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Abstract We introduce a low-dimensional kinematic

abstraction—i.e., template—for miniature legged robots

that can be used for quasi-static motion planning in

the horizontal plane. The template comprises a rigid

torso and four rigid legs which engage in an alternat-

ing tetrapod gait. As the gait is executed, the torso

and the legs form two switching four-bar linkages, pa-

rameterized by the leg touchdown and liftoff angles, as

well as the leg angular velocity. The template captures

on average the experimentally observed behavior of an

eight-legged miniature robot crawling at low speeds in

a quasi-static fashion.

Keywords Miniature Legged Robots · Template ·
Motion Primitives · Planning

1 Introduction

Multi-legged robots have the potential to traverse ter-

rain where wheeled ones cannot. Miniature legged robots,

in particular, can also move in confined environments

where larger robots cannot fit. Tasks of this nature in-

clude pipe and building inspection, search-and-rescue in

collapsed buildings or unstructured environments, re-

connaissance, and unobtrusive wildlife monitoring.

Examples of miniature robots include the cockroach-

inspired hexapod (Yumaryanto et al, 2006) which uses

two piezoelectric ceramic actuators to drive its legs,
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Fig. 1 The octoroach, designed by A. O. Pullin (Pullin et al,
2012) at the University of California, Berkeley and manufac-
tured by Motile Robotics, Inc. Its body size is 130x60x30 mm,
it weights 35 g, and it can reach a maximum speed of 0.5 m/s.

the Mini-Whegs robot series (Morrey et al, 2003; Lam-

brecht et al, 2005) utilizing a three-spoke rimless wheel

(“wheg”), and the 3D-printed star robot (Zarrouk et al,

2013), which incorporates a similar leg design in ad-

dition to a mechanism that adjusts the sprawl angle

of the robot. Another example is the 155 mm-long i-

Sprawl (Kim et al, 2006) robot, manufactured via the

Shape Deposition Manufacturing (sdm) process (Cham

et al, 2002). System integration at very small scales has

been made possible through the Smart Composite Mi-

crostructure (scm) fabrication technique (Wood et al,

2008); typical examples include hamr2 (Baisch et al,

2010), roach (Hoover et al, 2008), and Medic (Kohut

et al, 2011) robot weighing 2, 2.4, and 5.5 g, respec-

tively. The scm process has been also used to fabri-

cate minimally actuated palm-sized walking robots, in-

cluding the 100 mm-long hexapod crawlers dash (Birk-

meyer et al, 2009), dynaroach (Hoover et al, 2010)

and velociroach (Haldane et al, 2013), as well as the

130 mm-long eight legged robot octoroach (Pullin et al,

2012), which motivates our work in this paper (Fig. 1).
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Developing analytical models for miniature robots

is challenging. Indeed, the novel manufacturing pro-

cesses and materials employed to fabricate such plat-

forms lead to complex highly-articulated designs, and

involved transmission and actuation mechanisms. These,

in addition to manufacturing variabilities, can result

in poor mobility performance (Garcia Bermudez et al,

2012), which is not captured by traditional modeling

approaches; one way of attempting to capture it is by

horizontal-plane, behavioral models.

Research in sprawled arthropods (Blickhan and Full,

1993; Cavagna et al, 1977) has motivated the introduc-

tion of reduced-order behavioral models. These models

aim to capture the underlying similarities of the center-

of-mass (com) motion in animals and robots as they

move through their environment (Full and Koditschek,

1999). Examples of such models include the horizontal-

plane Lateral Leg Spring (lls) template (Schmitt and

Holmes, 2000b,a; Holmes et al, 2006) which has been

successful in explaining lateral stabilization (Seipel et al,

2004), and in deriving turning strategies (Jindrich and

Full, 1999; Proctor and Holmes, 2008) for hexapedal

runners. In its typical configuration, the lls is a con-

servative mechanical system composed by a rigid torso

and two prismatic legs that are modeled as massless

springs. Each leg represents the collective effect of a

support tripod formed during stance by the front and

rear ipsilateral1 and the contralateral middle legs that

are in contact with the ground. The Sliding Spring

Leg (ssl) model (Zarrouk and Fearing, 2012) incorpo-

rates the sliding effects of the leg-ground interaction for

hexapedal robots operating in realistic applications.

The dynamic nature of these models may present

challenges and unnecessary complexity to motion plan-

ning for low crawling speeds. Indeed, there is evidence

that the motion of the robots at this scale and speed is

dominated by surface forces rather than dynamic and

inertia effects (Spence et al, 2010; Qian et al, 2012). We

currently lack detailed ground interaction descriptions

that could be incorporated into a dynamical model (Li

et al, 2010). What is more, it remains unclear how to

directly map the parameters of such models to robot

design parameters (Hoover et al, 2010), and control pa-

rameters such as motor gains.

On the other hand, crawling at low speeds in a

quasi-static operation regime is typically captured well

by a kinematic model. For instance, Hoffman and Wood

(2010) proposed a kinematic model for their centipede

microrobot. Although this model is capable of describ-

ing the physical platform accurately, it tends to be tai-

1 Ipsilateral means on the same side and contralateral
means on the other side. A list of the terms used in this
paper is presented in the Appendix.

lored to that particular mechanism. Thus, there appears

to be a need for more general kinematic templates, but

current literature only offers dynamic counterparts.

Once a kinematic model is available, a variety of es-

tablished planning methodologies (LaValle, 2006; Choset

et al, 2005) can be employed to tackle complex motion

planning problems. One such approach is based on mo-

tion primitives, with an eye at considerably simplifying

the overall motion planning task. Each motion prim-

itive corresponds to a basic action attainable by the

system, such as “go straight,” or “turn right,” and re-

spects motion constraints. Then, motion primitives can

be concatenated to yield more complex motion plans.

The way motion primitives can be defined mainly

depends on the system. Although a general formula-

tion that facilitates portability between different plat-

forms is still elusive, there exist some promising ap-

proaches. For example, motion primitives for acrobatic

helicopters are being generated by on-board controllers

in (Frazzoli et al, 2005), while a different approach (Del-

motte et al, 2008) uses experimental data from ants to

produce motion primitives that are then being applied

to drive unicycle systems. If a model for the platform

exists, an alternative way for extracting motion primi-

tives lies on optimal control design (Martin et al, 2011).

Motivated by the development of the octoroach

robot (Pullin et al, 2012), and preliminary modeling

considerations by Karydis et al (2012), we report here

on a new low-dimensional kinematic abstraction—or, a

template—useful for mapping high-level motion plan-

ning specifications to robot parameters. Inspired by the

gait pattern of the robot, and based on the synergies

and symmetries imposed by the design of its kinematic
mechanism, we propose a horizontal-plane four-legged

template with stick legs, called the Switching Four-bar

Mechanism (sfm) template.

We experimentally validate the ability of this model

to describe on average the behavior of octoroach as it

is observed experimentally. We consider three curvature-

parameterized motion primitives: (i) straight line, (ii)

clockwise turn, and (iii) counter-clockwise turn, and set

their parameters based on planar position and orienta-

tion measurements through motion capture. With these

motion primitives at hand, we solve a constrained opti-

mization problem to identify the particular parameter

values that lead to model outputs matching experimen-

tally observed behaviors of the robot. Finally, we use

the primitives to realize a solution to the problem of

following a square path, and compare the results pre-

dicted by our model with experimental data.

This work can be seen as a first step toward the for-

mulation of complex motion plans for miniature crawl-

ing robots. The presented kinematic template provides
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an effective means for linking autonomous motion plan-

ning of such platforms with physically implementable

control strategies. We anticipate that this model will

be successful in describing the horizontal-plane behav-

ior of robots morphologically similar to the octoroach,

that operate in quasi-static regimes.

The structure of the paper is as follows. Section 2

discusses the mechanical design of the octoroach, and

its experimentally observed behavior. Section 3 intro-

duces the proposed template and presents its kinematic

analysis, while Section 4 demonstrates its capabilities in

simulating straight-line and curved paths. In Section 5

we construct various parameterized motion primitives

for the robot by collecting experimental data, and we

identify the model parameters that enable the model to

reproduce each experimentally observed motion prim-

itive. Then, Section 6 presents the problem of plan-

ning a path of square pattern using the motion prim-

itives that were previously constructed. Finally, Sec-

tion 7 concludes the paper.

2 The OctoRoACH Robot

This section describes the design and kinematic behav-

ior of the octoroach, and highlights the aspects of this

behavior that inspired the proposed model.

The robot consists of a rectangular body, two actu-

ators, and eight legs organized so that all four legs at

one side are driven by a single actuator. There is no ex-

plicit coupling between the two sides, each being driven

by a single DC brushed motor through a two-stage

gear transmission. As a result of its differential-drive

mechanism, changing the gains of the motors at each
side results in either straight-line or curved paths. The

robot features onboard electronics for communication

and motor control, while a 300 mAh lithium polymer

(LiPo) battery powers the assembly; a detailed account

of the robot’s design is given by Pullin et al (2012).

The leg drive kinematics combines a slider-crank

linkage responsible for leg abduction and adduction,

and a parallel four-bar mechanism responsible for leg

protraction and retraction2, as shown in Fig. 2 (Pullin

et al, 2012). Due to its mechanical coupling, the robot

follows a gait whose foot-fall pattern consists of two al-

ternating tetrapods (Fig. 3). Such metachronal gaits

have been studied in the context of an eight-legged

arthropod (the Ghost Crab) by Blickhan and Full (1987),

and are in direct analogy with the tripod gaits com-

monly employed by a variety of six-legged animals and

robots (Holmes et al, 2006).

2 Protraction (Retraction) refers to the motion of the legs
on the sagittal plane bringing them farther (closer) to the
center of the body.

Fig. 2 Idealized robot kinematics demonstrating the kine-
matic coupling enabling fore-aft and in-out motion of legs.
The two sides of the robot are driven independently. The mo-
tor outputs are aligned with the sagittal plane and a crank
provides the vertical and fore-aft motion depicted in each
figure. (a) Rear view of the ideal robot kinematics: ab- and
adduction of leg pairs on each side occur out of phase when
the middle member of the linkage is translated vertically. (b)
Side view of the ideal robot kinematics: protraction and re-
traction of the legs are controlled by motion of the middle
member in the fore-aft direction. The alternate pairs move
approximately 180o out of phase with each other. (Courtesy
of A. O. Pullin; reproduced from (Pullin et al, 2012) with the
author’s permission)
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Fig. 3 The foot-fall pattern of the robot is a tetrapod gait.
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Fig. 4 Experimental results showing geometric center paths
of the physical platform taken using a motion capture system.
In both cases, the time duration was 20 sec. All tests start at
the origin (shown as a red circle), while the ending points
are marked by a green asterisk. (a) Motor gains that should
produce straight-line paths. The dashed blue line corresponds
to motor gains [225, 225], the solid magenta to [150, 150]
and the dashed-dotted black line to [100, 100]. (b) Motor
gains that should produce motion along a counter-clockwise
circular path. The motors gains are set to [25, 75], and remain
unchanged. It can be readily verified that in both cases, the
robot demonstrates a very high variability in its behavior.

Figure 4 presents typical paths of the octoroach.

The data depicted in Fig. 4(a) correspond to inputs

that should theoretically produce straight-line paths,
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whereas those in Fig. 4(b) correspond to inputs that

in principle generate counter-clockwise circular paths.

In different runs, the same inputs produce paths with

high variability in ending points as well as path cur-

vatures. This variability may be caused by uncertain

leg-ground interaction, the effect of which tends to be

more pronounced at these scales.

We report on an approach to modeling this uncer-

tainty in (Karydis et al, 2013). In this paper, instead,

we focus on the proposed template, and tune its pa-

rameters according to the average of experimentally ob-

served behaviors of the robot.

3 The Switching Four-bar Mechanism Template

The sfm is a low-complexity kinematic model, intended

to capture the essential features of the horizontal-plane

behavior of small legged robots, like octoroach, when

moving in a quasi-static motion regime. The template

offers a small set of parameters that can be tuned to

achieve various motion patterns, and it does not rely

explicitly on the detailed mechanisms by which the ac-

tual robot generates motion.

3.1 Derivation of the Template

Motivated by the foot-fall pattern of Fig. 3, we first

consider an original, eight-legged horizontal-plane ab-

stract model, depicted in Fig. 5(a). The model repre-

sents the robot’s torso, and eight legs in the form of non-

deformable links attached to the torso via hip joints.
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Fig. 5 (a) An eight-legged kinematic model for the
octoroach. (b) The sfm template, where each of the two
tetrapods has been replaced by a pair of legs: tetrapod
{1, 2, 3, 4} corresponds to the legs {O1, O2} denoted the right
pair, and tetrapod {5, 6, 7, 8} is matched to the legs {O3, O4},
denoted the left pair. When the right pair is active, the mech-
anism comprising the links {O1A,AB,BO2} takes the form
a four-bar linkage. Similarly with the left pair active.

This abstract model of Fig. 5(a), in agreement with

the foot-fall pattern of Fig. 3, has legs {1, 2, 3, 4} that

act in unison and form one tetrapod, and legs {5, 6, 7, 8}
that form the second tetrapod. The generalized coordi-

nates for this system are the Cartesian position xG =

[xG, yG]> of the geometric center G of the platform’s

body with respect to an inertial coordinate frame O,

and the angle θ between the longitudinal body-frame

axis and the vertical axis of the inertial frame.

The eight-legged model of Fig. 5(a) can then be re-

duced by exploiting the synergies and symmetries that

regulate the motion of the legs of the robot. Specifically,

ipsilateral legs for each tetrapod are bound to touch the

ground at the same instant, rotate with the same angu-

lar velocity and move in phase, thus forming the same

angle with respect to the longitudinal body-frame axis

at all times. For instance, legs {1, 3} in Fig. 5(a) form

the same angle α with respect to the longitudinal body-

frame axis as the system moves forward; these legs en-

gage in a coupled in-phase motion. The complementary

legs {2, 4} of the same tetrapod rotate in the same way,

forming an angle β with the longitudinal body-frame

axis, which is not explicitly related with the angle α.

The other tetrapod operates in a similar fashion.

Based on this coupling, we combine ipsilateral legs

of each tetrapod into a single “virtual” leg. Depending

on the chosen location of the hinge point of the virtual

leg, the leg’s initial angle and range of motion may have

different values compared to those of the original legs

in the pair; this enables the virtual leg to generate the

same mechanism displacement as the pair it replaces.

In this way, we obtain the Switching Four-bar Mech-

anism (sfm) template shown in Fig. 5(b). In this tem-

plate, the contralateral virtual legs (e.g. {O1, O2}) rep-

resent the collective effect of the tetrapod they replace

(e.g. {1, 2, 3, 4}). Notice that contralateral legs within a

pair of virtual legs are allowed to form different angles

with respect to the longitudinal body-frame axis, and

retain distinct angular velocities. That is, φ1 6= φ2 and

φ̇1 6= φ̇2 in general for the case of the pair {O1, O2} in

Fig. 5(b). We make the following assumptions.

Assumption 1 Once a pair of virtual legs touches the

ground (effective pair), the tips of the legs remain fixed

until the other pair touches down (no slipping).

Assumption 2 At any given time other than the switch-

ing instant between pairs, only one pair is active (touches

the ground).

Assumption 3 Within a pair, a 50% duty factor3 for

its legs is assumed. Intuitively, both legs of each pair

touch, and liftoff the ground at the same time instant.

3 The duty factor refers to the percentage of the total cycle
which a leg touches the ground.
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Practically, the above assumptions suggest that the

template can be viewed as a switching four-bar mech-

anism (hence the name), where the kinematics of each

effective pair is determined by the four-bar linkage these

legs represent; see Fig. 6).

3.2 Kinematic Analysis

Due to its kinematic equivalence to a four-bar linkage,

the motion of the active pair is fully determined by one

degree of freedom. We use the angle φ1 to describe when

the right pair is active, and φ3 when the left pair turns

active. Notice that thanks to the symmetries of the sfm

template (Fig. 5(b)), it suffices to analyze the motion

of only one pair; the other is its mirror image.

Figure 6 illustrates the kinematic analysis of the

right pair. Constant d denotes the distance between the

two hip joints A and B, while l is the virtual leg length.

With the notation of Fig. 6, the (position) vector-loop

equation (Norton, 2008)

RAO1
+ RO1O2

−RAB −RBO2
= 0 , (1)

can be expressed in complex number notation as

lej(π−φ1) + aRe
j(q1−φ1) − dej(π/2) − lej(φ2) = 0 . (2)

Then, substituting e±jθ = cos θ± j sin θ and separating

real and imaginary parts, we write (2) as

− l cos(φ1) + aR cos(q1 − φ1)− l cos(φ2) = 0

l sin(φ1) + aR sin(q1 − φ1)− d− l sin(φ2) = 0 .
(3)

Differentiation of (2) results in

l cos(φ1)φ̇1 + aR cos(q1 − φ1)(q̇1 − φ̇1)− l cos(φ2)φ̇2=0

l sin(φ1)φ̇1 − aR sin(q1 − φ1)(q̇1 − φ̇1) + l sin(φ2)φ̇2=0.
(4)

The configuration of the single degree of freedom

system can be obtained explicitly by numerically solv-

ing (3) for a given value of φ1. The angular velocities

of the mechanism can be obtained from (4) in a similar

fashion. Without loss of generality, we assume that the

angular velocity φ̇1, once set, remains constant through-

out the stride. Due to symmetry, the left pair {O3, O4}
is analyzed in a completely analogous way.

Both legs in each pair touch, and lift off the ground

at specific angles, which we call touchdown and liftoff

angles, and denote φtd
i and φlo

i , for i = 1, . . . , 4, respec-

tively. A sweep angle ψi is defined as

ψi = |φtd
i |+ |φlo

i | , (5)

and quantifies the range of values for each φi. In the

sequel, we set the parameter d equal to 13 cm, which
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Fig. 6 Analysis of the mechanism; d is the distance between
the hip points, l the leg length, and θ denotes the orientation
of the model with respect to some global reference frame.

is the length of the torso of the actual platform, and l

equal to 3 cm, which matches the robot’s half-width.

The output path from the template is parameter-

ized by the values of the touchdown and sweep angles.

Different combinations of these parameters can be used

to produce very similar paths.

4 Simulations

In this section we demonstrate in simulation the capa-

bilities of the template. The steps required for simulat-

ing one cycle are summarized in Table 1.

Table 1 Simulation process for one cycle

1. Give: θ,xG;
2. Give: φtd

1 , φtd
2 for the right pair;

3. Fix points O1 and O2;
4. Calculate aR;

5. Solve (3)–(4) as φ1 and φ̇1 evolve;
6. Calculate θ,xG at end of stride;
7. Give: φtd

3 , φtd
4 for the left pair;

8. Fix points O3 and O4;
9. Calculate aL;

10. Solve (3)–(4) as φ3 and φ̇3 evolve;
11. Calculate θ,xG at end of stride.

4.1 Generating Straight-line Paths

In order to generate straight-line paths we select

φtd
SLP = φtd

1 = φtd
2 = φtd

3 = φtd
4

φlo
SLP = φlo

1 = φlo
2 = φlo

3 = φlo
4 = −φtd

SLP ,
(6)

where the subscript SLP is used to denote straight-line

path configuration.



6 Konstantinos Karydis et al.

φtd1

φtd2

φtd3

φtd4

(a)

φtd1

φtd2

φtd3

φtd4

ψ1

ψ2

ψ3

ψ4

(b)

ψ1 + ∆ψ

ψ2 + ∆ψ

ψ3 − ∆ψ

ψ4 − ∆ψ

(c)

Fig. 7 Model configurations to achieve straight-line and curved paths. (a) The initial configuration comprises the four touch-
down angles, φtdi , i = 1, . . . , 4. (b) All legs are configured so that touchdown and liftoff angles are symmetric with respect to the
horizontal body axis (equivalently, all sweep angles, ψi, i = 1, . . . , 4, are equal). This configuration enables straight-line paths.
(c) Creating asymmetry, ∆ψ, in the sweep angles enables turning of the model. In its more general form, this asymmetry is
introduced between the touchdown and liftoff angles of each leg, as well as between the sweep angles of the two pairs.

The configuration in (6) practically suggests that in

order to achieve straight-line paths we need to enforce

symmetry among the sweep angles. Recall (5) and notice

that from (6) the sweep angle is

ψSLP = ψ1 = ψ2 = ψ3 = ψ4 = |φtd
SLP|+ |φlo

SLP| = 2φtd
SLP . (7)

The initial, and straight-line configurations are illus-

trated in Fig. 7(a) and Fig. 7(b) respectively.

Figure 8 depicts the evolution of the state of the

model for the case of straight-line path generation, and

for parameter values in accordance with the configu-

ration given in (6) and (7). All plots correspond to a

duration of one cycle, having the same initial geometric

center position and body orientation. As we increase the

value of the sweep angles (equivalently, φtd
SLP), the model

covers more ground at a single cycle, while the waving

pattern of motion, associated with the kinematics of the

four-bar mechanism, becomes more pronounced.

Figure 9 demonstrates how the model moves along

straight-line paths. The pair of legs that is active—that

is, in contact with the ground—is marked with solid

line, while the respective leg tips (marked with solid

disks) are assumed to remain fixed, thereby forming a

hinged joint with the ground. The legs of the active pair

rotate around these joints according to the kinematics

of a four-bar linkage until the liftoff configuration is

reached. At this instant (Fig. 9(b)), the opposite pair

of legs becomes active while the formerly active pair is

reseted to its touchdown configuration. The process is

then repeated (Fig. 9(c)).

4.2 Generating Curved Paths

In the previous section we saw that the symmetry of

sweep angles results in straight-line paths. Curved paths
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Fig. 8 Evolution of the model’s state when executing
straight-line paths for φtdSLP = π

3
rad (red solid), φtdSLP = π

4
rad

(black dotted), and φtdSLP = π
6

rad (blue dashed-dotted). In all

cases, φ̇1 (for the right pair), and φ̇3 (for the left pair) are
set to the common value of π

10
rad/sec, and remain constant

throughout each pair’s stride. (a) Evolution of the position of
the geometric center, G, of the model. Increasing φtdSLP accen-
tuates the waving motion pattern, and enables the model to
cover longer distances along the y-direction. (b) Evolution of
the orientation of the model, θ, as it moves forward.

can be generated by asymmetric sweep angles. Indeed,

as Fig. 8(b) suggests, creating asymmetry in the sweep

angles between the two pairs (Fig. 7(c)) leads to non-

zero values for the model’s orientation angle, θ, at the

end of each stride. If the asymmetry is retained, this de-

viation will keep propagating, thus moving the template

along a curved path. It should be emphasized that this

method of generating curved paths is relevant to the

sfm template, and is different from how the octoroach

actually turns. In particular, turning in the robot is pro-

duced by applying different gains on the motors that

actuate the legs on its left and right sides; this is essen-

tially equivalent to a differential-drive steering method.
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(a) (b) (c)

Fig. 9 The template propelling itself in straight-line paths.
Solid lines are used to indicate the active pair at each time
instant, the tips of which are marked with solid disks. (a) The
right pair (marked in solid blue) begins first. Its legs rotate
around their tips, which are assumed to remain fixed to the
ground. (b) When the right pair reaches its liftoff configura-
tion, the left pair (marked in dashed red) turns active, and
its legs rotate around their hinged tips – circles are switched
to solid disks to indicate that these tips are now fixed to
the ground. At the same time, the right pair is reseted to its
touchdown configuration. (c) Both pairs have completed their
stride, and the model is ready to enter a second cycle.

The asymmetry ∆ψ is formally defined by

∆ψ , |min{ψ1, ψ2} −min{ψ3, ψ4}| . (8)

The min(·) function above ensures the assumed 50%

duty factor for the legs of each pair (Assumption 3).

Figure 10 presents the evolution of the geometric

center of the model when generating counter-clockwise

curved paths for various combinations of touchdown,

liftoff and sweep angles. As before, d = 13 cm, and

l = 3 cm, while all paths are ten-cycle long, having
the same initial position of the geometric center and

body orientation. Notice that as the asymmetry ∆ψ

increases, the produced paths have smaller radii.

The model allows for asymmetry to be generated

in multiple ways, and as a result, paths of similar na-

ture can be achieved through different combinations of

touchdown, liftoff, and sweep angles. For example, con-

sider the limiting case of right pair actuation only, de-

picted in Fig. 10(a). In this special case, the generated

paths correspond to sharper turns and have shorter

length relative to their counterparts shown in Fig. 10(b),

in which right and left pair actuation alternate. To re-

solve redundancy we need a systematic way for match-

ing path curvatures to model parameter values.

4.3 From Model Parameters to Path Curvatures

To support path and motion planning, we first need

to characterize the geometric characteristics of paths
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Fig. 10 Evolution of the position of the geometric center,
G when executing counter-clockwise curved paths. (a) Only

the right pair turns active. We select φ̇1 = π
10

rad/sec, set

φtd1 and φtd2 to the common value of π
3

rad, and plot the

model’s response for φlo1 = φlo2 = −π
6

rad (red solid), φlo1 =

φlo2 = 0 rad (black dashed), and φlo1 = φlo2 = π
6

rad (blue

dashed-dotted). (b) Both pairs are active. We select φ̇1 =

φ̇3 = π
10

rad/sec, set φtd1 = φtd2 = π
3

rad, φlo1 = φlo2 =

φlo3 = φlo4 = 0 rad, and plot the model’s response for φtd3 =
φtd4 = π

6
rad (red solid), φtd3 = φtd4 = π

7
rad (black dashed),

φtd3 = φtd4 = π
8

rad (blue solid), and φtd3 = φtd4 = π
9

rad
(magenta dashed).

produced from the model. Specifically, we are interested

in relating path curvatures to model parameters such

as the touchdown and liftoff angles. This is achieved

by recruiting techniques from differential geometry of

curves and surfaces (Do Carmo, 1976; Stoker, 1969).

From a general point of view, the curvature of curves

on a surface can be linked to surface (Gaussian) curva-

tures by applying the Gauss-Bonnet theorem. For our

planar problem, the Gaussian curvature is zero, and the

Gauss-Bonnet theorem reduces to

L∑
j=0

∫ sj+1

sj

k(s)ds+

L∑
j=0

χj = 2π , (9)

where L is the total number of model steps, sj is the

arc length of the j-th step, and k(s) is the curvature of

the curve associated with each step, given by

k(s) =
x′y′′ − x′′y′

((x′)2 + (y′)2)
3
2

.

The quantity χj denotes the instantaneous change in

orientation when switching from step j to step j + 1

(Fig. 11). In essence, the integral term in (9) provides

the contribution of the curvature of the path followed

within a step, while the other term accounts for the

instantaneous change in orientation between steps.

Then, selecting an appropriate number of steps al-

lows the template to transcribe a closed circular curve,

for which

2πR =

∫
c

ds . (10)
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χj < 0

χj+1 > 0

y

x

Fig. 11 Instantaneous change in orientation when switching
between steps. By convention, the sign of the angle is given
by the right hand rule.

Combining (9) and (10) yields

R =

∫
c

ds∑L
j=0

∫ sj+1

sj
k(s)ds+

∑L
j=0 χj

. (11)

The path curvature produced by specific values for the

touchdown and liftoff angles is given by taking the in-

verse of (11), that is, kpath = 1/R.

5 Motion Primitives for the OctoRoACH

Our approach to linking the template model parameters

to the octoroach is data-driven; we collect data corre-

sponding to different trajectories of the robot, and then

identify the model parameters resulting in trajectories

that remain close to the experimental average.

5.1 Generation of Motion Primitives

We define three motion primitives: (i) straight line (sl),

(ii) clockwise turn (cw), and (iii) counter-clockwise turn

(ccw). These motion primitives are parameterized by

the leg touchdown and liftoff angles, as well as the leg

angular velocity, or, equivalently, the path curvature

and running time. We choose a constant running time

of 3 sec,4 and consider nine curvature-parameterized in-

stances of these primitives (Table 2); four instances for

each turn type (cw and ccw), and one for the sl type.

The two motor gains, [KL,KR] are inputs to the

robot and correspond to the left and right side motor

respectively. For all instances of motion primitives, the

sum of the two motor gains remains constant,

|KL|i + |KR|i = constant, ∀i = 1, . . . , 9 .

To acquire the target curvatures, we first estimate

experimentally the minimum turning radius of the robot.

4 Later in Section 5.2 we provide insight on choosing this
duration; see also Fig. 12

Table 2 A library of parameterized motion primitives for
the octoroach

Description
Motor Target Target
Gains Curvature Heading

[KL, KR] [cm−1] [deg]

1.
Clockwise

[80, 0] 0.250 θ . −150o
U-Turn

2.
Clockwise

[70, 10] 0.125 θ ' −135o
Sharp Turn

3.
Clockwise

[60, 20] 0.063 θ ' −90o
90o Turn

4.
Clockwise

[50, 30] 0.031 θ ' −45o
Mild Turn

5. Straight-Line [40, 40] ≤ 0.01 θ ' 0o

6.
Counter-Clockwise

[30, 50] 0.031 θ ' 45o
Mild Turn

7.
Counter-Clockwise

[20, 60] 0.063 θ ' 90o
90o Turn

8.
Counter-Clockwise

[10, 70] 0.125 θ ' 135o
Sharp Turn

9.
Counter-Clockwise

[0, 80] 0.250 θ & 150o
U-Turn

The tightest turn is achieved when the legs of one only

side turn active; we experimentally identified a mini-

mum turning radius of 4 cm.5 Therefore, the U-Turn

cw and ccw primitives need to follow paths of radius

of 4 cm, or equivalently, have a curvature of 0.25 cm−1.

This maximum turning curvature defines the range

of motion, which we then partition so that our primi-

tives cover it with adequate resolution for our planning

purposes; these values are shown in Table 2. Note fur-

ther that the Straight-Line (sl) type motion primitive

should, in theory, have zero curvature. Measurement
noise, as well as various random effects associated with

ground contact render this infeasible. Therefore, we re-

lax this restriction by accepting as sl type paths those

that have curvatures less than 0.01 cm−1.

The target orientations are not related to exper-

imental data; instead, they are defined so that they

cover the range of orientations θ = [−180o, 180o] with

sufficient resolution. We adopt the convention that the

initial orientation of the robot is θ = 0o, and that pos-

itive changes in the orientation correspond to counter-

clockwise angles θ; see Fig. 5(b). With respect to Ta-

ble 2, and due to the uncertainty inherent to ground

contact as well as measuring noise, the actual final ori-

entation of single trajectories deviates from this target

value. However, the targeted value is achieved on aver-

age, as it will be readily verified in the sequel.

5 This value depends on the mechanical properties of the
test surface, and may slightly vary among different octoroach
robots.
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5.2 Experimental Setup and Data Collection

To construct the parameterized motion primitives we

generate collections of open-loop planar position and

orientation measurement data, through experiments in

which the robot is configured according to the values of

motor gains shown in Table 2. In our experiments, the

maximum rate of leg rotation is approximately 2 Hz,

which roughly corresponds to a maximum (nominal)

forward velocity of 0.05 m/sec. The data is obtained

with the use of a motion capture system at a rate of 100

Hz, and is written to text files at a rate of 20 Hz. This

reduction is necessary due to hardware restrictions, but

does not affect the quality of the captured data since the

maximum rate of leg rotation is an order of magnitude

lower. Each run lasts for 3 sec, and we collect data from

a total of 250 paths for each case. The measured states

are the planar position of the geometric center of the

robot [xG, yG], as well as its orientation θ, the angle

formed with respect to the longitudinal body-fixed axis

and the y-inertial axis; see Fig. 5(b).

All experiments are conducted on a rubber floor mat

surface; as part of future work we plan to investigate

the behavior of the robot on other terrain types as well.

The initial position and orientation of the robot were

manually set inside a designated area. The initial pose

errors that are produced through this inexact proce-

dure can be bounded using data statistics; we calculate

the sample mean and standard deviation for the initial

position along the x and y directions, as well as the

same statistics for the initial orientation. The results

are summarized in Table 3. The reported error bounds

accommodate for measurement noise as well.

As mentioned above, we have chosen a 3 sec dura-

tion for our data collections and the generated motion

primitives. Figure 12 provides insight on this choice.

The histogram shows how individual experimental paths

disperse as time elapses. For clarity purposes, we only

show the histograms of three primitives: 90o cw and

ccw Turns, and sl. After the 3 sec period, there is a

very high dispersion around the experimental averages

shown with black thick curves in Fig. 13. As a result,

constructing motion primitives that last longer is not

meaningful; after this time duration the variance in the

experimental data becomes unacceptably high.

Figure 13 depicts random samples of 50 paths (plot-

ted in magenta) for each instance of motion primitive

as well as the average out of the whole data set of 250

paths, marked by black thick lines. Due to its relative

low-precision production, the platform tends to veer to

the right, as shown in Fig. 13(e).

Table 4 shows the average final state of the robot,

for each instance, while Table 5 contains the target and

Table 3 Initial pose error statistics

Measurement
Mean Standard Deviation

[cm/cm/deg] [cm/cm/deg]

1.
Position along x-axis: −0.097 0.079
Position along y-axis: −0.006 0.042

Orientation: 0.75 0.61

2.
Position along x-axis: −0.031 0.283
Position along y-axis: −0.058 0.213

Orientation: 0.26 2.23

3.
Position along x-axis: −0.156 0.177
Position along y-axis: −0.041 0.141

Orientation: 1.23 1.37

4.
Position along x-axis: −0.136 0.113
Position along y-axis: −0.053 0.174

Orientation: 1.06 0.88

5.
Position along x-axis: −0.007 0.234
Position along y-axis: 0.027 0.054

Orientation: 0.06 1.81

6.
Position along x-axis: −0.245 0.190
Position along y-axis: −0.052 0.188

Orientation: 1.90 1.49

7.
Position along x-axis: −0.322 0.156
Position along y-axis: −0.012 0.130

Orientation: 2.50 1.23

8.
Position along x-axis: −0.258 0.216
Position along y-axis: −0.044 0.172

Orientation: 2.01 1.67

9.
Position along x-axis: −0.234 0.186
Position along y-axis: −0.112 0.148

Orientation: 1.83 1.46

Fig. 12 Path dispersion as time elapses. For clarity, we only
present here three primitives: 90o cw and ccw Turns, and
the sl primitive. All primitives start at the origin, and are
largely dispersed at the end of the 3 sec trial. The z axis
counts how many paths are inside a particular grid square.
Due to the selected grid size, some paths may appear more
than once inside a square. Distinguish cw paths, which steer
to the left of the page, from ccw paths steering to the right.

observed values for path curvatures and final orienta-

tions, on average. Both path curvatures, as well as final

orientations, for all cases are very close to their target

values on average, although these metrics may deviate

significantly for individual paths.
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Fig. 13 Experimental data for the parameterized motion primitives contained in Table 2 and the respective nominal template
output counterparts. The Figure reads from left to right, and from top to bottom. List of primitives: (a) cw U-Turn. (b) cw
Sharp Turn. (c) cw 90o Turn. (d) cw Mild Turn. (e) sl. (f) ccw Mild Turn. (g) ccw 90o Turn. (h) ccw Sharp Turn. (i) ccw
U-Turn. In all cases, both the robot and the model start at the origin. Out of a total of 250 paths for each parameterization, 50
randomly selected paths of the robot’s geometric center are shown in magenta, and the black thick curves correspond to their
experimental average out of the whole data set of 250 paths for each case. The blue thick dashed curves depict the output of
the template parameterized by the nominal parameter values of Table 6. Note the differences in scale among different cases,
and the robot veering off to the right; this is more clearly seen in (e).

Table 4 Average values for final pose

X-axis Position Y -axis Position Orientation
[cm] [cm] [deg]

1. 6.781 0.489 −140.55

2. 11.359 4.220 −129.91

3. 12.928 11.307 −85.02

4. 7.040 18.883 −39.34

5. 3.246 23.044 −10.62

6. −10.182 18.393 43.26

7. −14.183 11.960 90.90

8. −10.939 5.320 101.75

9. −9.646 −1.211 160.54

5.3 Nominal Parameter Identification

Next, we identify the template parameters that cor-

respond to each parameterization of motion primitive.

The parameters estimated are

Table 5 Average values for curvature and final orientation

Target Observed Target Observed
Curvature Curvature Orientation Orientation

[cm−1] [cm−1] [deg] [deg]

1. 0.250 0.256 . −150o −140.55

2. 0.125 0.133 ' −135o −129.91

3. 0.063 0.066 ' −90o −85.02

4. 0.031 0.030 ' −45o −39.34

5. ≤ 0.01 0.009 ' 0o −10.62

6. 0.031 0.041 ' 45o 43.26

7. 0.063 0.068 ' 90o 90.90

8. 0.125 0.127 ' 135o 101.75

9. 0.250 0.185 & 150o 160.54

ζ = [φtd,n
1 , φtd,n

2 , φtd,n
3 , φtd,n

4 , φlo,n
1 , φlo,n

2 , φlo,n
3 , φlo,n

4 , φ̇RL] ,
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Table 6 Nominal template parameters

φtd,n
1 φtd,n

2 φtd,n
3 φtd,n

4 φlo,n
1 φlo,n

2 φlo,n
3 φlo,n

4 φ̇RL

[deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg/sec]

1. −50.74 −64.69 0 0 −56.75 −70.70 0 0 7.45

2. −24.66 −44.92 0 0 −38.37 −58.63 0 0 6.86

3. 32.72 4.19 0 0 −55.28 −83.81 0 0 7.56

4. 55.67 43.29 0 0 −72.15 −84.53 0 0 8.59

5. 56.72 45.84 68.18 70.47 −51.78 −62.66 −57.70 −55.41 9.00

6. 0 0 44.69 29.61 0 0 −67.60 −82.68 8.64

7. 0 0 26.28 1.37 0 0 −55.66 −80.57 8.65

8. 0 0 −14.32 −35.59 0 0 −48.00 −69.28 7.59

9. 0 0 −35.09 −61.67 0 0 −41.36 −67.94 8.59

where the superscript (n) stands for “nominal,” (td) is

used to indicate the model’s touchdown angles, while

(lo) marks liftoff angles. The angular velocity φ̇RL is

assumed to be the same for both pairs,6 since turning

is achieved by imposing the asymmetry∆ψ in the sweep

angles of the two pairs, as per (8). The parameter d is

set to 13 cm, which is the length of the torso of the

actual platform, while the leg length is l is set to 3 cm.

Let Wi, for i = 1, . . . , 9 denote the collections of all

experimentally observed planar paths of the robot for

each instance of motion primitives, and use wi to denote

an element in these sets. The averages of all elements

for each set are indicated by wave
i . Let pi(ζ) represent

the trajectory generated by the template corresponding

to a particular value of the parameter vector ζ.

Given sets of paths Wi realized by the robot, the

parameter vector ζ for each parameterization can then

be selected as the solution of a constrained least-squares

optimization problem

min
ζ∈Z
‖pi(ζ)− wave

i ‖2, i = 1, . . . , 9 , (12)

where || · || denotes the L2 norm. Due to Assumption 3,

the legs of each pair have to complete their swing phase

at the same time instant. This constraint is incorpo-

rated in (12) by coupling the liftoff angles for each pair.

The solution ζn makes the model produce trajecto-

ries shown in Fig. 13 with blue thick dashed curves.7

The numerical values of the components of ζn are given

in Table 6. These values allow the model to capture on

average the behavior of the system, as shown in Fig. 13.

6 Only when both pairs are actuated. Otherwise it corre-
sponds to the actuated pair.
7 It is emphasized here that all model trajectories also cor-

respond to a duration of 3 sec.

6 Primitives-Based Path Planning

We demonstrate the potential of the sfm in predict-

ing the behavior of the robot in more complex scenar-

ios. In particular, we consider a primitives-based path

planning approach, where various behaviors result from

suitable concatenations of motion primitives.

6.1 An Illustrative Example: Closing a Square

Suppose we want the robot to follow a counter-clockwise

square path. Assume that some path planning method-

ology that takes as input the constructed primitives

yields the solution as the following sequence of param-

eterized primitives:

P = {sl ccw sl ccw sl ccw sl ccw} , (13)

where the ccw primitive is the one associated with a

sharp turn (to accommodate for the biased behavior of

the robot toward the right).

The output of the planner yields the paths plot-

ted as a concatenation of red and blue thick curves in

Fig. 14. We first consider an execution time tex = 3 sec,

similarly to Section 5. Figure 14(a) presents the out-

come of this concatenation. The resulting path is rather

inaccurate, and has the form of a distorted square. De-

viations from the desired square path are primarily be-

cause of improper orientation at the end of each primi-

tive. The error propagates and keeps increasing, result-

ing to a mismatch between final and initial poses.

To suppress the effect of this error, we treat the

execution time of each primitive as a parameter to be

determined rather than as a fixed value at 3 sec. In par-

ticular, let P(tex) denote a plan (13), where all of its

components are parameterized by the execution time
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Fig. 14 Following a square path by concatenating Straight-Line and Counter-Clockwise Sharp Turn parameterizations. Tem-
plate output paths are shown with red and blue thick curves, and are plotted against the experimentally observed paths, shown
in magenta. We collected data from a total of 60 paths, captured with a motion capture system, at a rate of 100 Hz. Although
individual paths are characterized by a very high variability, their experimental average, plotted with a black dashed curve,
forms a square pattern. (a) Model paths where each motion primitive had an execution time of 3 sec. The output results in
a distorted square, and the error between initial and final pose is large. (b) Model paths where each motion primitive had a
reduced execution time equal to 2.85 sec. In this case, the model output follows a square pattern minimizing the error between
the initial and final pose, while staying close to the experimental average.

tex ∈ [0, 3] sec, assumed to be the same for all primi-

tives. The value of tex is then selected as the solution

of a constrained least-squares optimization problem

min
tex∈[0,3]

‖rfin(tex)− rini(tex)‖2 , (14)

where ||·|| denotes the L2 norm, and rfin and rini denote

the final and initial model-predicted poses produced by

a plan P(tex). Solving (14) reduces the execution time

of each motion primitive instance to tex = 2.85 sec. The

resulting path is shown in Fig. 14(b), with the red and

blue thick curve. The shape of the path has thus been

improved by only varying slightly the primitives’ exe-

cution time.

This observation suggests that a direct concatena-

tion of motion primitives may not always produce the

desired result, and optimizing (tuning) the execution

time may help in alleviating such discrepancies.

6.2 Experimental Results

The next step is to execute the sequence in (13) on

the robot. We generated open-loop planar position and

orientation measurement data, through experiments in

which the robot is configured to the respective sequence

of motor gains

{[40, 40] [10, 70] [40, 40] [10, 70] [40, 40] [10, 70] [40, 40] [10, 70]} .

Similarly to the data collections in Section 5, each

primitive is executed for 3 sec. We collect data from a

total of 60 paths, and the measured states are the planar

position of the geometric center of the robot [xG, yG]

and its orientation θ. The experiments are conducted

on the same rubber floor mat surface, and the initial

position and orientation of the robot are manually set.

Table 7 contains the initial pose error statistics.

Table 7 Closing a square: Initial pose error statistics

Measurement
Mean Standard Deviation

[cm/cm/deg] [cm/cm/deg]

X-axis Position: −0.030 0.060
Y -axis Position: −0.017 0.022

Orientation: 0.23 0.46

The results are superimposed on Fig. 14. The black

dashed curve denotes the average out of all 60 paths.

The average final error pose is relatively small, although

individual paths (plotted in magenta) can deviate sig-

nificantly. Table 8 contains the final pose error statis-

tics. The deviations in the position along the y-axis,

and in the orientation remain small.

As a final remark, it can be readily verified from

Fig. 14(b) that the sfm template is able to predict

fairly well the average of the experimental data when
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Table 8 Closing a square: Average values for final pose

Measurement
Final Value

[cm/cm/deg]

X-axis Position: −7.522
Y -axis Position: 1.409

Orientation: 1.32

we add the primitives’ execution time as an additional

model parameter. Yet, individual paths demonstrate

very high variability, which the template is unable to

capture with the parameters identified in Table 6. One

way to capture the variability in individual paths is

to use a stochastic extension of the sfm template, by

treating some of parameters as random variables. To

estimate these parameters, we have proposed in Kary-

dis et al (2013) a general framework for probabilisti-

cally validating (stochastic) models based on available

experimental data.

7 Conclusions

The Switching Four-bar Mechanism (sfm) has been

introduced as a low-complexity kinematic model able

that captures the horizontal-plane behavior of small

legged robots, such as the octoroach. The model can

be thought of as a template for robots operating at low

crawling speeds, in a quasi-static fashion. It comprises

four stick legs rotating in pairs, forming an alternating

pair of four-bar linkages, each of which can be fully de-

scribed by a single degree of freedom. Simulations show
that the model is able to create path profiles that are in

accordance with the oscillatory path profiles observed

in the bio-inspired octoroach robot while operating in

low crawling speeds.

Generating various trajectories is achieved by prop-

erly tuning a small set of physically intuitive model pa-

rameters. Given a path produced by the robot, we are

able to reproduce it with the proposed model by solv-

ing a constrained optimization problem which identi-

fies the model parameter values for achieving the best

match between an observed behavior of the robot and

the output of the model.

The above procedure allowed us to construct a table

that links robot inputs to model inputs. We considered

three types of motion primitives comprising straight-

line paths, clockwise and counter-clockwise turns, con-

structed nine curvature-parameterized instances of them,

and established the correspondence between the motor

gains of the actual platform and model parameters. We

further showed that the template is able to predict the

motion of the robot when it follows a square path con-

sisting of concatenations of the constructed primitives.

Due to its low complexity and its good fit to the ex-

perimental data, we anticipate that the proposed model

has the potential of generalizing well in predicting the

robot’s behavior in more involved planning scenarios.

Appendix: Terminology

For the convenience of the reader, we present here a

collection of the terms used in this paper.

– Ipsilateral : On the same side

– Contralateral : On the opposite side

– Sagittal plane: Vertical plane dividing a body into

the right and left halves

– Coronal plane: Vertical plane dividing a body into

the front and back halves

– Horizontal plane: Vertical plane dividing a body

into the upper and lower halves

– Abduction/Adduction (or In-out motion): Motion of

the legs on the coronal plane bringing them far-

ther/closer to the center of the body

– Protraction/Retraction (or Fore-aft motion): Mo-

tion of the legs on the sagittal plane bringing them

farther/closer to the center of the body

– Gait : Pattern of movement of the legs

– Cycle: Periodic motion of the legs

– Duty factor : Percentage of the total cycle which a

given leg touches the ground

– Swing phase: Portion of the cycle where a leg is lifted

and moves forward

– Stance phase: Portion of the cycle where a leg touches

the ground
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