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Abstract

This paper reports an attempt to model the system dynamics and estimate both the unknown internal
control input and the state of a recently developed marine autonomous vehicle, the Jaiabot. Although
the Jaiabot has shown promise in many applications, process and sensor noise necessitates state
estimation and noise filtering. In this work, we present the first surge and heading linear dynamical
model for Jaiabots derived from real data collected during field testing. An adaptive input estimation
algorithm is implemented to accurately estimate the control input and hence the state. For validation,
this approach is compared to the classical Kalman filter, highlighting its advantages in handling

unknown control inputs.
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1 Introduction

The effects of climate change are disrupting
marine life and contribute to a decline in water
quality especially around coastal areas (Liu
et al., 2016; Zereik et al., 2018). The ability
for on-demand environmental observation with in
situ measurements is thus becoming increasingly
important. Traditional water quality observation
methods typically involve measurement from sta-
tionary platforms or through manual in-situ data
collection, both of which methods are costly, time-
consuming and often yield sparse data sets.
These challenges can in part be overcome with
automation and the utilization of one or multi-
ple autonomous underwater vehicles (AUVs) (Lim
et al., 2023; Peng et al., 2021; Li and Du, 2021).
Some AUVs can even be deployed from shore,

Fig. 1: The first generation of the Jaiabot AUV.

with additional advantages in terms of afford-
ability and open source access. One such AUV
is the Jaiabot (Fig. 1). This vehicle has a slen-
der, torpedo-like body and is approximately one
meter long, with a hull diameter of 7 cm, weighs
about 3 kg, and is capable of achieving speeds
of nearly 5 m/s. The Jaiabot is equipped with
a single propeller and rudder, and features GPS,
and compass, inertial measurement unit (IMU),



in addition to potentially application-specific sen-
sor payloads, which can monitor at a minimum
salinity and temperature.

Few attempts at constructing dynamical mod-
els for such micro-AUVs have been reported. The
first known dynamical system for a Jaiabot is
known for its vertical dive motion (Tanner et al.,
2024), based on which a control for diving is
blackesigned and developed with new safety con-
straints, specifically with respect to overshoot
in terms of assigned depth. Subsequent design
modifications made on this AUV require new
system parameter identification, while the afore-
mentioned approach applies still.

In this paper the Jaiabot is operated mainly
as an autonomous surface vehicle (ASV), and the
focus is on filtering the data from its naviga-
tion sensors (GPS and IMU, specifically) in order
to provide more accurate position and orienta-
tion estimation. In this context, the Kalman filter
and its variants are well-established techniques for
estimating unmeasured states by taking advan-
tage of knowledge about the system dynamics, its
input, as well the process and sensor noise. How-
ever, while the PID control loop that regulates
thruster speed and rudder configuration of this
ASV is known, the actual thrust generated to pro-
pel the ASV or the torque generated to make it
turn is unknown. This fact implies that the control
input for whatever dynamical model considered is
also unknown and as a result the application of a
Kalman filter is problematic.

Still, mismatches between commanded and
realized control input are not uncommon in
robotic deployments. Sometimes this situation
arises due the lack of model fidelity, actuator
limitations, or external disturbances, and can sig-
nificantly degrade the performance of state esti-
mation algorithms. The particular challenge this
paper addresses for the case of the Jaiabot is
the lack of control information needed for the
implementation of a Kalman filter on the surface
maneuvering dynamics. Specifically, here both the
state of the system and its input have to be
estimated simultaneously.

This is not a new problem. Numerous meth-
ods have been used for state estimation in noisy
environments (Paull et al., 2013). However, when
the input signal is deterministic but unknown,
the need for obtaining unbiased state estimates

arises. Solutions to this problem include unbi-
ased Kalman filters, unknown input observers, and
sliding-mode observers (Kitanidis, 1987; Darouach
and Zasadzinski, 1997; Veluvolu and Soh, 2009).

An alternative input estimation approach con-
siders the unknown input as the output of an
auxiliary system with known dynamics, perturbed
by white noise. This estimated input can then
be incorporated into the state estimator to yield
more accurate state estimates. Along these lines,
a new technique known as retrospective cost input
estimation (RCIE) has been developed (Ansari
and Bernstein, 2018; Sanjeevini and Bernstein,
2022). RCIE formulates a retrospective cost opti-
mization problem, where the coefficients of the
input estimator are recursively adjusted to mini-
mize a (retrospective) cost function. By doing so,
RCIE effectively builds an internal model of the
unknown input that estimates the later, which is
subsequently fed into the Kalman filter.

The estimator coefficients are continuously
adapted using the innovations (differences
between predicted and observed measurements)
as the error metric, thereby enhancing the accu-
racy and robustness of state estimation. RCIE
has been extensively studied and modified for
nonminimum-phase discrete time systems (Ansari
and Bernstein, 2019), linear time varying (San-
jeevini and Bernstein, 2024) and invariant systems
(Rahman et al., 2016). It has also been applied
in the area of signal processing, especially in the
context of signal numerical differentiation (Verma
et al., 2024) and integration (Sanjeevini and
Bernstein, 2023). RCIE has also shown promise
in target tracking (Verma and Bernstein, 2025b),
(Han et al., 2017) and trajectory prediction
(Verma and Bernstein, 2025a).

The contributions of the work reported in this
paper are in simulation and validation domain and
are outlined as follows:

® Modeling surge and heading dynamics iden-
tification: Simplified surge and heading
dynamics for the Jaibot are identified and
validated directly from experimental data.
In addition, a state augmentation is intro-
duced in order to track temporal differences
between functions of sensor measurements.

o Adaptive input estimation (AIE): Adaptive
input estimation based on RCIE is applied
to marine vehicles to estimate both system
states and internal control inputs.



® Field validation: The RCIE implementation
on the Jaiabot AUV is validated using field
data.
The rest of the paper is organized as follows.
Section 2 frames the process of modeling the surge
and heading dynamics from real data. Section 3
provides the simulation results using real data in
support of the derived models, the implemented
AIE algorithm, and give a comparative analy-
sis between AIE and the classical Kalman filter.
Section 4 summarizes the research outcomes and
outlines directions for future work.

2 Technical Approach

2.1 System Identification

The Jaiabot is a miniature marine vehicle that
can move fast on the surface of the water. To
perform principled control design for automated
maneuvering for this vehicle we constructed mod-
els based on experimental data. There can be
several general model templates for surface vehi-
cle kinematics and dynamics (Fossen, 2021), and
most advanced such models incorporate coupling
between longitudinal (surge) and lateral (yaw)
vehicle motions (Panagou et al., 2015). Given
the choice of parameterizing the model based on
experimental data, we opted here to ignore the
coupling between surge and yaw (see also (Fossen,
2021)) and built separate models for each motion
direction.

2.1.1 Surge dynamics

The surge dynamics of the vehicle are assumed
(Fossen, 2021) in the form of a second order linear
system
mi+di=u (1)
where m denotes the mass of the vehicle, d is
in the role of a hydrodynamic drag coefficient
along the surge direction, and u expresses forward
thrust. Equivalently, (1) can be regarded as a first
order system in surge speed; either way, the step
response of this model is known analytically and
thus knowing the mass of the vehicle, the coeffi-
cient d can be directly determined through a least
squares process from experimental data (Fig. 2a).
To identify the model parameters, we consider

a parameterized first order transfer function from
S(s) _ _K

0) = 547 and we

input to surge of the form

measure the speed of the vehicle as it moves along
the elongated water tank of Fig. 2a when given a
thrust actuator reference rate of 0.5. The speed is
estimated by measuring distance traveled within
a second at regular time intervals.

To assess the robustness of the identified
model, we performed experimental trials in which
the input amplitude is varied around this nomi-
nal value and confirmed that the form of transient
response curve remained the same.

(a) Surge tests

(b) Yaw tests

Fig. 2: Maneuvering experiments for motion
dynamics system identification. (a) Experimen-
tal data for surge dynamics were obtained from
indoor tests in a long water tank. (b) Data for yaw
dynamics were collected during outdoor tests in
lake Allure, PA.

The limited length of the water tank, and
given the speed of the vehicle at the particular
thrust rate input command, allows for only few
(four) data points (Fig. 3). The nonlinear model
least-squares fit to the analytical first order step
response yields parameter values for (1) as follows:
m = 0.469, and d = 0.311.
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Fig. 3: Parameter fit for surge model parameter
identification.



2.1.2 Heading dynamics

The identification of the heading (yaw) dynam-
ics of the Jaiabot is performed using a standard
maneuvering test for marine vehicles (Fossen,
2021). The vehicle moves with a fixed rudder con-
figuration over a period of time (Fig. 2b), and the
response of the yaw rate is measured (in this case,
based on the vehicle’s IMU and GPS readings).
Assuming a similar second order model for the yaw
dynamics

I6+ch=r (2)
where [ is in the role of the vehicle’s moment of
inertia along the vertical axis, c is a hydrodynamic
drag coeflicient and r expresses the rudder input
command, a least squares fitting approach on the
ramp response for this model gives I = 4.896 and
¢ = 9.087. The parameter identification process
follows the same principles as that for surge, only
now we have the luxury of a larger data set to
which we can fit the ramp response of (2) to a
rudder reference of 1500 (Fig. 4).
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Fig. 4: Parameter fit for heading model parameter
identification.

In the section that follows, the surge and yaw
dynamics, (1) and (2) respectively, are expressed
in discrete time, in order to be integrated into a
Kalman filter formulation.

2.2 Discrete-time Vehicle Dynamics

As expected of any marine surface vehicle, the
Jaiabot’s motion is rarely a pure translation or
a pure rotation. Thus none of the models of (1)
or (2) can, in isolation, describe the motion of
the vehicle. What is more, to be integrated into a
Kalman filter, these models need to be associated

with measurable outputs. And while the vehicle’s
orientation is directly measured via its IMU or
compass, individual GPS measurements do not
directly inform about the length of the path trav-
eled, which is practically what is being tracked by
(1). To overcome the latter challenge we construct
discrete-time models that describe the evolution of
path length traversed by the vehicle and its change
in orientation between consecutive time steps.

2.2.1 Heading

We start with the incremental heading dynam-
ics because they are more straightforward. If we
denote hy the vehicle’s current heading and hs its
yaw rate, then the discrete-time heading dynam-
ics derived by analytic integration of (2) for a time
step T results in

[hl] _ {1 0.5487(17e—1-82249T)} [hl]
halg+1 7 o e~ 1-82249T ho 1
0.548740.301072(e~1:82249T)

+ [ 0.5487(1—e~1:822497) Tk-
We now augment the heading state vector at
step k + 1 to include the heading at step k as so

h1 1 0.5487(1—e~1:82249T) ¢ h1
’]—:2 =1y o—1.82249T 0 22
3 ] gyt 1 0 0 3]

0.5487+0.301072(C*1-82249T)
045487(1_e*1-82249T) Th. (3)
0

The purpose of augmenting the system is to allow
the discrete-time linear model to capture the
state’s temporal difference over time —specifically,
the difference between heading at time k£ + 1 -
heading at time k. This change, denoted as Af is
defined as:

_ h1
Afyiy = 0.200474[10 1] [h] (4)
k+1

h3

This equation shows that the output of the sys-
tem is essentially the the difference of the head-
ing states h; and hgz, and corresponds to the
actual compass heading difference between two
timesteps. Thus, it can be directly obtained from
sensor measurements.

In implementation, T is set to 0.546 seconds.



2.2.2 Surge

The discrete-time augmented dynamics for surge
is constructed along the same lines. We denote s;
the length of the path traveled by the vehicle, so
its speed along this path, and s3 the path length
at the previous time step.

Just as in the preceding section, the reason we
augment the system’s dynamics is to capture the
temporal difference of the system’s state, specifi-
cally, path length at time k4 1 minus path length
at time k. This difference now can be expressed
in the model’s output and linked directly with the
sensor’s measurements. Note that, in this case of
surge dynamics, this temporal difference is more
critical, because GPS latitude /longitude readings
do not directly reflect the distance traveled, and
without this manipulation, a direct association of
system’s outputs to sensor measurements is not
straightforward. With these we arrive at

{51} 1 1.50625(1—e2:66397T o [Sl}
52 = —0.66397T .
83 k+1 (1) e o 8 e
1.50625T+2.26879 (e~ :066397T)
+

1.50625(1—¢~0-06397T)) } ur (5)
0

Similarly, the output for this discrete-time system

is defined as the difference AS of path lengths

between consecutive steps

ASii1 =1.4162[10 1] [é} (6)

The challenge here, however, is that AS is not
provided as a sensor measurement. Nonetheless,
this quantity can be derived directly through geo-
metric conditions that depend explicitly on com-
pass and GPS measurements. Without excessive
loss, therefore, we approximate the incremental
path length, AS, assumed at the scale of the time
step to be adequately captured by a circular arc
with zero order hold (ZOH) over ry, with the dis-
tance between the vehicle at consecutive steps,
AS, and express the latter as

ASpy1 ~ ASpy1 = \/AS,” + AS,? (7)

where AS, and AS, can be computed from GPS
measurement differences after projection to the
body frame at time step k + 1 (see Fig. 5).

step k 7 " stepk+1

ASyh e
o
Fig. 5: Geometric relation between surge model
output and sensor measurements.

A remaining challenge, however, is that during
deployment and due to the vehicle’s control archi-
tecture and interface, neither the input thrust «
in (1) nor the input moment 7 in (2) are directly
known. Hence, traditional filtering methods, such
as Kalman filtering would not work properly for
state estimation, because the rely on access to the
true executed control inputs.

This is where retrospective cost input estima-
tion comes in to provide real-time estimates of uy
and r; through an adaptive estimation process.

2.3 Adaptive Input Estimation

This section provides a very brief mathematical
overview of the AIE technique according to Verma
et al. (2024). Consider the linear discrete-time
system

Tht1 = Az + Buy,
Yy =Cuaxp+V

where x € R" is the system state, uy € R is the
control input (assumed unknown), and V' € R is
zero-mean Gaussian sensor noise. Matrices A €
R™" B € R™™! and C € R " are known. The
goal of AIE is to estimate simultaneously both
ur and xp. AIE is practically comprised of an
input estimation subsystem, and a Kalman filter
(Thacker and Lacey, 1998).

2.3.1 Input estimation subsystem

To obtain the estimated input 4y, we construct
the input estimation subsystem of order n, > 1 as
follows

Ne Ne
Uy = Z M g tg—i + Z Nig 2i—i (8)
=1 i=1



where the M, € R, N, € R, and zj is the resid-
ual in the prediction step of Kalman filter. The
input estimate in subsystem (8) can be written in
form of

U = Py, Op 9)

where the regressor matriz ®y is defined as

B 2 g1 Upn, 2k 2k—n.] € R (10)
and the coefficient vector 0y, is

O 2 [Myg - My, Nojg -+ No, gl € R (11)

with Iy £ 2n.+1. The order of this subsystem, n.,
must be chosen large enough to properly develop
the internal model for the estimation of the input.
The objective now becomes to update the coef-
ficient vector #p, in order to derive an estimate
iiy,. To do so, we first define the backward-shift
operator for a discrete signal Y}

a'Yk)2Y(k-1)

and we this definition we express the following
filtered signals

Py 2 Grr(gh) @k —1)
g = Gyr(g™h) ak — i)

By defining now Gyr(q™') = 30 a = Hi(k),
taking ny > 1 to be the window length of filter,
the aforementioned filtered signals can be written
as

Opp=Y  Hi(k)®(k—1)
i=1
U = Z Hi(k) a(k — 1)

where now H; (k) is defined as

CB k>i=1
Hi(k) & {CAp_q+Ay_-1yB k>i>2
0 1>k

with A £ A(I + K;,C), and K} being the Kalman
filter gain that is included in the update step

of the state filtering process. To find the coef-
ficient vector 6, we construct an optimization
problem; more specifically, a retrospective opti-
mization problem where the coefficient vector will
denote the optimization variable. To this end,
define the retrospective variable as

Zr’k(é) £ Zk — (ﬁf’k — (I)fyké)

where now 6 represents the decision variable. The
retrospective cost function is defined as

.
T (0) 2 (0—00)"Ro(0—00)+ > _R.z7 ,(0)+Ra(®:0)
=0

where R, € (0,00) and Ry € (0,00) are scalar
optimization gains, and Ry € R*! is a positive
definite gain matrix. Note that the regularization
term (§—0o)T Rg(6—0,) weighs the initial estimate
and ensures that the 05,1 has a unique global min-
imizer (Islam and Bernstein, 2019). Define now
Py £ R;'. Then for all k > 1, the unique global
minimizer 0.1, is given by the recursive least
squares (RLS) update

Pyi1 =P, — Py@T,®), Py
Or1 =0k — Pe®IT (2 + $r0%) (12)

where
N 5T 1 o | Qs
Ty —(R + @kpkfbk) P, = o,
5 L [Zk Ouka]

H A Rz 0

h= { 0 RJ
By using (12) and replacing the k+1 with & in (9)
we derive the estimated input. We choose 6y = 0
which implies 4g = 0.

Applying the AIE algorithm to (3)—(4) and
(5)-(6) is not straightforward due to several
hyperparameters that require careful manual tun-
ing. The remarks that follow outline some of the
insights we developed in this process.

Remark 1. To properly implement the AIE algo-
rithm, it is essential to first specify all the hyper-
parameters ne, ny, R., Rq, Ry, typically done
empirically through trial and error. This issue has
been recognized in literature, where the introduc-
tion of variable-rate forgetting into the recursive



least squares can potentially alleviate the tuning
burden (Verma et al., 2024).

Remark 2. In the process of tuning the hyper-
parameters one needs to be cognizant that the
associated subsystem s highly sensitive to hyper-
parameter variations, and small changes in them
can either yield the desired results or result in
significantly high values for the estimated input.
Remark 3. A reasonable choice for gain matriz
Ry is in the form of Ry = 10%, where « is a
positive number. However, in some cases like the
one in this paper a choice in the form of Ry =
10~9/190 where a is a positive number, appears
more likely to yield convergent 6 values.
Remark 4. Large values of the hyperparameter
ny or ne do not necessary lead to better filtering
of the signals or better estimate control input. On
the contrary, they might cause divergence of the
input estimate.

3 Validation

This section presents simulation and experimen-
tal results and numerical analysis that supports
the theoretical predictions on (a) estimation of the
deterministic control input as it is presented in
Section 2.3, and (b) the effect of the estimated
input to the Kalman filter to estimate the pose
of the Jaiabot. The approach is applied to the
problem of estimating the states of surge (5)—
(6) and heading model (3)—(4). To achieve this,
the control inputs for both the surge and head-
ing dynamics must first be estimated, because the
operator has no direct knowledge of the thrust
and torque inputs.? For comparison reasons, a
standard Kalman filter is also implemented with
the assumption that the nominal operator con-
trol input is the one that is implemented by the
Jaiabot.

For the estimation process, we rely on IMU and
GPS sensor readings, both of which are affected by
noise and bias. While well structured noise models
and statistics exist in the literature for both sen-
sors, RCIE literature offers little coverage of noise
statistics. A key challenge in our setup is the lack
of the ground truth for IMU and GPS readings
during field deployments, as no reference system

2The relationship between operator commands and thrust/-
torque inputs can alternatively be empirically established via
hydrodynamic experiments.

was available to directly validate the accuracy of
position or attitude estimates.

Part of the implementation of the algorithm
for estimation of control inputs and the states of
the two systems, is the process of tuning all the
hyperparameters. In our tests, we set the following
values. For the surge dynamics: ne = 4, ny = 8,
R. =1, Rg =50, Rg = 10701y, For the heading
dynamics: ne = 3, ny = 4, R, = 1, Rg = 0.1,
Ry = 10_2_[7.

The algorithms used experimental data col-
lected in Lake Allure, PA, where the Jaiabot was
deployed in a series of turning maneuvers (see
Fig. 13). By assuming zero mean noise statis-
tics we can estimate the noise covariance in IMU
and GPS data that is Viyu = 4172 (rad/s)? and
Vaps = 2.23 m?, respectively.

3.1 Results for Surge Dynamics

The AIE algorithm was first implemented for the
surge dynamics. Figure 6 gives a comprehensive
view of the results obtained. The coefficient vector
0y in (11) converges after approximately 100 itera-
tions (Fig. 6, top). Nine coefficients (lg = 2n.+1)
were included to achieve convergence for this sub-
system. Figure 6 (middle) illustrates the estimated
input for the surge dynamics. The dashed red
line shows the average of the values that the
input takes. Note that the control input fluctu-
ates within the (—0.05, 0.30) range, an observation
that also aligns with the behavior of the estimated
state, shown in Fig. 6 (bottom). Recall that the
output (and measurement) for the surge dynam-
ics represents the length of the chord of the arc
along which the Jaiabot is moving. Hence, small
values in this context indicate small steps along
the motion path.

Figure 7 gives a visual comparison of the state
estimation results. The red dashed curve repre-
sents measurements, the blue curve shows the
state estimate obtained from the Kalman filter
that uses a nominal (step) control input set at
ur, = 1, and the black curve illustrates the output
of AIE. Arguably, AIE provides significantly more
effective noise filtering compared to the standalone
Kalman filter.

Due to the lack of ground truth for the GPS
sensor, we perform a simulation-based validation
study for the surge dynamics using a synthetic
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Fig. 6: Adaptive input estimation results for
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Fig. 7: Comparison of the estimated state for
surge against experimental data, for the Kalman
filter and AIE.

dataset constructed by augmenting the origi-
nal experimental data with structured noise and
known sinusoidal patterns. This analysis provides
additional evidence that AIE achieves better per-
formance than the Kalman filter regarding (i) the
trajectory tracking RMSE (Fig. 8, top) and (ii) the
reconstruction of a smoother signal of the state
(Fig. 8, middle). The convergence of the coefficient
vector 0 is achieved after some retuning of the
hyperparameters (Fig. 8, bottom).
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Fig. 8: Simulation-based validation results for
surge.

3.1.1 Validation on decoupled surge
dynamics

A separate data set, which allows the independent
validation of the implementation of RCIE on the
surge dynamics in isolation, is now utilized. This
data set corresponds to an experiment involving
a Jaiabot moving straight (in open loop) for 15
seconds with the same thruster input command
as that featured in Fig. 3. Figure 9 illustrates
the results of AIE applied on this dataset. For
this case, we selected a coefficient vector 6, with
shorter length and retuned the hyperparameters,
resulting in convergence of the coefficient vector
0 and effective filtering of the noise during state
estimation.

3.2 Results for Heading Dynamics

In this subsection we report on the AIE imple-
mentation for the heading dynamics. Figure 10
summarizes the findings. Note that for this model
the measurement is the heading (angle) which is
obtained directly from the AUV sensors. Similarly
to the AIE implementation for the surge dynam-
ics, the coefficient vector 6, in (11) converges after
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Fig. 9: Validation of adaptive input estimation
results for decoupled surge motion.

approximately 100 iterations (Fig. 10, top). For
heading estimation, only 7 coefficients are needed
to achieve proper convergence. Figure 10 (middle)
shows the estimated input for the heading dynam-
ics. The dashed red curve represents the average
of the values that the input takes over the whole
period of application. In this execution, it can be
observed that the control input fluctuates within a
(—100,170) range, in agreement with the behavior
of the estimated state, shown in Fig. 10 (bottom)
which depicts the estimated state. As seen, during
instances of significant fluctuations (red curve),
such as within the range (80, 110), the initial noisy
behavior is effectively filtered (black curve).

Figure 11 offers a comparative analysis of the
state estimation results. In Fig. 11, the red dashed
line represent system measurements, while the
blue lines show the estimated states obtained from
the Kalman filter, with the nominal control input
set to up = 1. The black line shows the estimated
state from the AIE algorithm. It can be observed
that while the Kalman filter provides a good esti-
mate for the heading, it struggles to properly
filter out significant fluctuations without accurate
knowledge of the system input. On the other hand,
ATE demonstrates improved performance in sce-
narios involving large fluctuations, providing more
robust and accurate estimates compared to the
standalone Kalman filter.

Application of ATE suggests that the DC gain
of the surge dynamics (5) is 4.68 while that for the
heading dynamics (3) is 0.125.

The absence of ground truth for IMU measure-
ments motivates a synthetic data-based analysis
for the heading dynamics similar to that pre-
sented for surge. The synthetic dataset is based
on the original experimental data by introducing
controlled sinusoidal patterns and additive noise.
The simulation analysis of the synthetic data set
reveals that the AIE method outperforms the
standalone Kalman filter. Figure 12 illustrates the
RMSE values relative to the true and the esti-
mated signal, the reconstruction of a smoother
state trajectory, and the convergence of the coef-
ficient vector 6y after hyperparameter tuning.
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Fig. 10: Adaptive input estimation results for
heading.
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Fig. 11: Comparison of the estimated state
for heading against experimental data, for the
Kalman filter and AIE.
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Fig. 12: Simulation-based validation results for
heading.

3.3 Estimate-based Trajectory
Reconstruction

This section makes a combined spatial compara-
tive analysis between AIE and standalone Kalman
filter, as the ASV motion path is reconstructed
based on the corresponding estimates and com-
pared to experimental (GPS) data, the same one
that was used for the surge dynamics in the
ATE process. In both cases (AIE and standalone
Kalman filter) the trajectory is reconstructed as

Xip1 =X, + AS sin (A29)
Yit1 =Y + AS cos (A29>

where X and Y}, are the north-south and east-
west coordinates of the ASV at time step k. Here,
A0 is derived from the heading dynamics, either
using the AIE or the Kalman process, while the
AS is estimated similarly. Figure 13 depicts the

10

results of this reconstruction for the ASV trajec-
tory. It can be observed that AIE outperforms the
Kalman filter since it is adjusting the control input
to be suitable for estimation of the state. On the
other hand, Kalman filter presents big fluctuations
along the trajectory, primarily due to the control
input that was selected from the user, which does
not accurately reflect the actual internal control
input implemented by the ASV.

Trajectory
Data S, = -
B AE e —
Kalman Filter /" N
w0 i ~T
o ’/r \\ \‘
s _ & S\
J N B
> ° /1,, 7
- //
-10 \\\ h//,
15 7
\“\\//
-20

Fig. 13: Comparison of the trajectory reconstruc-
tion based on the Kalman filter and the AIE
relative to experimental data.

Following up on the analysis of Section 3.1.1
that utilized a “surge-only” field deployment data
set, here we reconstruct the motion path of
the ASV based on the AIE and the standalone
Kalman filter (using a preselected control input)
algorithms, and compare the two. Figure 14
depicts this comparison. The figure indicates that
the AIE gives better state estimates as it adjusts
the unknown control input and reconstructs the
trajectory without the abrupt fluctuations that
the Kalman filter yields.

4 Conclusion

Just as an appropriate choice of the control input
in a system is critical for effective control of a
dynamical system, so is knowledge of the actual
control input applied for accurate state estima-
tion. In real-world application scenarios, however,
there can be a mismatch between the commanded
control inputs and the ones actually realized.
Because of this mismatch, both estimation and
control performance suffer.

Consequently, in cases where the control input
is unknown, it becomes necessary to estimate



Trajectory

Kalman Filter

Fig. 14: Adaptive input estimation results for
surge.

it in parallel to the state of the system. This
paper implements this concept for the first time
on an ASV to generate filtered pose (position
& orientation) estimates using linear models for
its surge and heading dynamics, identified inde-
pendently based on experimental data. Results
indicate promise for AIE as a method for provid-
ing accurate and consistent real-time state and
input estimates for an ASV, which are especially
useful in cases where the actual control inputs are
opaque to its operator.
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