in the
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decision-making process: a false alarm in which the sys-

tem erroneously classifies a target as radioactive, and a

missed detection where the system fails to recognize a

radioactive source. In the context of nuclear detection,

one tries to minimize the probability of missing a source

under an upper bound (usually very small, for practical

reasons) on the acceptable probability of false alarm.

Detecting radioactive sources is relevant and timely

due to the increasing risk of accidental or malicious nu-

clear material proliferation (Archibold and Gladstone,

2013; Broad, 2012) and the need for inspecting vehicles

and humans safely and without hindering traffic flow.

To detect radioactive sources in transit from a distance,

one solution (Byrd et al, 2005) is the deployment of a

large network of spatially distributed detectors. Fast

and remote radiation detection requires sophisticated

equipment which does not come cheap (Byrd et al,

2005); yet one inexpensive, possibly miniaturized, ra-

diation detector appropriate for such deployment is the

Geiger counter.

Geiger counters merely record radiation rays hitting

their internal crystal, regardless if these rays come from

the source to be detected or from naturally occurring

background radiation. The question thus is whether the

aggregate count is due to background alone or to the

superposition of background and source. This problem

can be formulated as a binary hypothesis test—when

there is a deadline, this becomes a fixed-time inter-

val test—that has received considerable coverage in the

literature (Brémaud, 1981). When detecting radioac-

tive material, the perceived rate of count reception at

each sensor changes with the distance between the sen-

sor and the source, giving rise to a dynamic, time-

inhomogeneous stochastic process. As a result, analytic

characterization for the error probabilities in this deci-

sion problem is not possible. Yet, analytic expressions
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are central to designing motion control strategies for

the mobile sensors that optimize detection probability.

For the most part, approaches in available literature

attempt to identify not only the nature of the target

but also its location solely based on radiation counters

(Brennan et al, 2005; Chin et al, 2010; Nemzek et al,

2004). Such approaches essentially face a combination

of problems—detection and localization—which is in-

herently very challenging, both at an analytical and

computational level. For static sensors and source, a

location estimator can be constructed, and a sequen-

tial probability ratio test can be formed (Chin et al,

2010). In addition to estimating the source’s position,

algorithms within a Bayesian framework can also es-

timate source intensity (Brennan et al, 2005; Nemzek

et al, 2004). Reported results support the hypothesis

that sensor networks can be effective in remotely de-

tecting static radiation sources. When the source is

in motion, however, the associated analytic complex-

ity translates to significantly increased computational

complexity, and updating posterior probabilities using

Bayes rule becomes problematic, even for networks of

modest size (Nemzek et al, 2004) and under assump-

tions on the motion of the source being linear and with

constant acceleration.

In contrast, this paper focuses on one of the con-

stituent problems—namely, detection. We try to iden-

tify what is the best that can be done, under the as-

sumption that the emission characteristics and trajec-

tory of the source are known. The rationale behind this

divide-and-conquer strategy is that on one hand, given

the security application in mind, one probably has an

idea of the type of material that is expected to be found.

On the other hand, a multitude of other sensing modal-

ities (e.g. cameras (Wei et al, 2014) ) can be used to

detect and track a mobile target; one does not need to

track motion based solely on Geiger counters.

Although the separation between radiation detec-

tion and localization allows for an analytical optimal

solution to the problem of mobile sensors deployment,

eventually this solution has to be realized on physical

systems under an array of real-world limitations and

constraints. One of those constraints is related to en-

vironmental obstructions, or obstacles. To enable our

mobile sensors to negotiate these obstacles while adher-

ing to the spirit of the optimal deployment strategy, we

adopt a feedback-based motion planning approach that

utilizes a particular type of artificial potential functions

known as navigation functions. The existing navigation

function approach, however, cannot be directly applied

to the problem at hand, because the destination is a

time-varying set. The (arguably limited) existing work

(Ghaffarkhah and Mostofi, 2009; Goncalves et al, 2010)

on time-varying potential fields does not cover the case

considered here completely, in the sense that there can

be both static obstacles and a time-varying target set,

and in addition convergence—rather than merely ulti-

mate boundedness—is required. We thus introduce new

extensions and offer theoretical guarantees of algorith-

mic completeness and correctness.

The particular motion planning problem considered

here is an instance of a general time-varying problem of

navigating amongst obstacles. When it is the environ-

ment that is time-varying, e.g., the obstacles are mov-

ing, the problem has been approached from the perspec-

tive of roadmaps (Ziegler and Stiller, 2009). Optimal

trajectories can be generated based on these roadmaps;

however, as the dimensionality of the problem—primarily

due to multiple platforms—increases, computational com-

plexity presents some serious challenges. Alternatives

that promise to preserve optimality (at least asymptot-

ically) at a smaller computational cost, include prm∗

and rrt∗ (Karaman and Frazzoli, 2011). These algo-

rithms have been adapted to various situations that

require fast generation of new solutions amongst obsta-

cles (Choudhury et al, 2013; Marble and Bekris, 2013;

Perez et al, 2012). Although asymptotically optimal in

theory, appropriate extension heuristics have to be care-

fully chosen. At the end, there is always a trade-off be-

tween real-time performance and optimality.

Dealing with dynamic environments in real-time pre-

sents computational challenges to any sampling based

technique. For this reason, this paper adopts a potential

(navigation) function approach. Although a sampling-

based planner may offer optimal paths—which a po-

tential field controller cannot guarantee—on-line tra-

jectory adaptation imposes stringent constraints on the

computational power mobile platforms should carry.

The time-varying nature of the workspace presents

unique challenges to potential function based controllers

too. Existing work has treated instances of moving ob-

stacles, particularly in cases where the “obstacles” are

simultaneously deployed sensor platforms (Dimarogo-

nas et al, 2006; Loizou et al, 2003; Tanner and Boddu,

2012). When moving entities are all controllable, this

problem reduces to an instance of a (bigger) time in-

variant one. Avoiding collisions with both static and

moving objects within a navigation function framework,

however, needs to be treated with extreme care, be-

cause one of the basic working assumptions of the orig-

inal methodology of Koditschek and Rimon (1990) no

longer holds: obstacles can no longer guaranteed to be

some ε apart. This issue is not addressed here; instead,

the novelty of the navigation function approach used in

this paper is in its ability to handle moving destinations

with provable convergence guarantees.
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2 Approach overview

In our two-stage approach (Fig 1), a high-level layer

identifies the strategy that the mobile sensors have to

follow to maximize their probability of detecting their

targets, and a lower-level layer implements those strate-

gies within the constraints imposed by sensor platform

dynamics, actuation constraints, observation limitations,

and environmental interactions.

In the upper layer, the optimal motion strategy for

a mobile sensor is found analytically in the context of

Maximum Principle. We will see that this results in a

type of bang-bang solution, the intuitive interpretation

of which is that sensors are managed optimally if they

are brought as close to the source, as quickly as possible.

Such a bang-bang control strategy would ignore sensor

platform dynamics, would require unbounded accelera-

tions, and introduce large transients.

A new (navigation function) potential field is then

employed at the lower level to implement this strat-

egy, taking now into consideration environment con-

straints (obstacles) and target motion. The outcome of

this motion planner is a time-dependent velocity ref-

erence, which is then translated into reference inputs

tailored to the dynamics of a particular platform —

this is where robot dynamics are being incorporated.

It is at this stage where actuator commands are being

prescribed and subsequently realized. With the imple-

mentation of these commands, sensors collect observa-

tions that also inform about the state of the platforms

in relation to their environment and their target. This

information allows the potential field motion planner

to update its velocity references, and close the control

loop at the lower layer of the architecture.

In this framework the only part that needs to be

changed when the sensor network changes size is the

motion planning part. The optimal strategy is indepen-

dent of the number of sensors that needs to be used.

3 Background: Networked Radiation Detection

Imagine that there is a mobile target which could be

carrying a radioactive (point) source of activity a. The

trajectory of this target is denoted xt(t) ∈ R3. We as-

sume that ‖ẋt‖ ≤ Vt for t ∈ [0, T ]. In the specific setting

considered in this paper, the target is to be classified as

benign or radioactive within a time period of T seconds

using a collection of ks mobile sensors (radiation coun-

ters). The motion of the radiation sensors is control-

lable, and the trajectory of sensor i for i ∈ {1, . . . , ks}
is denoted xi(t) ∈ R3. The source activity a is mea-

sured in gamma rays emitted per second (cps). In this

way, the source activity has the same units as sensor i’s
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Fig. 1 Control & decision making architecture

cumulative observations up to time t ∈ [0, T ], denoted

Nt(i). For a fixed t and i, Nt(i) is a random variable

following a Poisson distribution. Each ray incident on

sensor i is an event and the instant that the n th such

event occurs at sensor i is denoted τn(i).

Such cumulative observations Nt are due not only to

the alleged radioactive source, but also due to ubiqui-

tous, naturally occurring, background radiation. In this

paper, we assume that the source intensity is compara-

ble to background. The background radiation intensity

at the location of sensor i is denoted bi and will be con-

sidered constant. Sensors cannot differentiate between

counts due to source and counts due to background.

Although background intensity can be assumed con-

stant over limited space and time interval, the perceived

source intensity by sensor i changes with the distance

between the source and sensor i. Specifically, the closer

the sensor is to the source, the more gamma rays from

the source it is likely to register. If sensor i is assumed

to have cross section coefficient χi for i ∈ {1, . . . , ks},
then it is generally accepted [Nemzek et al (2004)] that

the mean count rate νi measured by sensor i would fol-

low an inverse square law with respect to the distance

between sensor and source. We take this inverse square

relationship to be of the form1

νi ,
χia

2χi + ‖xi − xt‖2
. (1)

If a single sensor were to make a decision at time T

as to whether the target it is observing is radioactive,

it would have to choose between two hypotheses:

H0: the target is not radioactive and the mean of the

Poisson process which NT (i) follows is bi, or

1 When ‖xi − xt‖ = 0, the source is touching the surface
of the sensor, and the latter measures exactly half of source’s
emitted rays.
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H1: the target is radioactive, and the mean of the Pois-

son process which NT (i) follows is bi + νi.

The decision is assumed to be made by a single processor—

possibly one of the sensors—which collects the infor-

mation and performs a likelihood ratio test (Pahlajani

et al, 2014a). This processor is called the fusion center.

To analyze this decision problem we need the ap-

propriate mathematical setting. For a given i, we rec-

ognize Nt(i) as a Poisson process, and we collect all

of these processes in a k-dimensional Poisson process

Nt =
(
Nt(i), . . . , Nt(ks)

)
—the bold notation marks vec-

tors formed by stacking vectors or scalars from all sen-

sors. If we consider the set of all possible outcomes, that

is, occurrences of such events on all sensors, we form a

set Ω. Then we consider a measurable space (Ω,F ),

where F is a σ-algebra on Ω.

Now let (FN
t : 0 ≤ t ≤ T ) be the filtration gener-

ated by Nt. This FN
T represents the collective infor-

mation obtained from all sensors up to time T . Then

the decision between hypothesis H0 and H1 on the ba-

sis of FN
T is equivalent to choosing the correct measure

on (Ω,FN
T ). For example, the choice of the probabil-

ity measure P0 yields a probability space (Ω,FN
T ,P0)

consistent with hypothesis H0; similarly, P1 with H1. A

particular valuation ofNT is assumed to be an outcome

ω ∈ Ω, and a test for deciding H1 takes the form of

choosing a set A1 ∈ FN
T and checking whether ω ∈ A1.

A “false alarm” occurs when we find ω ∈ A1 while H0

is in force. The probability for making such an error

is therefore P0(A1). Similarly, missing the radioactive

target happens when ω ∈ (Ω \A1) when H1 is in force,

and the probability for such an error is P1(Ω \A1).

If τn(i) denotes the time instance at which sensor
i recorded its n count, and NT (i) is the total number

of counts registered by sensor i up to final time T , a

Neyman-Pearson likelihood ratio test for the presence

of a source can be of the form (Pahlajani et al, 2014a)

ks∏
i=1

exp

(
−
∫ T

0

νi(s) ds

)
NT (i)∏
n=1

(
1 +

νi(τn(i))

bi(τn(i))

)
≥ γ (2)

and methods are known (Pahlajani et al, 2014b) for

the analytical selection of threshold γ based on target

and sensor trajectories. An optimal motion coordina-

tion strategy for the sensors could be one that max-

imizes the probability detection P1(A1) under an up-

per bound constraint on the probability of false alarm

P0(A1). The challenge for such an optimization is that

these probabilities are impossible to express analyti-

cally for any nontrivial case of interest. Fortunately,

tight upper bounds are known and can be used for

the selection of the threshold γ in (2) (Pahlajani et al,

2014b). The approach in this paper, exploits those bounds

to formulate an optimal control problem for the motion

of the sensors, and solve this problem analytically.

4 Problem Statement

Assume that the position trajectory of sensor i is con-

trolled through input ui(t) as in

ẋi = ui . (3)

We assume that there are constraints on control ac-

tuation in the form ‖ui‖ ≤ umax for some constant

umax > Vt, and we collect all sensor motion control

inputs in a stack vector u = (u1, . . . , uks). Recall (1),

and note that since xi is implicitly determined by ui,

and νi is a function of xi, νi is a functional operating on

ui; we thus write it as νi(ui), or more generally νi(u).

Define now the scalar quantity

µi(u) , 1 +
νi(u)

bi
. (4)

For p being a scalar (control) parameter in (0, 1), it can

be shown (Pahlajani et al, 2014b) that the logarithm of

a upper bound on the probability of miss P1(Ω \A1) =

1−P1(A1) for the fusion center of the network of sensors

is analytically expressed as the sum of

JPM(u, p),
ks∑
i=1

∫ T

0

[µi(u)
p
logµi(u)−µi(u)+1]bi ds (5)

and a constant logα for α ∈ (0, 1), while the probability

of false alarm is upper bounded by α if

FFA(u, p) ,
ks∑
i=1

∫ T

0

[
pµi(u)

p
logµi(u)−µi(u)

p
+1
]
bi ds

= − logα . (6)

It is therefore natural to formulate an optimal control

problem, where JPM is a cost to be optimized with

respect to u and p under constraint (6)—with logα

remaining constant. In this problem, the state of the

dynamical system is µ , (µ1, . . . , µks), implicitly de-

termined by u in (4) via (1) and (3); specifically,

µ̇i =
2χia(xt − xi)

bi(2χi + ‖xt − xi‖2)2
(ui − ẋt) . (7)

5 Optimal Sensor Management: Analytic

Solutions

The path to an analytic solution starts with transform-

ing the constrained optimal control problem (5)–(6)

into an unconstrained one. The first partial result es-

tablishes the monotonicity of functional FFA in (6) with

respect to the positive parameter p.
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Lemma 1 Fix u. FFA is strictly increasing with p.

Proof Write ∂FFA
∂p =

∑ks
i=1

∫ T
0
p µpi (logµi)

2 dt, and note

that it is strictly positive since µi > 1, p ∈ (0, 1). ut

The next step is to establish the existence of a function

from µ to p.

Lemma 2 The (functional) mapping µ 7→ p, denoted

φ, associates to each µ a unique p.

Proof It follows from Lemma 1 and the Implicit Func-

tion Theorem. ut

We henceforth write

p = φ(µ) . (8)

Lemma 3 For all t1 ∈ (0, T ], it is δφ(µ)
δµi

∣∣∣
t1
≤ 0.

Proof Consider first a needle perturbation of the form

εδ(t− t1) on coordinate i of µ, yielding a perturbed µ̃

with component µi(t) + εδ(t− t1); here, δ(t− t1) is the

Dirac function offset at t1 and ε > 0 a small parameter.

Using Taylor expansion on the integrand of FFA(µ, p)

we find

FFA(µ̃, p) ≈ FFA(µ, p) + biεp
2µi(t1)

p−1
logµi(t1) ,

from which the first order variation in FFA(µ, p) due

to εδ(t− t1) in µi is obtained

FFA(µ̃, p+ δp)− FFA(µ, p)

= biεp
2µi(t1)

p−1
logµi(t1) + ∂FFA

∂p δp,

which is zero because FFA is constrained to − logα (6).

Given Lemma 1:

δp = −
ε bip

2 µp−1
i logµi

∣∣∣
t1∑k

i=1

∫ T
0
p µpi log2 µi dt

.

Rewriting p = φ(µ), it follows

δφ(µ)

δµi

∣∣∣∣∣
t1

= lim
ε→0

δp

ε
< 0

and the proof is completed. ut

We are now ready to apply the Maximum Principle

and extract the optimal motion coordination strategy

for each sensor.

Proposition 1 The solution for sensor i ∈ {1, . . . , ks}
to the optimal control problem (5)–(7) within the feasi-

ble set U = {u ∈ R3ks : ‖ui‖ ≤ umax} is

ui =

 xt−xi
‖xt−xi‖umax xi 6= xt

ẋt xi = xt
.

Proof Given (8), the cost functional is written

JPM =

ks∑
i=1

∫ T

0

(µ
φ(µ)
i logµi − µi + 1)bi dt .

Since JPM is always finite, by Fubini’s theorem,

JPM =

∫ T

0

ks∑
i=1

(µ
φ(µ)
i logµi − µi + 1)bi dt .

The Hamiltonian is

H =

ks∑
i=1

λiµ̇i(ui)−
ks∑
i=1

(µ
φ(µ)
i logµi − µi + 1)bi (9)

and dynamics of costates λi is written as

λ̇i = −∂H
∂µi

=
(
φ(µ)µ

φ(µ)−1
i

δφ(µ)

δµi
logµi+µ

φ(µ)−1
i −1

)
bi .

Since µi > 1 and φ(µ) ∈ (0, 1), we have 0 < µ
φ(µ)−1
i <

1, and therefore

λ̇i < biµ
φ(µ)−1
i φ(µ)

δφ(µ)

δµi
logµi

Lemma 3
≤ 0 (10)

for all t ∈ (0, T ].

Now since µ∗i (T ) can take any value in (1, 1 + a
2b ],

there are two mutually exclusive and exhaustive cases:

either µ∗i (T ) ∈ (1, 1 + a
2b ), or µ∗i (T ) = µimax = 1 +

a
2b . If µ∗i (T ) ∈ (1, 1 + a

2b ), the transversality condition

requires λi(T ) = 0. Thus, given (10), it is λi(t) >

0 ∀t ∈ (0, T ]. In light of this, and given (7), the

Hamiltonian maximization condition H(µ∗,u∗,λ∗) =

maxu∈U H(µ∗,u∗,λ∗) applied on (9) requires that

u∗i =
xt − xi
‖xt − xi‖

umax , (11)

that is, it suggests the maximal control effort to close

the distance between sensor and source as close as possi-

ble. Using such a controller, eventually (given big enough

T ) it will be µ∗i (T ) = µimax . At this point, the second

case is in effect. Denote Ts the switching time. Now

t ∈ [Ts, T ] with boundary condition µi(Ts) = µi(T ) =

µimax and δJPM
δµi

= λ̇i < 0. To minimize JPM when

t ∈ [Ts, T ], µi should once again be kept at its maxi-

mum value. ut

Essentially what Proposition 1 dictates is for the

sensor platforms to close the gap between themselves

and the suspected target as fast as possible.
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6 Sensor navigation amongst obstacles

Limiting the feasible positions that sensors can attain

augments the set of constraints in the optimal control

problem formulation (5)–(6). In the general case, the

resulting optimal control problem may not admit ana-

lytic solutions any more. Even if such solutions can be

found, it is conceivable that the optimal controls steer

the sensors right at the boundary of the feasible state

set, grazing the obstacles in an effort to increase the

lower bound on the detection probability. These consid-

erations motivate an alternative, albeit suboptimal, ap-

proach to sensor management, which—while adhering

to the same principle of closing the distance as quickly

as possible—is likely to trade-off some performance for

safety and analytically established convergence proper-

ties.

Using the insight obtained from the unconstrained

case, we therefore develop a sensor management strat-

egy for navigation amongst obstacles in the context of

navigation functions. Instead of running at full speed

toward the target, sensors will now perform steepest de-

scent over a smooth artificial landscape in which obsta-

cles are regions of high elevation and the target sits sur-

rounded by an area of depression. The latter attribute

of this landscape is motivated from the fact that we

cannot allow the sensor platforms to physically touch

and collide with their target, but rather keep them at

a minimum safe distance rt away from it. The destina-

tion for the sensors thus becomes a set, the surface of a

sphere centered at the moving target. Another techni-

cal challenge is that this destination set is time-varying.

Inevitably, the convergence problem becomes one where

the underlying system is time-varying—fully knowing

the target’s trajectory is not sufficient to reduce the

system into a time-invariant one, because the obstacles

are fixed.

For sensor i at position xi, the goal function that

the potential field attempts to minimize takes the form

Ji(xi, t) = (‖xi − xt(t)‖2 − r2
t )

2 .

It can be shown that Ji has two distinct sets of critical

points, one isolated point at xt which is a local maxi-

mum, and a manifold of local minima on the boundary

of the sphere Bxt(rt) defined by ‖xi − xt(t)‖2 − r2
t = 0.

We define Bxt(δt) as a (small) ball around xt with ra-

dius 0 < δt < rt. We show later that as long as initial

conditions are rt away from xt, the stated controller

provides convergence to ∂Bxt(rt).
So far we have treated the sensors as point masses

(negligible volume); we will therefore ignore the pos-

sibility of them colliding with each other and focus

on steering them away from environment obstacles. In

the spirit of the preliminary sphere-world analysis of

[Koditschek and Rimon (1990)], these obstacles are sets

Oj , where j ∈ {1, . . . ,m}, which are assumed to be

open balls in the appropriate Euclidean space (here,

R3) having radius ρj and center oj . The boundary of

obstacle j, for j ∈ {1, . . . ,m}, is described by means of

the function βi j = ‖xi − oj‖2 − ρ2
j , which vanishes on

the obstacle’s boundary and is positive in the space sur-

rounding it. ∂O0 marks the outer workspace boundary,

of radius ρ0; this boundary is expressed in the form

βi 0 = ρ2
0 − ‖xi‖2, for o0 = 0. Then a single scalar

function that serves as a metric of proximity to (any)

obstacle boundary βi =
∏M
j=0 βi j can be defined.

Once we “puncture” the interior of workspace bound-

ary with every obstacle, we obtain the free workspace

P = B(ρ0)\
⋃m
j=1Oj . Assume that Oj for j = {1 . . .m}

are isolated, static, that oj are at least ρj+rt away from

the target ∀ t ∈ [0, T ], and that xt is rt away from the

workspace boundary ∂O0—these four requirements cor-

respond to the collision-free workspace remaining valid

[Koditschek and Rimon (1990)], at least during the sen-

sors’ integration window.

Theorem 1 Given that the workspace is P valid, there

exists a positive value N such that for every k ≥ N , the

function

ϕi(xi, xt) =
Ji(xi, xt)(

Ji(xi, xt)k + βi(xi)
)1/k (12)

is such that all critical points other than those in ∂Bxt(rt)
are either nondegenerate with attraction regions of mea-

sure zero or in Bxt(δt), and the gradient field generated

by ∇xiϕi has ∂Bxt(rt) as the only limit set with non-

zero measure attraction region outside Bxt(δt).

Proof The fact that outside Bxt(δt), ϕi has only local

minima on target set ∂Bxt(rt), and that all other critical

points are non-degenerate (saddle) with measure zero

attraction, is established through the series of Proposi-

tions 3 through 9 stated and proven in the Appendix.

ut

There are some practical considerations related with

the application of a bang-bang controller like (11) within

a constrained environment, especially when it is unde-

sirable for sensor platforms to collide with their target

at maximum speed. Even when the system’s manifold of

attractors is set at a safe distance rt away from the tar-

get, flowing along the direction of the negated gradient

of (12) at full speed is certain to result in overshoot and

oscillatory behavior in the neighborhood of the attract-

ing set. The sensors’ approach to this goal set needs to

be fast but gradual. For these reasons, given Theorem 1,



Constrained Decision-making for Low-count Radiation Detection by Mobile Sensors 7

a relaxation on (11) for implementation in constrained

environments in the following form is proposed

u◦i = −c ∇xiϕi
‖∇xiϕi‖+ ξ

− (∇xtϕ
ᵀ
i ẋt)

∇xiϕi
‖∇xiϕi‖2

, (13)

for some constants c < umax, and ξ > 0.

Control law (13) is essentially a modulated (negated)

gradient following tracking controller with a feedfor-

ward to compensate for target motion. It can be shown

that if supt≥0 ‖ẋt(t)‖ is sufficiently small compared to

umax, then (c, ξ, ε) can be always be chosen so that

both (a) ‖u◦i ‖ ≤ umax for all positions that βi(xi) > 0

except for a small region around saddle points, and

(b) (gradual) convergence to the surface of the ball

of radius rt around the target is analytically estab-

lished. The former claim on the boundedness of (13),

relates to lower bounding ‖∇xiϕi‖ which appears in

the denominator of the second term. This term van-

ishes as xi approaches one of the critical points of ϕi.

For a properly tuned navigation function, those critical

points can be expected to be in a set
⋃m
j=0{xi|βij(xi) <

ε}∪∂Bxt(rt)∪Bxt(δt); we shall prove that under reason-

able assumptions2 the magnitude of the control input

is upper bounded.

Lemma 4 For xi sufficiently far from saddle points,

u◦i is bounded.

Proof Bound ‖u◦i ‖ as follows

‖u◦i ‖ =

∥∥∥∥−c ∇xiϕi
‖∇xiϕi‖+ ε

− (∇xtϕ
ᵀ
i ẋt)

∇xiϕi
‖∇xiϕi‖2

∥∥∥∥
≤ c

∥∥∥∥ ∇xiϕi
‖∇xiϕi‖+ ε

∥∥∥∥+ |∇xtϕTi ẋt|
∥∥∥∥ ∇xiϕi‖∇xiϕi‖2

∥∥∥∥
< c+

‖∇xtϕi‖
‖∇xiϕi‖

‖ẋt‖

= c+
‖kβi∇xiJi‖

‖kβi∇xiJi − Ji∇xiβi‖
‖ẋt‖

= c+ (1 +
‖kβi∇xiJi‖ − ‖kβi∇xiJi − Ji∇xiβi‖

‖kβi∇xiJi − Ji∇xiβi‖
)‖ẋt‖

≤ c+

(
1 +

‖Ji∇xiβ‖
‖kβ∇xiJi − Ji∇xiβ‖

)
‖ẋt‖ .

The denominator ‖kβ∇xiJi−Ji∇xiβ‖ vanishes at crit-

ical points, i.e., saddle points and the target set.

2 We need to note, however, that requiring xi to be away
from saddle points cannot be guaranteed a priori for all initial
conditions; there will be a set of initial conditions (Fig. 3)
around the attraction regions of the unstable critical points
of ϕi that generate trajectories which cross into

{
xi : 1 +

‖Ji∇xiβ‖
‖kβ∇xiJi−Ji∇xiβ‖

≥ umax−c
max{‖ẋt‖}

}
.

As xr is converging to the target set ∂Bxt(rt), the

upper bound of ‖u◦i ‖ becomes:

‖u◦i ‖ < c+

1 +
‖∇xiββ ‖

‖k∇xiJiJi
− ∇xiββ ‖

 ‖ẋt‖ ,
and since, by assumption, the target is always away

from obstacles, ‖∇xiββ ‖ is upper bounded. Therefore,

‖∇xiJi‖
Ji

=
4‖xi − xt‖

|‖xi − xt‖2 − r2
t |

xi→∂Bxt (rt)−−−−−−−−→ +∞ ,

bounding ‖u◦i ‖ around the target set and making it con-

verge to c+ ‖ẋt‖.
If now xi is close to a saddle point, the control input

is still bounded by umax as long as xi satisfies

xi ∈
{
xi : 1 +

‖Ji∇xiβ‖
‖kβ∇xiJi − Ji∇xiβ‖

≤ umax − c
max{‖ẋt‖}

}
.

The above can be relaxed to{
xi : ‖kβ∇xiJi − Ji∇xiβ‖ ≥

max{‖ẋt‖}
umax − c−max{‖ẋt‖}

sup (Ji∇xiβ)
}
,

where the supremum is taken over {xi : βi(xi) > 0}.
Thus, as long as xi stays sufficiently far away from sad-

dle points, the control input is bounded.

Theorem 2 The closed loop system (3)–(13) converges

to the set {xi ∈ R3 : Ji(xi, xt) = 0}, from almost ev-

erywhere in {xi ∈ R3 : βi(xi) > 0, xi /∈ Bxt(rt), ‖xi‖ <
ρ0}.

Proof The closed loop system is time-varying due to

xt(t). The proof is thus based on Barbalat’s lemma us-

ing function ϕi. The aim is to show that limt→∞ ϕ̇i = 0.

First note that ϕi ≥ 0. Then expand ϕ̇i and plug

(13) to verify that

ϕ̇i = −c ‖∇xiϕi‖
2

‖∇xiϕi‖+ ξ
≤ 0 . (14)

So limt→∞ ϕi exists and bounded. Thus according to

Barbalat’s lemma, proving that limt→∞ ϕ̇i = 0 reduces

to showing that ϕ̇i is uniformly continuous in t, which

can be ensured if ϕ̈i is bounded. Toward this end note

that

ϕ̈ = −c
1− 1

2‖∇xiϕi‖
(‖∇xiϕi‖2 + ξ)2

d‖∇xiϕi‖
2

dt ,
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and is bounded if
d‖∇xiϕi‖

2

dt is. Indeed,

d‖∇xiϕi‖
2

dt = −2
∇xiϕ

ᵀ
i ∇2

xiϕi ∇xiϕi
‖∇xiϕi‖+ ξ

− 2
∇xtϕ

ᵀ
i ẋt

‖∇xiϕi‖2
∇xiϕ

ᵀ
i ∇

2
xiϕi ∇xiϕi

+ 2∇xiϕᵀ ∇xi(∇xtϕi) ẋt .

With ϕi being a smooth function, its first and second

partial derivatives are bounded on the compact subset

of R3 where βi ≥ 0. The second term does not ex-

plode because the expression
∣∣∇xiϕᵀ

i [∇2
xi
ϕi] ∇xiϕi

‖∇xiϕi‖2
∣∣ ad-

mits an upper bound equal to the maximum eigen-

value of the Hessian of ϕi—which is finite. Therefore,

since ‖ẋt‖ < Vt,
d‖∇xiϕi‖

2

dt is bounded, and ϕ̇i is uni-

formly continuous, it follows that limt→∞ ϕ̇i = 0. Then

(14) implies that limt→∞ ‖∇xiϕi‖ = 0, which in turns

suggests—based on Theorem 1—that with time xi →
{x ∈ R3 : Ji(x, xt) = 0} from almost all initial condi-

tions in {xi ∈ R3 : βi(xi) > 0, xi /∈ Bxt(rt), ‖xi‖ < ρ0},
notice that as long as xi(0) /∈ Bxt(0)(rt), it will always

be xi(t) /∈ Bxt(t)(rt) due to ϕ̇ ≤ 0 and ϕ reaches mini-

mum at ∂Bxt(t)(rt). ut

7 Reconciling with platform dynamics

Theorem 2 establishes the convergence properties of the

motion controller for platform dynamics (3) in the form

of a single integrator. A natural question that arises is

what can be said about more complicated sensor plat-

form dynamics. This section demonstrates how differ-

ent physical sensor platforms can implement the control

inputs designed for the single integrator case. This can

basically be achieved through application of standard

nonlinear system analysis techniques, the first of which

is full state, or output, feedback linearization.

In this paper, two types of sensor platforms are

considered: a quadrotor, and a wheeled mobile robot.

Both systems have full dynamics which afford state–

output feedback linearization, with their Cartesian po-

sition in the role of the output. Assuming, therefore,

that through appropriate input feedback transforma-

tions we can now obtain a description of platform i

position dynamics in the form of a double integrator

with input wi

ẍi = wi , (15)

we set off to design an integrator backstepping con-

troller that will realize a desired velocity reference u◦i =

u◦i (xi, xt, ẋt) given by the potential field gradient con-

structed in Section 6. (Note that similar control archi-

tectures have been used for convergence to fixed points

[Ayanian et al (2011); Koditschek (1987)].) It follows

that for a choice of parameter kd > 0, the input to (15)

can be set as

wi = u̇◦i −∇xiϕi − kd[ẋi − u◦i ] . (16)

Proposition 2 For the closed-loop system (15)–(16),

convergence of ẋi to u◦i is guaranteed.

Proof First write the error in the reference velocity as

ev = ẋi− u◦i , and express the closed-loop system in the

form

ẋi =u◦i + ev

ėv =wi − u̇◦i .

Consider now the (time-varying) function

V (xi, xt, ev) = ϕi(xi, xt) +
1

2
eᵀv ev

and compute

V̇ =∇xiϕ
ᵀ
i (u◦i + ev) +∇xtϕ

ᵀ
i ẋt + eᵀv (wi − u̇◦i )

=− ‖∇xiϕi‖2

‖∇xiϕi‖+ ε
+ (∇xiϕi + wi − u̇◦i )ᵀ ev

Let the control input wi to (16) yields

V̇ = − ‖∇xiϕi‖
2

‖∇xiϕi‖+ ε
− kdeᵀv ev .

Application of Barbalat’s lemma along lines parallel

to those in Section 6 completes the proof by showing

that ∇xiϕi and ev converge to zero with time. The only

requirement additional to the treatment of Section 6

is that ev has to be bounded; this is however, ensured

from the negative semidefiniteness of V̇ and the positive

definiteness of V with respect to xi and ev.

8 Numerical and Experimental Assessment

8.1 Simulation study setup

Consider a 2-and-a-half dimensional environment, the

projection of which on the 2 dimensional horizontal

plane gives the planar workspace topology of Fig. 2. In

this environment, a simulated point quadrotor is steered

to track a point target moving counterclockwise along

a circular path around the origin with angular veloc-

ity π
5 rad per second. Figure 2 compares the perfor-

mance of this controller in simulation to the results of

an experimental study that is discussed later in this

section; at this stage we are interested in the thin solid

(blue) path in Fig. 2, which corresponds to the simu-

lated vehicle’s trajectory. The target initially starts at

point (x, y) = (0.15, 0) m, and in the scenarios shown
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Fig. 2 Simulation (left): a target is circling the origin along a
thick red dashed path, and a quadrotor starting from behind
an obstacle follows a thin blue solid path as it converges to
its target and follows it around in circles. Experiment (right):
the same scenario is repeated with a real quadrotor in an ex-
periment where it tracks a simulated target following another
circular path with slightly larger radius; here, the path of the
quadrotor is marked with a thin solid blue line, while the
motion of its target is shown in thick dashed red.

in Fig. 2, it is assumed that the target’s position and

velocity are known exactly.

The linear acceleration dynamics of the simulated

quadrotor are implemented as in [Mellinger et al (2012)],

with the desired roll and pitch angles being part of the

control input vector. This model admits feedback lin-

earization and lends itself to implementation of (16).

Figure 2 indicates that (16), applied to the quadrotor

position dynamics, is capable of achieving target track-

ing with simultaneous obstacle avoidance.

Although Lemma 4 warns about the existence of tra-

jectories attracted to a neighborhood of saddles, Fig!3

illustrates that the attraction basin is typically of small

measure. Indeed, Fig. 3 marks initial positions from

which trajectories cross into{
xi : 1 +

‖Ji∇xiβ‖
‖kβ∇xiJi − Ji∇xiβ‖

≥ umax − c
max{‖ẋt‖}

= 10

}
.

The marked region shrinks as umax is increased.

8.2 Experimental study setup

Now controller (16) is applied on an AscTek Humming-

bird quadrotor, which is supposed to move in a physical

environment identical to that of Fig. 2, with the differ-

ence that obstacle boundaries are virtual. The target is

now following a circular path of radius 0.2 m, with a

linear speed of 0.1 m/s. The path followed by the real

quadrotor as it tracks its target is shown in Fig. 2 as

a dashed-dot curve. While not evident in Fig. 2, the

unmodeled (assumed very fast) attitude dynamics of

the quadrotor, affect its tracking performance.3 The

3 In fact, the robot’s manufacturer does not give direct ac-
cess to the attitude control loops; the roll-pitch-yaw angles

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x(m)

y
(m

)

Obstacles (Grey)

Target Trajectory

Target

Fig. 3 A graph showing the feasible region (white) and re-
gions requiring velocity references that are 10 times higher
than target velocity (black) inside the workspace for a point
target following circular trajectory centered at origin with
radius r = 0.15 and angular velocity ω = π/5 that starts at
point (0.15, 0).

difference in performance between simulation and ex-

periment, attributed here to the unmodeled attitude

dynamics, is shown more clearly in Figs. 4 and 5. Fig-

ure 4 shows the distance between the sensor platform

and its target over time, in dashed (red) curve for the

simulated robot case, and in solid (blue) curve for the

actual hardware. The desired distance (clearance) is set

at 50 mm, and it is shown as a horizontal (blue) dashed

line. Although in both cases, the distance converges to

the desired one, the real quadrotor maintains a larger

distance error.

are treated as control setpoints by the default firmware on
this robot.
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Fig. 4 The distance between target and the quadrotor in
the simulation and experimental cases. The horizontal (blue)
dashed line is the desired distance to target, while the solid
(blue) is the actual distance between target and quadrotor
during experiment, and the (red) dashed curve is the distance
to the simulated platform.

The reason for the tracking discrepancy in the ex-

perimental tests is more apparent in Fig. 5. By ignor-

ing the attitude dynamics, one essentially assumes that

the desired roll and pitch angles are attained instan-

taneously. Figure 5 shows that while the attidude dy-

namics may be indeed fast, their converging time is not

infinitesimal compared to that of position dynamics. A

lag in achieving the desired pitch angle, propages into a

lag in linear acceleration, which is then integrated into

a velocity error.
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Fig. 5 Comparison between the desired and the actual pitch
angle during the flight, and its effect on linear position dy-
namics.

9 Application to radiation detection

9.1 Experimental Setup

The setup of the experiment where physical sensor plat-

forms are tracking and identifying radioactive sources

is depicted in Fig. 6. An AscTek Hummingbird quadro-

tor and an iCreate wheeled mobile robot are fitted with

Geiger counters, and are tasked to detect the presense

of a very weak radiation source composed of a small

number of vaseline glass (containing Uranium oxide)

beads. This source is carried around on a miniature 3D-

printed wheg-leg crawling robot, remotely controlled by

a human operator. This source is so weakly radioactive,

that its perceived intensity drops at a level of less than

10% of ambient background just after 17 cm away. The

background radiation level observed by our two sensors

during the experiments, ranges from 9.5 to 12.5 counts

per minute. In order for detection to be feasible within

a time window of 3 minutes, the two sensor platforms

have to get close to the target (source), at a distance of

less than 10 cm.

The experiment evolves in the same virtual obstacle

workspace as the test shown in Fig. 2. Here, the outer

workspace boundary is at a radius of 150 cm around

the origin of the inertial coordinate frame. The four

small (virtual) interior obstacles have a radius of 15 cm,

while the single bigger one is of 22.5 cm radius. Dur-

ing the detection task, the two mobile sensor platforms

gather radiation count information using their on-board

Geiger counters, and at the end of the 3 minute obser-
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platform Geiger
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Fig. 6 The radiation detection experiment. Geiger counters
are carried by an aerial platform (1) and a ground platform
(2), while the weak radiation source (3) moves with a remotely
controlled crawling robot.

vation window, they transmit wirelessly their computed

statistics to a central computer that performs the like-

lihood ratio test. The outcome of this test is a decision

as to whether the target is radioactive.

Given that for the particular sensor geometry uti-

lized, the cross-section coefficient χi is negligible com-

pared to the distance between sensor and source, the

perceived source intensity can confidently be approxi-

mated as νi = χia
2χi+r2i

≈ ai
r2i

, so that the actual value of

the sensor cross-section coefficient is no longer required,

and the average of the counts recorded in the unit of

time becomes bi + ai
r2i

. Figure 7 confirms the validity of

this approximation, and illustrates why it is impractical

to attempt detection of weak moving radiation sources

using stationary counter networks.
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Fig. 7 The perceived source intensity νi follows an r2 fall-
off. Circles mark radiation measurements made by the Geiger
counter mounted on the quadrotor, and the dashed curve cor-
responds to a ai

r2
i

fit.

Thus coming as close to the target as possible is

key to being able to detect weak radioactive material in

motion. The controller constructed closes the distance

between sensor and source and maintains it at a de-

sired small setpoint during the detection time window.

A motion capture system is used to obtain ground truth

information and provide initial target position informa-

tion to the sensor platforms, while a camera on board

the quadrotor uses visual feedback to localize the tar-

get while in motion. The target trajectory information

obtained through the on-board sensors contains a sig-

nificant amount of noise; however, the noise in the sig-

nal does not prevent the platforms from tracking their

target reasonably well (Fig. 8).
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Fig. 8 Distance between sensor platforms—Left ground,
Right aerial—and target maintained based on visual feed-
back against ground truth. The unit of measurement on the
time index axis is 0.02 seconds.

Figure 9 shows the paths of the two platforms and

their target, moving amidst the virtual obstacles during

one of the radiation detection experiments. The dashed

(blue) line corresponds to the (projected on the horizon-

tal plane) path of the aerial platform, which returns to

the initial landing spot at the end of the 3 minute track-
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ing window. The dotted (red) curve marks the path of

the wheeled ground platform, while the solid (green)

quivering path is that of the source, which wavers some-

what being at the end of a pole fixed on the crawling

legged vehicle. Due to the noisy nature of the visual

target motion feedback information and the sensitivity

of any potential field reference close to an equilibrium

configuration, once the platforms achieved the 10 mm

target distance objective using (16), they switched to a

local PID controller for tracking.

Fig. 9 Superimposed paths of sensor platforms and target
during a single radiation detection trial

Fifty radiation detection trials like the one shown in

Fig. 9 were conducted, and likelihood ratio tests were

performed for a maximum false alarm rate of 1.2 %.

Out of the 50 different trials, half were performed with a

radiation source on the target, and the other half with-

out it. In all cases where the source was not present on

the target, the likelihood ratio test concluded correctly

that the target was benign. Out of the 25 cases where

the target was carrying a source, one was reported as a

false negative, while in the remaining 24 the target was

classified correctly.4

4 This type of behavior is expected, since detection tests of
this nature are skewed conservatively on the side of keeping
false alarm rates very low. The rationale is that if this is not
the case, then human operators will tend to ignore the report
of the detection systems.

10 Conclusion

Under certain simplifying assumptions, sensor mobility

can be optimally utilized in the context of networks of

radiation counters to boost detection performance in

low-rate radiation activity detection scenarios. In the

problem at hand, the suspected source is mobile, and

sensor platforms obtain information about the source’s

position and velocity either externally or from on-board

sensors. Analytic optimal control solutions point to mo-

tion coordination strategies that tend to minimize the

distance between sensor and suspected source as quickly

as possible, resembling bang-bang minimum-time so-

lutions to optimal control problems. Taking this les-

son from the analytical, closed-form solutions obtained

for sensor motion in unconstrained environments, the

paper develops motion planning strategies for sensor

coordination and navigation in obstacle environments

with bounds on actuation effort. The motion planning

methodology is based on gradient descent along poten-

tial fields generated by a special type of time-varying

navigation functions, and is implemented on the phys-

ical platforms by means of standard nonlinear analysis

tools. The resulting control laws are feedback-based and

reactive to the source’s motion, ensuring asymptotic

tracking of the mobile source in addition to obstacle

avoidance. The control strategy is tested both in simu-

lation on a two-dimensional detection scenario, and in

a series of real, three-dimensional radiation detection

cases.
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Appendix

To simplify notation, we drop the subscript xi from the

expressions of the gradient and hessian of the naviga-

tion, with the understanding that all these differentia-

tions are with respect to xi. Similarly, instead of distin-

guishing the obstacle and navigation function of agent i

by writing βi and ϕi, we simply refer to it generically as

β and ϕ. We will use the index i to range over obstacles

in the environment.

With a slight abuse of notation, we will now think

of the free workspace P as a subset of Rn (instead of

just R3); the results established in this section hold

irrespectively of the particular value of n ∈ N+. Let

∂ST = {x ∈ Rn : ‖x − xt‖ = rt}, for a small ε > 0

Bi(ε) , {x ∈ Rn : 0 < βi(x) < ε), and (re)define the

decomposition of P into sets ∂F , F0(ε), F1(ε), F2(ε)

and W(ε) as follows.

1. the free space boundary

∂F = ∂P = β−1(0) ;

2. the set “near the obstacles”

F0(ε) ,
M⋃
i=1

Bi(ε) \ ∂ST ;

3. the set “near the workspace boundary”

F1(ε) , B0(ε) \
(
∂ST ∪ F0(ε)

)
;

4. the set “away from the obstacles”

F2(ε) , P \
(
∂ST ∪ ∂F ∪ F0(ε) ∪ F1(ε)

)
.
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5. the set “away from the obstacles and target”

W(ε) = F2(ε) \ Bxt(δt)

Recall that a workspace is called valid, if the obsta-

cles do not overlap with each other and the destination

(set).

Proposition 3 If the workspace is valid, any xd ∈ ∂ST
is a degenerate local minimum of ϕ. A vector v satisfy-

ing vᵀ ∇2ϕ(xd) v = 0 has to be tangent to ∂ST .

Proof Evaluate

∇ϕ(xd) =
(Jk + β)1/k∇J − J ∇(Jk + β)1/k

(Jk + β)2/k

∣∣∣∣∣
xd

and note that since J
∣∣
xd

= 0 and ∇J
∣∣
xd

= 0, it is

∇ϕ(xd) = 0. Now

∇2ϕ(xd) =
(Jk + β)1/k∇2J − J ∇2(Jk + β)1/k

(Jk + β)2/k

∣∣∣∣∣
xd

= β−1/k∇2J
∣∣∣
xd

= 8β−1/k(xd − xt)(xd − xt)ᵀ .

Consider arbitrary vector v ∈ Rn and evaluate the

quadratic form

vᵀ∇2ϕ(xd) v = 8β−1/k vᵀ (xd − xt)(xd − xt)ᵀ v

= 8β−1/k ‖vᵀ(xd − xt)‖2 .

This means that vᵀ∇2ϕ(xd) v ≥ 0 with equality if and

only if v is normal to (xd−xt), that is, when v is tangent

to ∂ST . ut

Proposition 4 If the workspace is valid, all the critical
points of ϕ are in the interior of the free space.

Proof Let x0 be a point in ∂F . Then by definition,

βi(x0) = 0 for some i ∈ {0, ...,M}. From the workspace

being valid, it follows that βj > 0 for all j ∈ {0, ...,M},
j 6= i. Then,

∇ϕ(xd) =
(Jk + β)1/k∇J − J ∇(Jk + β)1/k

(Jk + β)2/k

∣∣∣∣∣
x0

=
∇J − 1

k J
1−k (kJk−1∇J +∇β)

J

∣∣∣∣∣
x0

= −1

k
J−k

M∏
j=0,j 6=i

βj∇βi 6= 0

which completes the proof. ut

Proposition 5 For every ε > 0 there exists a positive

integer N(ε) such that if k ≥ N(ε) then there are no

critical points of Jk

β in W(ε).

Proof A sufficient condition for Jk

β not having critical

points in W is [Koditschek and Rimon (1990, Proposi-

tion 3.4)]

k >
J ‖∇β‖
β ‖∇J‖

.

For this, it is sufficient to have

k ≥ sup
W

J

‖∇J‖
sup
W

‖∇β‖
β

>
J ‖∇β‖
β ‖∇J‖

.

The existence of a finite bound of supW
J
‖∇J‖ supW

‖∇β‖
β

can be established analytically as follows.

sup
W

J

‖∇J‖
= sup
W

(
‖x− xt‖2 − r2

t

)2
4‖x− xt‖3 − 4r2

t ‖x− xt‖

= sup
W

‖x− xt‖2 − r2
t

4‖x− xt‖
.

Since ‖x−xt‖ is bounded from below and above in W,

and infW ‖x − xt‖ = δt, it is ensured that supW
J
‖∇J‖

is finite. For the other bound, we have

‖∇β‖
β

< sup
W

‖∇β‖
β

≤ sup
W

M∑
i=0

‖∇βi‖
βi

≤ 2

ε

ρ0 +

M∑
i=1

sup
W
‖x− oi‖

 (17)

The strict inequality is due to the fact that ‖x‖ < ρ0

for any point in W. (17) implies that the supW
‖∇β‖
β

exists and is bounded. Thus, a choice of a sufficiently

large k ≥ N(ε) would be

N(ε) :=
1

ε
sup
W

{
‖x− xt‖2 − r2

t

2‖x− xt‖

}
(ρ0+

M∑
i=1

sup
W
‖x−oi‖) .

(18)

The proof is thus completed. ut

Proposition 6 For any valid workspace, there exists

an ε0 > 0 such that Jk

β has no local minima in F0(ε),

as long as ε < ε0.

Proof The analysis focuses on F0(ε), and that implies

that for any critical point xc ∈ F0(ε), for some i we will

have xc ∈ Bi(ε); therefore, 0 < βi(xc) < ε. The validity

of the workspace guarantees that ‖oi − xt‖ > rt + ρi.

Because of this, that particular ball Bi(ε) is bounded

away from ∂ST : for any x ∈ Bi(ε), it is ‖x − xt‖ > rt
as long as

0 < ‖x− oi‖ − ρi <
√
ε+ ρ2

i − ρi < ‖oi − xt‖ − rt − ρi.
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Since xc is a critical point, kβ∇J = J ∇β at xc. Note

that everywhere in F0(ε), J 6= 0 and β 6= 0. There-

fore, ∇J is aligned with ∇β. Using the concept of the

omitted product [Koditschek and Rimon (1990)]

β̄i ,
M∏

j=0, j 6=i

βj

vector ∇β expands to

∇β =

M∑
j=1

2(xc − oj)β̄j − 2β̄0xc

= 2(xc − oi)β̄i + 2βi

M∑
j=1,j 6=i

(xc − oj)
β̄j
βi
− 2β̄0 xc

and by defining

αi , 2

M∑
j=1,j 6=i

(xc − oj)
β̄j
βi
− 2

β̄0

βi
xc

which is a vector independent from ε, and bounded in

F0(ε), one has

∇β = 2(xc − oi)β̄i + βi αi .

From kβ∇J = J ∇β at xc it now follows that

∇J =
J

kβ
∇β

⇐⇒ 4(‖xc−xt‖2−r2
t )(xc−xt) =

J

kβ
[2(xc−oi)β̄i+βi αi]

which leads to

xc − xt =
‖xc − xt‖2 − r2

t

4

(
2
xc − oi
kβi

+
αi
kβ̄i

)
. (19)

If one now sets

Ck , sup
W

{
‖xc − xt‖2 − r2

t

2‖xc − xt‖

}(
ρ0 +

M∑
i=1

sup
W
‖xc − oi‖

)
then according to (18) in the proof of Proposition 5, a

suitable choice of k would be

k :=
Ck
ε

in which case (19) becomes

xc − xt =
ε(‖xc − xt‖2 − r2

t )

4Ck

(
2
xc − oi
βi

+
αi
β̄i

)
. (20)

Taking the inner product of both sides of kβ∇J = J∇β
with ∇J yields

kβ∇Jᵀ∇J = J ∇βᵀ∇J

=⇒ kβ =
β̄i∇βᵀ

i ∇J + βi∇β̄ᵀ
i ∇J

16‖xc − xt‖2
(21)

From this point, one can then prove that the criti-

cal point of Jk

β is not a local minimum by showing

that ∇2 Jk

β has at least one negative eigenvalue at that

point. (The procedure follows the exact same steps as

[Koditschek and Rimon (1990, Proposition 3.6)].) Es-

sentially, it amounts to using any vector v̂ orthogonal

to ∇βi
‖∇βi‖ as a test vector, and showing that at xc and for

small enough ε, v̂ᵀ ∇2 Jk

β v̂ < 0. The process in detail

is as follows:

β2

Jk−1
v̂ᵀ ∇2 Jk

β

∣∣
xc
v̂ = kβ v̂ᵀ ∇2J v̂ − 2Jβ̄i

+ v̂ᵀ Jβi

[1− 1
k

β̄i
∇β̄i∇β̄ᵀ

i −∇
2β̄i

]
v̂

(21)
=

β̄i∇βᵀ
i ∇J + βi∇β̄ᵀ

i ∇J
16‖xc − xt‖2

v̂ᵀ ∇2J v̂ − 2Jβ̄i

+ v̂ᵀ Jβi

[1− 1
k

β̄i
∇β̄i∇β̄ᵀ

i −∇
2β̄i

]
v̂

= β̄i

( v̂ᵀ ∇2J v̂

16‖xc − xt‖2
∇βᵀ

i ∇J − 2J
)

+ βi

( v̂ᵀ ∇2J v̂

16‖xc − xt‖2
∇β̄ᵀ

i ∇J

+ J v̂ᵀ
[ 1− 1

k

β̄i
∇β̄i∇β̄ᵀ

i −∇2β̄i
]
v̂
)
. (22)

To determine the sign of the far right side of (22), per-

form the expansion of v̂ᵀ ∇2J v̂ into

v̂ᵀ
[
4(‖xc − xt‖2 − r2

t )I + 8(xc − xt)(xc − xt)ᵀ
]
v̂

= 4(‖xc − xt‖2 − r2
t ) + 8 v̂ᵀ (xc − xt)(xc − xt)ᵀ v̂

= 4(‖xc − xt‖2 − r2
t ) + 8(v̂ᵀ(xc − xt))2 , (23)

where I denotes the identity matrix, and plug (20) into

(23), to express v̂ᵀ ∇2J v̂ in the form

4(‖xc − xt‖2 − r2
t )+

+ 8
∣∣∣v̂ᵀ ε(‖xc − xt‖2 − r2

t )

4Ck

(
2
xc − oi
βi

+
αi
β̄i

)∣∣∣2
= 4
√
J +

2ε
√
J |v̂ᵀαi|2

Ckβ̄i
. (24)

where v̂ᵀ(xc − oi) = 0 and
√
J is substituted for ‖xc −

xt‖2−r2
t (for brevity), since in F0(ε) it holds ‖xc−xt‖ >

rt.

Given now that the second term in (22) can be made

arbitrarily small by choosing ε > βi, one can establish

the negative definiteness of (22) by ensuring that the

first term is strictly below zero. The second factor in
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the first term in (22) can be expanded

v̂ᵀ ∇2J v̂

16‖xc − xt‖2
∇βᵀ

i ∇J − 2J

(24)
=

2
√
J + ε

√
J

Ckβ̄i
|v̂Tαi|2

8‖xc − xt‖2
2(xc − oi) 4(xc − xt)

√
J − 2J

= 2J

[
(xc − oi)ᵀ(xc − xt)
‖xc − xt‖2

− 1

]
+

+
εJ |v̂ᵀαi|2

Ckβ̄i‖xc − xt‖2
(xc − oi)ᵀ(xc − xt)

=
2J(xt − oi)ᵀ(xc − xt)

‖xc − xt‖2
+
εJ |v̂ᵀαi|2 (xc − oi)ᵀ(xc − xt)

Ckβ̄i‖xc − xt‖2

and by applying known relations [Koditschek and Ri-

mon (1990, Lemma 3.5)] one arrives at

v̂ᵀ ∇2J v̂

16‖xc − xt‖2
∇βᵀ

i ∇J − 2J

≤
2J‖xt − oi‖ (

√
ε+ ρ2

i − ‖xt − oi‖)
‖xc − xt‖2

+ ε sup
F0(ε)

J |v̂Tαi|2 (xc − oi)ᵀ(xc − xt)
Ckβ̄i‖xc − xt‖2

. (25)

At this point, (25) is used in (22) to upper bound the

left hand side of (22)

β2

Jk−1
v̂ᵀ ∇2 Jk

β

∣∣
xc
v̂

≤
2Jβ̄i ‖xt − oi‖ (

√
ε+ ρ2

i − ‖xt − oi‖)
‖xc − xt‖2

+ ε

(
β̄i sup
F0(ε)

J |v̂Tαi|2 (xc − oi)ᵀ(xc − xt)
Ckβ̄i‖xc − xt‖2

+
v̂ᵀ ∇2J v̂

16‖xc − xt‖2
∇β̄ᵀ

i ∇J

+ J v̂ᵀ
[

1− 1
k

β̄i
∇β̄i∇β̄ᵀ

i −∇2β̄i

]
v̂

)
.

Now choosing ε appropriately small, the second term

can be made sufficiently small so that the sign of the

first term dominates. The sign of the latter is deter-

mined by the expression
√
ε+ ρ2

i −‖xt− oi‖, which for

small ε approaches ρi − ‖xt − oi‖, which is guaranteed

negative by the validity of the workspace. (The target

xt is (rt + ρi) away from the center of obstacle i.) ut

Proposition 7 If k ≥ Ck
ε , then there exists an ε1 > 0

such that ϕ̂ = Jk

β has no critical points on F1(ε), as

long as ε < ε1.

Proof The set F1(ε) expresses the neighborhood of the

workspace (outer) boundary. Select ε small enough so

that the B0(ε) neighborhood of the outer boundary is

disjoint from the rt-neighborhood of the target: β0 <

ε < ρ2
0−(‖xt‖+rt)2. Then any critical point xc ∈ F1(ε)

will satisfy β0(xc) = ρ2
0 − ‖xc‖2 < ε, implying ‖xc‖ >

‖xt‖+ rt. Then in B0(ε)

∇Jᵀ∇β0 =4(‖xc − xt‖2 − r2
t )(xc − xt)ᵀ (−2xc)

=8(‖xc − xt‖2 − r2
t )(x

ᵀ
t xc − ‖xc‖2)

≤8(‖xc − xt‖2 − r2
t )(‖xc‖‖xt‖ − ‖xc‖2)

=8(‖xc − xt‖2 − r2
t ) ‖xc‖ (‖xt‖ − ‖xc‖)

<0 .

By choosing ε small enough, we can ensure that ∇ϕ̂
does not vanish in F1(ε). Here is why:

∇ϕ̂ᵀ∇J =
[kJk−1

β
∇J − Jk

β2
∇β
]ᵀ
∇J

=
Jk(16kβ ‖xc − xt‖2 −∇βᵀ∇J)

β2

=
Jk[16kβ‖xc − xt‖2 − (β0 ∇β̄ᵀ

0∇J + β̄0 ∇βᵀ
0∇J)]

β2

(∇Jᵀ∇β0<0)
>

Jkβ0(16kβ̄0‖xc − xt‖2 −∇β̄ᵀ
0∇J)

β2

and thus any ε small enough to make k >
∇β̄ᵀ

0 ∇J
16β̄0‖xc−xt‖2

,

will also make ∇ϕ̂ᵀ∇J positive. In fact, the choice uti-

lized earlier, i.e., k = Ck
ε suffices. To see this,

∇β̄ᵀ
0∇J

16β̄0‖xc − xt‖2
≤ ‖∇β̄0‖‖∇J‖

16β̄0‖xc − xt‖2
=

√
J
β

∑M
i=1 β̄i‖∇βi‖

4‖xc − xt‖

<
1

ε
sup
W

{ √
J

2‖xc − xt‖

}
M∑
i=1

sup
W
‖xc − oi‖ ,

and compare to

k :=
Ck
ε

=
1

ε
sup
W

{ √
J

2‖xc − xt‖

}(
ρ0+

M∑
i=1

sup
W
‖xc−oi‖

)
>

1

ε
sup
W

{ √
J

2‖xc − xt‖

}
M∑
i=1

sup
W
‖xc − oi‖ .

It thus suffices to pick ε < ε1 = (ρ0)2 − (‖xt‖+ rt)
2 to

ensure that no critical points are in F1(ε). ut

Proposition 8 Critical points in the interior of F0(ε)

are non-degenerate.

Proof One way to establish such a claim [Koditschek

and Rimon (1990, Proposition 3.9)] is to partition the

tangent space of ϕ̂ into a subspace that yields pos-

itive values for the quadratic form constructed with
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∇2ϕ̂, and a subset that yields negative values. The neg-

ative case is established by Proposition 6. The posi-

tive case, again along the lines of [Koditschek and Ri-

mon (1990, Proposition 3.9)], is established here by tak-

ing a test direction ∇̂βi = ∇βi
‖∇βi‖ , and picking ε small

enough to obtain ∇̂β
ᵀ

i ∇2ϕ̂ ∇̂βi > 0. Note that for a

given i, ∇̂βi defines one subspace, and all the vectors v̂

form its orthogonal complement. To verify the sign of

∇̂β
ᵀ

i ∇2ϕ̂ ∇̂βi, expand the expression

β2

Jk−1
∇̂β

ᵀ

i ∇2ϕ̂ ∇̂βi =

= ∇̂β
ᵀ

i kβ∇2J ∇̂βi

+
J(1− 1

k )

β
(∇βᵀ ∇̂βi)2 − J ∇̂β

ᵀ

i ∇2β ∇̂βi . (26)

We know [Koditschek and Rimon (1990, Proposition

3.9)] that for small enough ε,

J‖∇β‖2

2kβ
+
J(1− 1

k )

β
(∇βᵀ ∇̂βi)2−J ∇̂β

ᵀ

i ∇2β ∇̂βi > 0

And although different J function is used here, the same

derivation in [Koditschek and Rimon (1990, Proposi-

tion 3.9)] holds here. So to set the sign of (26), it suffices

to make

∇̂β
ᵀ

i kβ∇2J ∇̂βi ≥
J‖∇β‖2

2kβ
(27)

Recalling (23), and that ‖xc − xt‖2 − r2
t =
√
J since xc

is a critical point, the left hand side of (27) is

∇̂β
ᵀ

i kβ∇2J ∇̂βi = 4kβ
√
J+8kβ| ∇̂β

ᵀ

i (xc−xt)|2 (28)

and because xc is a critical point, taking squared norms

of both sides of kβ∇J = J ∇β yields(
4kβ
√
J ‖xc − xt‖

)2
= J2 ‖∇β‖2

from which one extracts that

4kβ =
J‖∇β‖2

4kβ‖xc − xt‖2
. (29)

Plugging now (29) back into (28) yields

∇̂β
ᵀ

i kβ∇2J ∇̂βi =

J3/2 ‖∇β‖2

4kβ‖xc − xt‖2
+
J‖∇β‖2

∣∣ ∇̂βᵀ

i (xc − xt)
∣∣2

2kβ‖xc − xt‖2
.

Now (27) takes the form

J3/2 ‖∇β‖2

4kβ‖xc − xt‖2
+
J‖∇β‖2

∣∣ ∇̂βᵀ

i (xc − xt)
∣∣2

2kβ‖xc − xt‖2
≥ J‖∇β‖2

2kβ

⇐⇒ J1/2

2‖xc − xt‖2
+

∣∣ ∇̂βᵀ

i (xc − xt)
∣∣2

‖xc − xt‖2
≥ 1

⇐⇒
‖xc − xt‖2 − r2

t + 2
∣∣ ∇̂βᵀ

i (xc − xt)
∣∣2

2‖xc − xt‖2
≥ 1

⇐⇒ 2
∣∣ ∇̂βᵀ

i (xc − xt)
∣∣2 ≥ ‖xc − xt‖2 + r2

t (30)

For xc ∈ Bi(ε) (guaranteed by Proposition 6), ‖xc−
xt‖ > rt. Now let rt assume the form rt = ζ infBi(ε) ‖xc−
xt‖ for an appropriate ζ < 1, and recall that ∇̂βi =
∇βi
‖∇βi‖ , where ∇βi = 2(x − oi). With this in mind, one

satisfies (30) by ensuring that

1 + ζ2

2
≤
(

(xc − oi)ᵀ(xc − xt)
‖xc − oi‖ ‖xc − xt‖

)2

(31)

=⇒ 2
∣∣ ∇̂βᵀ

i (xc − xt)
∣∣2 ≥ ‖xc − xt‖2 + r2

t .

An appropriately small choice of ε can establish (31),

as the following derivation shows:

(xc − oi)ᵀ(xc − xt)
‖xc − oi‖ ‖xc − xt‖

≥
√
J

4k

[
(2‖xc − oi‖2)/βi + [αᵀ

i (xc − oi)]/β̄i
]

√
J

4k

[
(2‖xc − oi‖)/βi + ‖αi‖/β̄i

]
‖xc − oi‖

≥ (2‖xc − oi‖2)/βi − (‖αi‖‖xc − oi‖)/β̄i
(2‖xc − oi‖2)/βi + (‖αi‖‖xc − oi‖)/β̄i

=
1− (βi‖αi‖)/(2β̄i‖xc − oi‖)
1 + (βi‖αi‖)/(2β̄i‖xc − oi‖)

= 1− (βi‖αi‖)/(β̄i‖xc − oi‖)
1 + (βi‖αi‖)/(2β̄i‖xc − oi‖)

≥ 1− βi‖αi‖
β̄i‖xc − oi‖

≥ 1− ε ‖αi‖
β̄i‖xc − oi‖

and thus to satisfy (27), it sufficies to pick

ε <
(

1−
√

1 + ζ2

2

) infi ρ
m
i

supF0(ε) ‖αi‖

=⇒ ε <
(

1−
√

1 + ζ2

2

) β̄i‖xc − oi‖
‖αi‖

ut

Proposition 9 There exists k0 > 0 such that for any

k > k0, any critical point xc ∈ Bxt(δt) is a local maxi-

mum of Jk

β .
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Proof To study the critical points in Bxt(δt), we work

on the two cases:

Case I: ∇β|xt = 0, xc = xt,

∇J |xt = 0 ⇒ kβ(xt)∇J |xt = J(xt)∇β|xt = 0, we

shall have xt as one of the critical points in Bxt(δt). In

this case, for any unit vector q ∈ Rn:

β2

Jk−2
qᵀ∇2(

Jk

β
)|xtq

=qᵀ(kβJ∇2J + k(k − 1)β∇J∇Jᵀ − J2∇2β)q

=qᵀ
(
− 4J1.5kβI− J2∇2β

)
q

=− 4r6
t kβ − r8

t q
ᵀ∇2βq

Recall that to make the workspace valid, Bxt(rt) should

not intersect ∂F , then at xt, βi > r2
t for i ∈ {0 . . .m} ⇒

β > r2m
t . So as long as

k > k1 =
1

4
r

(2−2m)
t sup

q
(|qᵀ∇2βq|)

qᵀ∇2(J
k

β )|xtq is guaranteed to be negative for any unit

vector q ∈ Rn and the critical point xt is a local maxi-

mum of Jk

β .

Case II: For any xc 6= xt, xc ∈ Bxt(δt):
For any unit vector q ∈ Rn, q can be presented as

scaled sum of v1 = ∇J
‖∇J‖ and v2, a unit vector perpen-

dicular to v1, i.e. q = q1v1 + q2v2, q
2
1 + q2

2 = 1, q1q2 > 0.

In order to ensure that ∇2(J
k

β ) is negative definite at

xc, a critical point of Jk

β in Bxt(δt), we study the sign

of β2

Jk−2 q
ᵀ∇2(J

k

β )|xcq:

β2

Jk−2
qᵀ∇2(

Jk

β
)|xcq

=
β2

Jk−2

(
q2
1v

ᵀ
1∇2(

Jk

β
)|xcv1 + q2

2v
ᵀ
2∇2(

Jk

β
)|xcv2 +

q1q2v
ᵀ
1∇2(

Jk

β
)|xcv2 + q1q2v

ᵀ
2∇2(

Jk

β
)|xcv1

)
(32)

Recall that at critical point xc, kβ∇J = J∇β. Take

the norm of both side:

kβ(4J0.5‖xc − xt‖) = J‖∇β‖
k‖xc − xt‖ = J0.5 ‖∇β‖

4β (33)

The first term in (32) can be expanded as:

q2
1

β2

Jk−2
vᵀ1∇2(

Jk

β
)|xcv1

=q2
1v

ᵀ
1 (kβJ∇2J + k(k − 1)β∇J∇Jᵀ − J2∇2β)v1

=q2
1v

ᵀ
1

(
kβJ [8(xc − xt)(xc − xt)ᵀ − 4J0.5I] + ..

+ k(k − 1)β∇J∇Jᵀ − J2∇2β
)
v1

=q2
1(8k(2k − 1)βJ‖xc − xt‖2 − 4kβJ1.5 − J2vᵀ1∇2βv1)

(33)
= q2

1(
J2‖∇β‖2

β
− 2J1.5‖∇β‖‖xc − xt‖ − J2vᵀ1∇2βv1 − ..

− 4kβJ1.5)

≤q2
1(
J2‖∇β‖2

β
− J2vᵀ1∇2βv1 − 4kβJ1.5)

Since v2 is an arbitrary unit vector that is perpen-

dicular to ∇J , it is also perpendicular to (xc−xt). The

second term in (32) can be expanded as:

q2
2

β2

Jk−2
vᵀ2∇2(

Jk

β
)|xcv2

=q2
2v

ᵀ
2 (kβJ∇2J + k(k − 1)β∇J∇Jᵀ − J2∇2β)v2

=q2
2v

ᵀ
2

(
kβJ [8(xc − xt)(xc − xt)ᵀ − 4J0.5I] + ..

+ k(k − 1)β∇J∇Jᵀ − J2∇2β
)
v2

=q2
2(−4kβJ1.5 − J2vᵀ2∇2βv2)

Similarly we shall have:

q1q2
β2

Jk−2
vᵀ1∇2(

Jk

β
)|xcv2 = q1q2(−J2vᵀ1∇2βv2)

q1q2
β2

Jk−2
vᵀ2∇2(

Jk

β
)|xcv1 = q1q2(−J2vᵀ2∇2βv1)

And since ∇2β is symmetric, vᵀ1∇2βv2 = vᵀ2∇2βv1.

Now (32) can be upper bounded by:

β2

Jk−2
qᵀ∇2(

Jk

β
)|xcq

≤q2
1(
J2‖∇β‖2

β
− J2vᵀ1∇2βv1 − 4kβJ1.5)+

q2
2(−4kβJ1.5 − J2vᵀ2∇2βv2)+

q1q2(−J2vᵀ1∇2βv2) + q1q2(−J2vᵀ2∇2βv1)

=− 4kβJ1.5 + q2
1(
J2‖∇β‖2

β
− J2vᵀ1∇2βv1)+

q2
2(−J2vᵀ2∇2βv2) + 2q1q2(−J2vᵀ1∇2βv2)

≤− 4kβJ1.5+

J2(
‖∇β‖2

β
+ |vᵀ1∇2βv1|+ |vᵀ2∇2βv2|+ |vᵀ1∇2βv2|)

Recall that to make the workspace valid, Bxt(rt)
should not intersect ∂F , then in Bxt(δt), βi > (rt−δt)2

for i ∈ {0 . . .m} ⇒ β > (rt − δt)2m, and J ≤ r4
t . So as

long as

k > k2 =

r2
t

4(rt − δt)2m

[
sup

xc∈Bxt (δt)

(‖∇β‖2
β

+

|vᵀ1∇2βv1|+ |vᵀ2∇2βv2|+ |vᵀ1∇2βv2|
)]

we shall satisfy qᵀ∇2(J
k

β )|xcq < 0 for any q ∈ Rn and

any critical point xc in Bxt(δt) other than xt is guaran-

teed to be local maximum of Jk

β .
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To sum up two cases, k > k0 = max{k1, k2} will

guarantee any critical point in Bxt(δt) to be local max-

imum of Jk

β .

ut


