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Abstract— This paper formally expands the application do-
main of robot motion planning methods that are based on
navigation functions to the case of moving obstacles. It gen-
eralizes the navigation function methodology from static sphere
world environments, to dynamic ones. Specifically, it allows the
obstacles’ locations to be time-varying, albeit unknown, and
accommodates the case where the navigation goal is not a single
isolated point, but rather a spherical manifold. For such cases,
the paper presents analytical bounds on the tuning parameters
that guarantee the navigation function properties of the time-
varying potential function, uniformly in time. Thus using the
same choice of tuning parameters, the agent is ensured that at
every instance in time, the artificial potential field that directs it
to its destination is free of local minima. The parameter bounds
naturally depend on the geometry of the agent workspace, and
include conditions on how close the obstacles can approach
each other, the fixed workspace boundary, and the destination
sphere. The bounds presented here are conservative; their an-
alytic determination serves mainly the purpose of theoretically
guaranteeing completeness properties for the methodology in
the time-varying obstacle case.

I. INTRODUCTION AND RELATED WORK

Motion planning and obstacle avoidance strategies have
been well established [1] in static and known environments,
and have found application in a wide range of domains, from
traditional areas like mobile robots [2] and manipulators [3],
all the way to emerging ones such as self-driving vehicles [4].
Dynamic environments, however, present new challenges
to motion planning and navigation [5]. Current application
examples where a degree of automation is needed in dynamic
environments include connected and automated vehicles [6],
unmanned aerial vehicle (UAV) formations [7], and human-
robot interaction [8], [9].

Among the challenges of motion planning and naviga-
tion in dynamic environments, is that path planning and
trajectory generation are temporarily coupled and have to
be solved concurrently in real-time [5]. Because different
instantiations of the problem are being solved over time, it
is not always clear how to establish global completeness and
convergence guarantees. In existing literature, approaches to
the problem of motion planning in dynamic environments fall
roughly into two categories, distinguished based on whether
path planning and trajectory generation are solved in (rapid)
succession or concurrently.

Examples in the former category include approaches in-
volving some kind of search-based method [10], [11] (e.g.
A∗ or D∗), and sampling methods [12] such as randomly
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exploring random tree (RRT) [13], [14] or probabilistic
roadmap method (PRM) [15], [16]. Search and sampling
methods require spatial discretization and thus result in
computation cost that increases markedly with the dimension
of the workspace, and despite spectacular recent advances in
processing speed, it is always a concern in high-dimensional
problem instances. The challenge of a dynamic environ-
ment is treated in a variety of ways in the context of
these methods, mainly either by fast re-generation of the
roadmap or tree [16]–[18], or by treating time as another
state variable [19], in the case where obstacle motion is
predictable. In any case, search and sampling-based methods
typically require a post-processing stage where the outcome
of the planner needs to be “adapted” and morphed into a
dynamically compatible reference trajectory for the actual
vehicle to follow [20]; depending on the vehicle dynamics
at hand, this is not always nontrivial and may require specific
dynamic constraints on derivatives [21].

On the other end of the spectrum, namely with refer-
ence to methods that integrate path planning with trajectory
generation, the dominant approach is arguably based on
gradient descent methods. Parenthetically here, an interesting
alternative to potential (or harmonic) fields is the velocity
obstacle approach [22]–[25], which is conceptually related to
artificial vector fields in the sense that it directly designates
desired velocity vectors for the agent, but its reference
velocities are not generated by a vector field; rather, they are
produced in the form of admissible (velocity) sets, computed
reactively over a through a short time horizon reachability
computation that takes into account the agent’s dynamics.
Naturally, the efficacy of velocity obstacle methods rests on
the ability to accurately measure moving obstacle velocities
at a reasonably high rate.

In the realm of potential field methods, and specifically in
the context of applications of these techniques to dynamic
environments, one still finds variations of the traditional po-
tential field method that involves superposition of attractive
and repulsive vector fields [26], [27], with the well-known
limitations stemming from the appearance of local minima.
Harmonic fields [28], which avoid the problem of local
minima by integrating (numerically) Laplace’s equation, face
challenges because of they would essentially require an iter-
ative solution (in real time) of a nontrivial partial differential
equation (PDE). The results here are limited, covering for in-
stance cases of known (and constant) obstacle velocities [29],
[30], or moving goal along a known trajectory [31].

While navigation functions [32], [33] can also ensure
the absence of local minima, in the dynamic environment
regime there has only been anecdotal evidence of their



efficacy (e.g. [34], [35]), and the various formal attempts
to generalize this methodology to this regime [9], [36],
[37] still leave some aspects uncovered [38]. Specifically,
existing treatment of moving obstacles in the context of
navigation functions [36] requires knowledge of obstacle
motion and resorts to discontinuous (switching) control laws;
comprehensive treatment of navigation function properties
has been carried out for the case of a moving destination
only [9], [37].

This paper addresses the problem of constructing naviga-
tion functions on sphere-worlds with moving obstacles. It
contributes by offering analytic conditions on the geometric
parameters of the time-varying workspace, under which the
navigation function properties can be guaranteed uniformly
over time for the same values of the navigation function
tuning parameters. Only sketches of the mathematical proofs
are provided here due to space limitations.

The rest of the paper will be organized as follows: First,
the robot navigation problem and related terminology is
introduced in Section II. Section III contains the main
contribution of this paper: the theoretical analysis for the
establishment of fixed bounds for the potential function
tuning parameters, above which the potential function is
guaranteed to be a navigation function uniformly over time.
Section IV concludes and outlines directions for future work.

II. FORMAL PROBLEM STATEMENT

The workspace on which the navigation function is con-
structed is a sphere-world [33]. To avoid a detailed sym-
bolic definition and listing of all geometric constructions
describing the elements of this workspace, given the space
restrictions this paper needs to adhere to, we provide an
intuitive visual description of these constructs in Fig. 1.

The region within the mobile agent’s state, x, is con-
strained to evolve is the interior of the ball of radius ρ0
denoted B0(ρ0) , {x ∈ Rn | β0 , ‖x−o0‖2− ρ2

0 ≤ 0}; for
simplicity, hereafter the center of this ball is taken to be the
origin: o0 = 0. Interior obstacles are also assumed spherical,
but the location of their centers is allowed to be time-
varying. That is, obstacle j ∈ {1, . . . ,m}⊂N has fixed radius
ρ j and a center that is denoted o j(t). The volume that
obstacle j occupies is the interior of the ball B j(t,ρ j) ,
B j , {x∈Rn | β j ,

∥∥x−o j(t)
∥∥2−ρ2

j ≤ 0}. If the interior of
B0 is “punctured” by all obstacles, the resulting set is free
workspace denoted F ,B0(ρ0)\

⋃m
j=1 B j(t,ρ j) (Fig. 1). A

metric of the distance between the agent and the free space
boundary is given by the product

β (x, t) =
m

∏
j=0

β j
(
x,o j(t)

)
,

where the dependence on obstacle motion is made explicit by
presenting the obstacle center locations, o j(t), as a function
of time.

Departing slightly from the majority of navigation function
constructions, the one presented in this paper utilizes a non-
point destination. This is because sometimes it is desirable
for the agent to converge to a physical object or other agent,
but stay at a certain small (safety) distance from it, rather
than converge right onto it. For this reason, the navigation

Fig. 1: An example of obstacles and target sphere in the agent’s workspace: Blue and
grey circles denote the target and obstacle spheres in the outer work space. Green rings
mark neighborhoods of boundaries.

goal here is a spherical destination manifold, and any lo-
cation on this manifold suffices as the final configuration
for the agent. Naturally, the nondegeneracy condition for the
navigation goal enforced by traditional formulations does not
apply here; as it will be shown shortly, any point on the
destination, or target, sphere is a degenerate critical point of
the function. The target ball BT is assumed to be stationary
at xd ∈F and have radius rd . The boundary of the target
ball is denoted ∂BT = {x∈Rn |‖x− xd‖2−r2

d = 0} (Fig. 1).
A metric of distance between the agent and the target sphere
is coded by the goal function

Ji(x) =
(
‖x− xd‖2− r2

d

)2
.

The agent’s workspace is said to be valid if all objects,
including obstacles, the target sphere, and the outer boundary
are disjoint. This implies∥∥o j(t)− xd

∥∥> ρ j + rd , ‖xd‖+ rd < ρ0,
∥∥o j
∥∥+ρ j < ρ0 .

The goal of this paper is to prove the following statement:

Theorem 1. Given a valid sphere-world F , there exist an
N(ε)> 0 such that for every fixed k > N(ε) the function

ϕ(x, t) =
J(x)[

J(x)k +β (x, t)
]1/k

(1)

is a navigation function on F for a spherical target Bxd (rd),
in the sense that all local minima of ϕ are on on ∂Bxd (rd),
and all other critical points of ϕ are non-degenerate.

III. APPROACH TO SOLUTION

A. Overview
Let B j(ε) = {x ∈ Rn | 0 < βi(x) < ε} denote an ε-

neighborhood of obstacle j (Fig. 1); in general, the notation
A (ε) will be used to express an ε-neighborhood of the
boundary of set A . Let δd > 0 be in the order of ε , and
partition F as follows.
• The set near obstacles and away from target:

F0(ε),
⋃m

j=1 B j(ε)\∂BT
• the set near the (outer) workspace boundary:

F1(ε), B0(ε)\
(
∂BT

⋃
F0(ε)

)
• the set away from (any) workspace boundaries:

F2(ε), F \
(
∂BT

⋃
∂F

⋃
F0(ε)

⋃
F1(ε)

)
• the set away from obstacles and target:

W (ε), F2(ε)\BT (δd).



The roadmap for establishing Theorem 1 is the following:
1) Verify that the target sphere is degenerate;
2) show that all critical points are in the interior of the F ;
3) show that there are no critical points in W (ε) with

appropriate tuning;
4) show that if F is valid, there exist the upper bound

on ε below which no local minima for ϕ can exist in
F0(ε);

5) show that if F is valid, there is an upper bound on ε

above which no critical point can exist in F1(ε);
6) show that for an appropriately large k, any critical points

in the interior of F0(ε) are non-degenerate; and finally
7) show that any critical point within the target sphere is

the local maximum.

B. Roadmap refinement

The technical analysis of this section utilizes a number
of geometric constraints stemming mostly from workspace
validity, and which are grouped listed in Table I.

Cases Constraints

x ∈W (ε)
0≤‖x−o0‖ ≤ ρ0−

√
ε

0≤
∥∥o0−o j

∥∥≤ ρ0−ρ j−
√

ε

0 <‖x− xd‖< 2(ρ0−
√

ε− rd)

rd <
∥∥x−o j

∥∥≤ 2ρ0− rd

rd +ρ j <
∥∥o j− xd

∥∥< 2ρ0−2
√

ε

x ∈F1(ε) ρ0− ε <‖x−o0‖ ≤ ρ0

0≤
∥∥o0−o j

∥∥≤ ρ0−ρ j−2
√

ε

rd <‖x− xd‖< 2(ρ0− rd)√
ε +ρ2

j ≤
∥∥x−o j

∥∥
≤ 2ρ0−ρ j−2

√
ε

rd +ρ j <
∥∥o j− xd

∥∥< 2ρ0−2
√

ε

x ∈F0(ε) 0≤‖x−o0‖ ≤ ρ0

0≤
∥∥o0−o j

∥∥≤ ρ0

rd ≤‖x− xd‖ ≤ 2ρ0− rd

ρ j ≤
∥∥x−o j

∥∥≤ ρ j +
√

ε

rd +ρ j +
√

ε <
∥∥o j− xd

∥∥
< 2ρ0− rd−

√
ε−ρ j

TABLE I: Summary of constraints ensuring a valid workspace

Proposition 1. If the workspace is valid, every xD ∈ ∂BT ,
is a degenerate local minimum of ϕ . A vector v satisfying
vᵀ∇2ϕ |xD

v = 0 is tangent to ∂BT .

Proof. (Sketch) Take xD ∈ ∂BT : J |xD
= 0 and ∇ |xD

J = 0.
Evaluate

∇ϕ =
1

(Jk +β )2/k

[
(Jk +β )1/k

∇J− J ∇(Jk +β )
1/k
]∣∣∣

xD
(2)

at xD to verify that ∇ϕ |xD
= 0. To show that xD is degenerate,

pick a vector v ∈Rn, expand the quadratic form vᵀ∇2ϕ |xD
v

to see that
vᵀ

∇
2
ϕ |xD

v = 8β
−1/k

∥∥vᵀ(xD− xd)
∥∥2 ≥ 0 (3)

with equality holding when vᵀ(xD− xd) = 0.
Verify that v is normal to (xD− xd), the radius direction

of the target sphere, by evaluating their inner product.

Proposition 2. If the workspace is valid, all critical points
of ϕ are in the interior of F .

Proof. (Sketch) It suffices to show that no critical points exist
in ∂F . Take x0 ∈ ∂F ; there exists an l ∈ {0, . . . ,m} ⊂ N
such that x0 ∈ ∂Bl . Hence, βl(x0) = 0 and ∇βl |x0

= 2(x0−
ol) 6= 0. In a valid workspace, all obstacles are disjoint;
therefore, ∀ j ∈ {0, . . . ,m} \ {l}, it is β j(x0) > 0. Then (2)
evaluated at x0 reduces to

∇ϕ

∣∣∣
x0
=−J−k

k

m

∏
j=0, j 6=l

β j(x0) ∇βl(x0) 6= 0 . (4)

Let us note at this point that it is known that ϕ and ϕ̂ , Jk

β

share the same critical points [32]. Thus much of the analysis
is performed on ϕ̂ for analytical expedience.

Proposition 3. For every ε > 0 there exists an N(ε) > 0
such that if k ≥ N(ε) there are no critical points of ϕ̂ = Jk

β

in W (ε).

Proof. (Sketch) At any critical point, β∇J− 1
k ∇β = 0, mean-

ing k = J‖∇β‖
β‖∇J‖ . Thus, if k > J‖∇β‖

β‖∇J‖ there can be no critical
points in W (ε). It suffices to have

k ≥ sup
W

J
‖∇J‖

sup
W

‖∇β‖
β

>
J‖∇β‖
β‖∇J‖

.

Let β j be the obstacle closest to the critical point. Note
that when x ∈ W (ε), β j ≥ ε , and from Table I bounds for
supW

J
‖∇J‖ and supW

‖∇β‖
β

are established in W (ε):

sup
W

J
‖∇J‖

= sup
W

‖x− xd‖2− r2
d

4‖x− xd‖
=

1
2
(ρ0−

√
ε)

sup
W

‖∇β‖
β
≤ 2

ε

[
(2m+1)(ρ0−

√
ε)−mρ j

]
.

To avoid critical points, it suffices to have k ≥ N(ε) where

N(ε),
1
ε2 (ρ0−

√
ε)2

[
1+2m+

mρ j

ρ0−
√

ε

]
. (5)

Proposition 4. In any valid workspace, ∃ ε0 such that ϕ̂ = Jk

β

has no local minima in F0(ε), as long as ε < ε0.

Proof. (Sketch) A critical point of ϕ̂ is not a local minimum
if the Hessian of ϕ̂ has at least one negative eigenvalue there.
Essentially, it amounts to showing that vᵀ∇2ϕ̂v< 0 for some
vector v ∈ Rn. Take xc ∈F0(ε) to be that critical point of
ϕ̂ . From Table I and for xc ∈F0(ε)

0 <
∥∥x−o j(t)

∥∥−ρ j <
√

ε <
∥∥o j(t)− xd

∥∥− rd−ρ j . (6)



Function β can always be factored as β =
βq ∏

m
p∈{0,...,m}\{q}βp where β̄q , ∏

m
p∈{0,...,m}\{q}βp is

referred to as the omitted product [32]. Vector ∇β expands

∇β =
m

∑
l=1

2
(

xc−ol(t)
)

β̄l−2β̄0xc

= 2
(

xc−o j(t)
)

β̄ j +β j

2
m

∑
l=1,l 6= j

(
xc−ol(t)

)
β̄l

β j
−2

β̄0

β j
xc


︸ ︷︷ ︸

α j

= 2
(

xc−o j(t)
)

β̄ j +β jα j . (7)

Selecting k ≥ N(ε) based on (5), and defining

Ck ,
1
ε

(
ρ0−

√
ε

)2
(

1+2m+
mρ j

ρ0−
√

ε

)
(8)

to shorten the analytical expressions, one can choose k := Ck
ε

.
For xc not to be a local minimum, it suffices to show that

for some vector v and small enough ε , vᵀ∇2ϕ(xc)v < 0.
Take v̂ orthogonal to ∇β j

‖∇β j‖ . Then

β 2

Jk−1 v̂ᵀ∇
2
ϕ |xc

v̂ = 2J

 (xc−o j(t))ᵀ(xc− xd)

‖xc− xd‖2 −1


︸ ︷︷ ︸

Part A

+
(ε
√

J|v̂ᵀα j|)2
√

J(xc−o j(t))ᵀ(xc− xd)

4(Ckβ̄ j)2‖xc− xd‖2

+β j

[
v̂ᵀ∇2Jv̂

16‖xc− xd‖2 ∇β̄
ᵀ
j ∇J+Jv̂ᵀ

(1− 1
k

β̄ j
∇β̄ j∇β̄

ᵀ
j −∇

2
β̄ j

)
v̂
]
.

For Part A we know [32, Lemma 3.5](
xd−o j(t)

)ᵀ
(xc− xd)

‖xc− xd‖2 −1

≤

∥∥xd−o j(t)
∥∥(√ε +ρ2

j −
∥∥xd−o j(t)

∥∥)
‖xc− xd‖2 .

It follows that

β 2

Jk−1 v̂ᵀ∇
2
ϕ |xc

v̂

≤
2J
∥∥xd−o j(t)

∥∥(√ε +ρ2
j −
∥∥xd−o j(t)

∥∥)
‖xc− xd‖2

+ ε
v̂ᵀ∇2Jv̂

16‖xc− xd‖2 ∇β̄
ᵀ
j ∇JJv̂ᵀ

(
1− 1

k

β̄ j
∇β̄ j∇β̄

ᵀ
j −∇

2
β̄ j

)
v̂

+ ε sup
F0(ε)

(
√

Jε|v̂ᵀα j|)2
√

J[xd−o j(t)]ᵀ(xc− xd)

4(Ckβ̄ j)2‖xc− xd‖2 . (9)

The last two terms in the right hand side of (9) can be
made arbitrary small by choosing ε appropriately small, and
thus the first term will dominate. The sign of the latter is
determined by

√
ε +ρ2

j −
∥∥xd−o j(t)

∥∥ which (6) guarantees
to be negative.

Proposition 5. For any valid workspace, there exist k1 > 0
and ε1 > 0 such that ϕ̂ has no critical points in F1(ε), as
long as ε < ε1 and

k > k1 ,
m
ε

(
ρ2

0 −ρ0rd

2ρ0− rd

)(
2ρ0−ρ j−2

√
ε

)
. (10)

Proof. (Sketch) For nonexistence of critical points in F1(ε),
it suffices to show that ∇ϕ̂ᵀ∇J > 0 there.

Take xc ∈F1(ε) and expand

∇J>∇β0 = 8
(
‖xc− xd‖2− r2

d

)
︸ ︷︷ ︸

>0

‖xc‖︸︷︷︸
>0

(‖xd‖−‖xc‖)︸ ︷︷ ︸
<0

< 0 .

Evaluate

∇ϕ̂
ᵀ
∇J =

[
kJk−1

β 2

(
β∇J− 1

k
J∇β

)]ᵀ
∇J

>
Jkβ0

β 2

[
16kβ̄0‖xc− xd‖2−∇β̄

ᵀ
0 ∇J

]
.

To ensure ∇ϕ̂ᵀ∇J > 0, select k as

k >
∇β̄

ᵀ
0 ∇J

16β̄0‖xc− xd‖2

>
1
ε

sup
F1

(
‖x− xd‖2− r2

d
2‖xc− xd‖

)
m

∑
l=1

(
sup
F1

(∥∥xc−ol(t)
∥∥))

≥ m
ε

(
ρ2

0 −ρ0rd

2ρ0− rd

)(
2ρ0−ρ j−2

√
ε

)
= k1 .

Now define

εa , ρ
2
0 − r2

d εb ,
1
4
(ρ0−ρ j)

2
εc ,

1
9
(2ρ0−ρ j)

2

and pick ε < min{εa,εb,εc} in conjunction with k > k1 to
guarantee no critical points in F1(ε).

Proposition 6. With appropriate choice of k, critical points
xc in the interior of F0(ε) are non-degenerate.

Proof. (Sketch) One way to establish non-degeneracy is
to split the tangent space of ϕ̂ at the critical point into
two partitions, and ensure that the quadratic form with
matrix ∇2ϕ̂ is positive on one partition and negative on the
other [32, Lemma 3.8].

In the subspace that is orthogonal to ∇β j

‖∇β j‖ , the proof of
Proposition 4 established that the quadratic form is negative
at critical points xc ∈F0(ε).

Take v = ∇̂β j ,
∇β j

‖∇β j‖ . We will show that vᵀ∇2ϕv > 0.

Indeed, to verify the sign of ∇̂β j
ᵀ
∇2ϕ̂∇̂β j, expand

β 2

Jk−1 ∇̂β j
ᵀ

∇
2
ϕ̂ ∇̂β j = ∇̂β j

ᵀ
kβ∇

2J ∇̂β j

+
J
β

(
1− 1

k

)(
∇β

ᵀ
∇̂β j

)2
− J ∇̂β j

ᵀ
∇

2
β ∇̂β j (11)

and note that for small enough ε [32]
J‖∇β‖2

2kβ
+

J
β

(
1− 1

k

)(
∇β

ᵀ
∇̂β j

)2
−J∇̂β j

ᵀ
∇

2
β ∇̂β j ≥ 0 .

Then to set the sign of (11), it suffices to make

∇̂β j
ᵀ

kβ∇
2J ∇̂β j ≥

J‖∇β‖2

2kβ
. (12)



Recall that critical points are assumed here to be in the
interior of F0(ε). Table I indicates that ‖xc− xd‖ > rd .
Assume xc to be in the vicinity of B j, and allow rd to
be expressed as rd = ζ infB j(ε)‖xc− xd‖ for an appropriate
scalar 0 < ζ < 1. By expanding both sides of (12) and
bounding terms on the way, one concludes that (12) is
implied by((

xc−o j(t)
)ᵀ

(xc− xd)∥∥xc−o j(t)
∥∥‖xc− xd‖

)2

≥ 1+ζ 2

2
. (13)

An independent derivation establishes that(
xc−o j(t)

)ᵀ
(xc− xd)∥∥xc−o j(t)

∥∥‖xc− xd‖
≥ 1−

ε
∥∥α j
∥∥

β̄ j
∥∥xc−o j(t)

∥∥ . (14)

Thus to satisfy (13) it suffices to choose ε sufficiently small
so that

1−
ε
∥∥α j
∥∥

β̄ j
∥∥xc−o j

∥∥ >

√
1+ζ 2

2

=⇒ ε <

(
1−
√

1+ζ 2

2

)
ρm

j

2(m−1)(2ρ0)2m−3 . (15)

Proposition 7. There exists k0 > 0, such that ∀k > k0, any
critical point xc in the interior of BT is a local maximum of
ϕ̂ = Jk

β
.

Proof. (Sketch) There are only two cases a critical point in
the interior of BT : it is either the BT sphere center, or any
other point in the interior.

1) Case A: Assume xc is the center of BT , and let us
denote the latter xd . Then ∇J

∣∣
xd

= 0. To show that xc is a

local maximum, it suffices to show ∇2
(

Jk

β

)
|xd

is negative
definite. Pick any unit vector q ∈ Rn and compute

β 2

Jk−2 qᵀ ∇
2 Jk

β
|xd

q =−4k2
β r6

d− kr8
dqᵀ∇

2
βq .

To make this expression negative one picks:

k > k2 ,
m
4

r2−2m
d

∥∥2ρ0−ρ j− rd
∥∥2m−4

. (16)

2) Case B: Take xc ∈BT \(∂BT ∪{xd}). Any unit vector
q∈Rn, can be expressed as a linear combination of two unit
orthogonal vectors v1 =

∇J
‖∇J‖ and vector v2 ⊥ v1.

Now note that
β 2

Jk−2 qᵀ ∇
2(

Jk

β
) |xc

q≤−4kβJ3/2

+ J2
(
‖∇β‖2

β
+
∣∣∣vᵀ1∇

2
βv1

∣∣∣+ ∣∣∣vᵀ1∇
2
βv2

∣∣∣+ ∣∣∣vᵀ2∇
2
βv2

∣∣∣) .

Therefore, the quadratic form becomes negative if

k > k3 ,
r2

d
4(rd−δd)2m

m
(∥∥2ρ0−ρ j

∥∥2−ρ2
j

)2m−2

(rd−δd)2m

+3m(m−1)
(∥∥2ρ0−ρ j

∥∥2−ρ
2
j

)m−2

 .

Thus selecting k > k0 = max{k2,k3} guarantees that any
critical point in the interior of BT is a local maximum.

C. Summary
We can summarize the bounds derived within each proof

for the tuning parameter k and the proximity to workspace
boundary parameter ε , in Tables II and III, respectively.

Propositions Lower bounds on k

Props. 3 & 4 k ≥ 1
ε2

(
ρ0−

√
ε

)[
1+2m+

mρ j

ρ0−
√

ε

]

Prop. 5 k ≥ m
ε

(
ρ2

0 −ρ0rd

2ρ0− rd

)(
2ρ0−ρ j−2

√
ε

)

Prop. 7

k >
m
4

r2−2m
d

∥∥2ρ0−ρ j− rd
∥∥2m−4

k >
r2

d
4(rd−δd)2m

[m
(∥∥2ρ0−ρ j

∥∥2−ρ2
j

)2m−2

(rd−δd)2m

+3m(m−1)
(∥∥2ρ0−ρ j

∥∥2−ρ
2
j

)m−2 ]
TABLE II: Summary of bounds on k in different propositions. An admissible value
for k satisfies the conjunction of the above conditions.

Propositions Upper bounds on ε

Prop. 3 0 < ε

Prop. 4 0 < ε < (rd +ρ j)
2−ρ

2
j

Prop. 5

0 < ε < ρ
2
0 − r2

d

0 < ε <
1
4
(ρ0−ρ j)

2

0 < ε <
1
9
(2ρ0−ρ j)

2

Prop. 6 0 < ε <

(
1−
√

1+ζ 2

2

)
ρm

j

2(m−1)(2ρ0)2m−3

TABLE III: Summary of bounds on ε in different propositions. An admissible value
for ε satisfies the conjunction of the above conditions.

IV. CONCLUSIONS AND FUTURE WORK

Navigation functions can be constructed for problem in-
stances with moving obstacles. There exist choices of the tun-
ing parameter for the function that guarantee the properties of
the navigation function, uniformly in time, as long as certain
geometric conditions related to the validity of the workspace
are ensured. The paper provides explicit expressions for
bounds, above which the tuning parameter is guaranteed
to yield a navigation function for all time; however one
should keep in mind that these bounds have been derived
considering the worst possible cases, and can therefore be
very conservative. Typically, effective tuning can be achieved
at much lower values; nonetheless, the establishment of those
bounds theoretically guarantees the persistence of navigation
function properties over time, for the same fixed parameter
values. Several interesting extensions of this work can be
imagined, including star-shaped obstacles (cf. [9]) and multi-
agent settings (cf. [39]).
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Osório, and D. F. Wolf, “Intelligent robotic car for autonomous
navigation: Platform and system architecture,” in Proceedings of the
IEEE Second Brazilian Conference on Critical Embedded Systems,
2012, pp. 12–17.

[7] P. Yao, H. Wang, and Z. Su, “Real-time path planning of unmanned
aerial vehicle for target tracking and obstacle avoidance in complex
dynamic environment,” Aerospace Science and Technology, vol. 47,
pp. 269–279, 2015.

[8] E. Prassler, J.Scholz, and P. Fiorini, “A robotics wheelchair for
crowded public environment,” IEEE Robotics & Automation Maga-
zine, vol. 8, no. 1, pp. 38–45, 2001.

[9] C. Li and H. Tanner, “Navigation functions with time-varying desti-
nation manifolds in star worlds,” Transactions on Robotics, vol. 35,
no. 1, pp. 35–48, 2018.

[10] Z. Ajanovic, B. Lacevic, B. Shyrokau, M. Stolz, and M. Horn,
“Search-based optimal motion planning for automated driving,” in
Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2018, pp. 4523–4530.

[11] D. Ferguson and A. Stentz, “Using interpolation to improve path
planning: The field D* algorithm,” Journal of Field Robotics, vol. 23,
no. 2, pp. 79–101, 2006.

[12] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” Access, vol. 2, pp. 56–77, 2014.

[13] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for
rapid replanning in dynamic environments.” in Proceedings of the
IEEE International Conference on Robotics and Automation, 2007,
pp. 1603–1609.

[14] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Probabilistic rapidly-
exploring random trees for autonomous navigation among moving
obstacles,” in Proceedings of the IEEE International Conference on
Robotics and Automation, 2009, pp. 4027–4033.

[15] J. P. Van Den Berg, D. Nieuwenhuisen, L. Jaillet, and M. Overmars,
“Creating robust roadmaps for motion planning in changing environ-
ments,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2005, pp. 1053–1059.
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