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Abstract— Tethered mobile robots have for a long time been
utilized in search and rescue and deployment in inaccessible or
hazardous environments. From inspection and cleanup inside
nuclear waste tanks to underwater inspection, tethers and
umbilical cords have been a reliable means of uninterrupted
power supply, high-bandwidth communication, and means of
either deployment or recovery in cases of system failure. While
typically tethered robots have been teleoperated, this is not
necessarily the case, and this paper is concerned with aspects
of tether monitoring and management which are central to
autonomous operations. Specifically, the paper reports on a
method to approximate tether shape and configuration in
cluttered workspaces for mobile robots equipped with spooling
mechanisms capable of releasing or collecting a cable of which
the free end is fixed in the workspace.

I. INTRODUCTION

Robotic systems occasionally utilize tethered connections
to their environment or other systems as a means of increas-
ing their mobility (Fig. 1), stability, or functionality [1]–
[5]. A tether on a mobile robot can support weight, provide
power, facilitate communication, and offer reliable means of
physical extraction from a cluttered environment in case of
failure. While tethers can in general increase the capability
of a system, they often pose a new set of constraints on
the system dynamics, complicate motion planning and inter-
robot interaction coordination plans —especially in cluttered
spaces— and make imperative the accurate modeling and
analysis of the interaction between robot, tether, and envi-
ronment.

(a) (b)

Fig. 1: Custom-built, spool-equipped mobile robots with increased mobil-
ity characteristics. (a) Tether-assisted ascent over a fence; (b) Tether-enabled
controlled descent from the ceiling.
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While the planning of the motion of robots on a tether
could benefit from a simple, yet reasonably accurate model
that can predict the configuration of the tether given the
history of motion of the tethered vehicle, not enough atten-
tion has been paid on deriving such models. For instance, a
system which tracks tether or umbilical cord configuration in
search and rescue missions and could predict entanglements
would certainly facilitate operators [1], while requiring less
manpower and allowing for a faster and more reliable re-
sponse. Additionally, it would provide better prediction of
robot location and penetration in the absence of maps, GPS,
or localization infrastructure.

Tethers have also been utilized for cooperation and direct
interaction between vehicles in multi-robot systems [2],
[3]. While umbilical cords can allow power sharing be-
tween vehicles [3], passive mechanical connections between
vehicles through tether interaction can offer unique new
mobility features, such as enabling controlled cooperative
vertical ascent or descent [2]. When tethers are taut [2], [4],
dynamical modeling and kinematic simulation have their own
challenges but are conceptually straightforward; when the
tethers are not [1], [3], however, it is not clear what kind of
analytically amenable tether kinematics models can inform
a high-level robot motion planner or controller.

Motion planning involving tethers or other types of de-
formable material capable of exerting forces on a robotic
device is not an entirely new idea [6]. In fact, the actual
problem of planning fixed-length tether configurations in
cluttered planar environments has been approached as a
discrete (graph) search problem, using homotropic classes of
curves as primitives [5]. Looking at the tether in isolation,
however, may not always be appropriate in applications
involving tethered mobile robots, as it ignores the role of
the tethered vehicle in affecting the state and shaping the
form of the tether itself.

Furthermore, the ability to predict and affect tether con-
figuration can provide insights and open new opportunities
in human-robot interaction applications [4]. One very spe-
cific application area of particular interest in the context
of physical interaction between machines and humans is
found in the area of early pediatric (infant) motor rehabil-
itation using harness systems [7], [8]. Existing systems of
this nature are currently passive in terms of the physical
interaction between the child and the harness system itself,
with the latter serving merely in the role of a reconfigurable
gravity-assistance device. It is conceivable, however, such
cable-driven harness systems can be instrumented, be semi-
automated, and become components of an adaptive system
for (human) motor rehabilitation.



This paper describes a novel method for approximating
the tether shape and configuration when a tethered mobile
robot moves in a cluttered environment. The method draws
from elements of workspace modeling and mathematical
representation that are used in motion planning methods
based on navigation functions [9], [10]. Assuming that the
robot can physically interact with its environment and can
utilize the tether for ascent or descent (Fig. 1), a hybrid
system can be defined to describe the kinematics of the robot
in different modes of operation. The guards that regulate the
transitions in this hybrid system depend on knowledge of
the tether’s configuration. The thesis of this paper, therefore,
is that analytically and computationally tractable ways of
predicting tether configuration can decisively contribute to
the simulation and motion planning for such systems.

The remaining portion of the paper is organized in the
following way. Section II introduces the formal mathematical
formulation of the tethered crawler problem. Section III
constructs the model of the crawler as well as the tether trans-
formation. Section IV reviews the simulation of the inverse
purging transformation and the resulting tethered crawler
kinematics. Section V discusses the relative advantages and
disadvantages of the given methodology. Finally, Section VI
summarizes the key results of the work.

II. PROBLEM STATEMENT

Consider a tethered wheeled mobile robot moving on a
vertical two-dimensional plane Q ⊂ R2, constrained by
obstacles and under the effect of gravity (Fig. 2). The robot’s
coordinates are denoted as a pair q = (x, y). One end of the
tether is attached to the robot, and the other is fixed at an
anchoring location (xa, ya) ∈ Q in the workspace. The robot
is assumed to have a powered spool to allow it to pull or
release the tether at will; pulling the tether exerts a force
on the robot, which can be used to overcome workspace
obstacles, and reach a desired configuration (xg, yg) ∈ Q.
Both robot and tether are assumed to have mass.
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Fig. 2: A two-dimensional scenario where a tethered robot needs to utilize
its tether to negotiate obstacles.

In the context of this problem, the robot is allowed to
come in contact with the workspace boundary, and exploit
this interaction if possible to reach its goal configuration. The
workspace is populated by n obstacles, each with implicit
representation in the form of a function βi : Q → R, for

i ∈ {1, . . . , n}, assuming negative values in the interior of
the obstacles, vanishing on their boundary, and increasing as
the distance between q and the obstacle boundary increases.

The tethered robot uses its powered spool to reel in its
tether while moving toward the anchor point, and releasing
it while moving away, so that the line does not accumulate
on the ground or gets tangled. While the robot moves on
a horizontal surface and the tether has enough length, the
tether lays ahead of the robot without tension (Fig. 3 top);
when the tether becomes taut, it exerts a force on the robot
which can lift it off the ground (Fig. 3 bottom).
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Fig. 3: Top: The robot moving horizontally without interacting kinetically
with the tether. Bottom: The robot swinging from a hinge point at the top
of an obstacle.

III. TECHNICAL APPROACH

A. Workspace topology modeling

The topology of the free space in Q is captured ana-
lytically in the form of a navigation function ϕ [10], a
scalar function ranging from zero to one, being uniformly
maximal on the boundary and having a single minimum at
the goal location. A function that quantifies the distance-to-
goal is denoted γ(x, y) and could be defined as simply as the
squared norm of the difference between (x, y) and the goal
coordinates. The workspace is populated with M internal
obstacles, each with internal representation βi(x, y) : Q→ R
for i = {1, . . . ,M}. A function βi assumes negative values
in the interior of obstacle i, vanishes on the boundary, and
monotonically increases as the distance from the obstacle
boundary increases. The exterior boundary of the workspace
is outlined via function β0. Space limitations do not permit a
detailed presentation of the construction of ϕ, which involves
a star-to-sphere diffeomorphic transformation h of the inte-
rior obstacles and the boundary, parameterized by a positive
constant λ. If the obstacles are not star-shaped, but can
instead be expressed as trees of partially overlapping stars,
then a purging transformation fµ is utilized to transform
the boundary of each outer branch of one of those trees
onto the boundary of its parent branch iteratively, until the
final remaining region is star-shaped. This latter construction
is borrowed and re-purposed for modeling of the tether
configuration in the following section.

B. Tether modeling

In both modes of Fig. 3, the motion of the tethered robot
will be approximated with that of a (rigid) pendulum of



varying length, where all the mass is lumped at the end
point. The lumped mass has no elasticity, so when it collides
with the workspace boundary, it does not rebound. In an
unobstructed region of the plane Q, and if all tether slack
has been reeled in, the robot will swing about a hinge point
(xh, yh); if no obstacles are present, this hinge point will be
the anchor point (xa, ya). If there are obstacles, however, and
the tether lays on top of them, then there may be a multitude
of such hinge points, located on the edge of the obstacles
(Fig. 2). Let the number of possible hinge points be m and
denote Qh the set of all those points, including (xa, ya).
To approximate the tether configuration, the mathematical
machinery put in place to construct the navigation function
ϕ is utilized for this purpose. It has been shown [9] that
a diffeomorphic transformation that maps star trees into
spheres as part of the navigation function construction, can be
“pushed” all the way to collapse interior obstacle boundaries
into points. If this diffeomorphism Φ is applied, a straight
line segment Λ(s) = q1(1− s) + q2 s, s ∈ [0, 1], connecting
the two ends of the tether say q1 and q2, in the transformed
workspace will generate a path in the original space via Φ−1

which has probability zero to intersect with obstacles.
The argument now is that it is not critical that Φ−1(Λ)

does not match exactly the actual shape of the tether. What
is important from the planner’s viewpoint is to identify
the high curvature locations, as these could potentially be
associated with hinge points for the tethered platform. To
this end, the workspace modeling mathematical infrastructure
put in place in Section III-A is being adapted and reused for
predicting the shape of the tether. Specifically, the diffeo-
morphic transformation Φ is reconstructed in a form Φδ by
replacing γ(x, y) with δ(q) , ||q − q1|| · ||q − q2||. The
rest of the construction remains intact; the end result is
a diffeomorphism, the inverse of which maps an arbitrary
path (line segments included) in the point-space to a curve
that meanders between the obstacles. Minimal knowledge of
how the actual tether is threaded through the workspace, e.g.
which side of an obstacle it passes around, is sufficient for
approximating the shape of the tether in the original star-
world workspace. Choices for the path drawn in point space
include a line segment connecting q1 to q2, or a series of
segments connecting these two end points to obstacle points
in between. The focus of this particular paper is not on
exploration of these possibilities or the identification of the
one that yields the most accurate approximation. Instead,
the emphasis here is in formulating a hybrid system model
for the tethered platform which can be informed by such
approximations, and indicating one avenue of investigation
for generating such approximations.

Irrespectively of the choice of this original curve Λ(s),
the inverse transformation Φ−1δ (Λ) yields a tether shape
approximation. Typically, no closed form, analytical ex-
pression for this inverse transformation would be available.
Given, however, that Φδ is a diffeomorphism, a numerical
approximation in the form

Φ−1δ (x+ δx) ≈ Φ−1δ (x) +∇Φ−1δ (x) ∆x

usually suffices. Now the extrema of the derivative of this
inverse transformation ∇Φ−1δ reveals locations along the
tether that can be potential hinge points; with the choice
of a threshold τ > 0, the hinge point set Qh is populated as
follows

Qh = {(xh, yh) : ‖∇Φ−1δ (xh)‖ > τ} ∪ {(xa, ya)}

C. Hybrid robot dynamics

Taking into account the aforementioned model of the
tether, the different modes of mobility for the robot
are modeled as variable-length pendulum motion. The
robot at the end of the tether is able to move along
some surfaces1 without tether action. Otherwise, the
robot moves along a boundary by reeling the tether
or swings freely from the current hinge point until
impacting a surface. As it undergoes transitions between
these modes, the vehicle dynamics are represented in
the form of a hybrid automaton [11]. Specifically, this
is a tuple 〈L,X,A,W,E, Inv,Act〉 with components:

L a finite set of locations;(i)

X the continuous state space;
A a finite set of labels;(ii)

W the continuous communication space;(iii)

E a finite set of events;(iv)

Inv the invariants of continuous dynamics;(v)

Act the assignment of continuous dynamics;(vi)

(i) the nodes in the hybrid automaton graph (Fig. 4);
(ii) the discrete input alphabet that trigger transitions in the
automaton’s graph and label its edges (Fig. 4);
(iii) the domain of external variables that affect its behavior,
e.g. control inputs;
(iv) the automaton’s transitions (Fig. 4), in the form of tuples
〈initial location, action, guard condition, resets on continuous
variables, new location〉;
(v) the subsets of X , one for every ` ∈ L which remain
invariant under the dynamics imposed by Act(`).
(vi) the function that assigns a set of differential equations to
each location.
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Fig. 4: Automaton graph for a tethered wheeled robot.

The components of the hybrid automaton are for the
particular case of the mobile robot of Section II, the graph of
which is shown in Fig. 4, are defined in more detail below.

1Assumed here straight, for simplicity.



The continuous states of the system are four: the position
and velocity of the mobile robot in the plane of motion and
their associated derivatives. The association of the dynamics
of this system to that of a pendulum with variable length
motivates a polar parameterization that involves length and
angle, relative to the closest tether hinge point. The contin-
uous state space therefore is defined as X = R+ × S× R2,
with x = (l, θ, l̇, θ̇) ∈ X .

Note, however, that mapping (l, θ) to (x, y) is not possible
without knowledge of the current hinge point (xh, yh); see
Fig. 2—(l, θ) are relative coordinates. Hinge point locations
are treated as communication variables for this system. The
two continuous communication variables thus form a pair
(xh, yh) ∈ Qh (see Section III-B) and express the absolute
coordinates of the tether hinge point that affects the motion
of the robot. The other exogenous to the system signal
that plays a role in its evolution is the robot’s (bounded)
control input u ∈ [−umax, umax] ⊂ R. Therefore, W ⊆
Qh × [−umax, umax].

The label set consists of three symbols: A = {a, r, f}.
Label a represents horizontal motion on a flat surface where
the tether exerts no tensile force on the robot. Label r is for
tether-assisted motion where the tether is being reeled, and
label f is associated with free-swinging from a hinge point
until impact. Symbol # is not formally part of the label set,
but it marks a transition to a final state.

There are five discrete locations: L = {1, 2, 3, 4, 5}.
Locations 1 and 3 correspond to initial and final states in
the automaton, transitions to which are not explicitly labeled.
Each one of the other locations is associated with a group of
continuous states that belong to the positive limit set of the
dynamics of the system that are triggered by events labeled
by A. Location 1 corresponds to the mode of operation
where the robot rolls on a surface without being subjected
to a tension force by the tether; the latter is being reeled
in without being taut. Location 4 is one where the robot is
leveraging the tether tension for controlled ascent or descent
under gravity, and location 5 is associated to a condition
where the robot swings from a hinge point without having
contact with any surface.

The automaton’s transitions are (forcibly) triggered by
guards, denoted G` with ` ∈ A and expressed in terms of
equality or inequality constraints involving continuous states
and communication variables—latter being control input u
and current hinge point qhc = arg minQh

‖q − qh‖, i.e. the
member of Qh with the smallest Euclidean distance to (x, y).
The value of the navigation function ϕ is used as an indicator
for proximity to workspace boundary; if ϕ(x, y) ≥ c < 1
where c is a threshold, then it is understood that the robot
is in contact with the free workspace boundary. The robot
can move unassisted by the tether whenever it has enough
actuator authority to overcome gravity (its acceleration ~g ):∥∥∥m~g × ∇ϕ

‖∇ϕ‖

∥∥∥ , uc < umax

The guards are parameterized with the current hinge point
qhc, available as a communication variable and which in

conjunction to (l, θ) can determine (x, y):

Gqhc
a = {(l, θ) ∈ Q | θ̇ = 0, ϕ(x, y) ≥ c, |u| < uc(x, y)}

Gqhc
r = {(l, θ) ∈ Q | θ̇ = 0, ϕ(x, y) ≥ c, |u| > uc(x, y)}

Gqhc

f = {(l, θ) ∈ Q | θ̇ 6= 0, ϕ(x, y) < c, |u| ≥ uc(x, y)}
Gqhc

# = {(l, θ) ∈ Q | ϕ(x, y) < 1− c}
Transitions out of locations 2, 4, and 5 induce resets on the

continuous states and communication variables (hinge point
locations)—the latter being the result of the robot reeling
in the tether and reducing its length. In effect, as soon as
‖q − qh‖ → 0 for a qh ∈ Qh, this hinge point disappears.
For transitions that do not affect an instantaneous change
in the state, the state and communication variables map to
the current hinge point qhc, tether length lc, and tether angle
θc. Resets are captured as instantaneous mappings, or jumps,
denoted J and indexed by the event that triggers them.

J(1,2) :


Qh 7→ {qhc}
l 7→ {lc}
θ 7→ {θc}

J(2,4) :


Qh 7→ Qh \ {qhc}
l 7→ minQh\{qhc} ‖qh − q‖
θ 7→ arcsin~g × argminQh\{qhc}

‖qh−q‖−q
gminQh\{qhc} ‖qh−q‖

− π
2

J(5,4) = J(4,5) = J(1,2)

J(2,5) = J(4,2) = J(5,2) = J(2,4)

With the guards and jump maps in place, the automaton’s
events can be defined as follows. As indicated, events take
the form of a tuple, and for the eight transitions shown in
Fig. 4, the events are written as

E1 = 〈1, a,Gqhc
a , J(1,2), 2〉 E2 = 〈2, r, Gqhc

r , J(2,4), 4〉
E3 = 〈2, f,Gqhc

f , J(2,5), 5〉 E4 = 〈4, a,Gqhc
a , J(4,2), 2〉

E5 = 〈4, f,Gqhc

f , J(4,5), 5〉 E6 = 〈5, a,Gqhc
a , J(5,2), 2〉

E7 = 〈5, r,Gqhc
r , J(5,4), 4〉 E8 = 〈2,#, Gqhc

# , J(1,2), 3〉
Locations ` ∈ L have each their own invariant Invqhc

(`) ,
parameterized by the current hinge point qhc, similarly to
guards. An invariant is a region in X where the continuous
state and communication variables lie for as long as the
automaton is at the particular location. When the state exits
any one of these invariants, the guards and events designate
a transition to a new location. For the system at hand, the
invariants are specified as follows.

Invqh(1) = {(l, θ) ∈ X | θ̇ = l̇ = 0, ϕ(x, y) ≥ c}
Invqh(2) = {(l, θ) ∈ X | θ̇ = 0, ϕ(x, y) ≥ c, |u| < uc(x, y)}
Invqh(3) = {(l, θ) ∈ X | θ̇ = l̇ = 0, ϕ(x, y) < 1− c}
Invqh(4) = {(l, θ) ∈ X | θ̇ = 0, ϕ(x, y) ≥ c, |u| > uc(x, y)}
Invqh(5) = {(l, θ) ∈ X | θ̇ 6= 0, ϕ(x, y) < c, |u| ≥ uc(x, y)}

The continuous dynamics are determined for each location
by the assignment map Act : L→ TX (the tangent space of



X). In what follows, T denotes tether tension, m stands for
the mass of the robot, u is the robot’s input, and δ(q) stands
for the Dirac delta function. The latter is utilized to capture
the effect of impact of the robot to workspace boundaries.
The assignment maps are as follows.

Act(i) =

{
l̈ = −g cos(θ) + T + u

m

θ̈ = 0
for i ∈ {1, . . . , 4}

Act(5) =

{
l̈ = −g cos(θ) + T − l̇δ(t) + u

m

θ̈ = − gl sin(θ)− 2l̇θ̇
l − lθ̇δ(t)

IV. NUMERICAL VALIDATION

A. Simulation setup

Consider a simple scenario in which the mobile robot has
to climb over a vertical wall—similarly to the case depicted
in Fig. 1a. The objective here is to test the capacity of the
reported method to simulate kinematically the behavior of the
robot as it utilizes its tether, the latter anchored to a point on
the other side of the wall and connected to a powered spool
on the robot’s body, to climb over this wall (see Fig. 5a). The
first step in the process is to predict the shape of the tether,
and identify the locations along the cable line that could act
as hinge points.

B. Hinge Point Determination

Assume that the fixed anchor point for the tether is located
at coordinates (x, y) = (−0.5, 0) (all lengths assumed in
meters), and the mobile robot’s spool is initially at the point
with coordinates (0.75,−0.75) (Fig. 5a). The ground forms
a workspace boundary along the plane where x = −1, while
the vertical wall is an obstacle in the shape of a thin rectangle
centered at x = 0, and extending up to y = 0 (see Fig. 5a).

The methodology predicts the emergence of three succes-
sive hinge points (Fig. 5c). With the robot moving to the right
approaching the wall, the prediction is that point 1 will first
serve as a hinge point, triggering a swing behavior for the
robot as it reels in its tether until it hits the vertical wall. A
second hinge point at location 2 is identified for the portion
of the motion of the robot as it goes over the edge, after
which the last hinge point at location 3 will be the tether’s
fixed anchor.

C. Simulating tethered robot motion

With these hinge points (Fig. 5c) the kinematics of the
robot is simulated as it attempts to reach the left side of
the wall in Fig. 5a. The robot kinematics assume a constant
acceleration induced by the tether in the direction of the first
hinge point in front of the robot along the curve defined by
the tether.

Figure 6 illustrates the result of simulating the robot’s
maneuver, and Fig. 7 provides some insight into the transition
between phases II and III, the former corresponding to
free swinging in pendulum motion until it hits the wall,
at which point it transitions to tether-enabled vertical climb
along the side of the wall. The robot undergoes five distinct
phases, labeled by uppercase roman numerals in Fig. 6, each

(0.75, 0.75)

(−0.5, 0)

(a)

(b)
1©2©
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Fig. 5: (a) The inverse transform of a straight line between spool and
anchor point produces an estimate of the tether configuration as dropped
over the wall. (b) Curvature along the approximated tether configuration.
(c) Identification of potential hinge points on the tether, informed by the
spikes observed in the curvature of the approximated tether path.

corresponding to different dynamics, and with transitions
between them dictated by the relative position between robot,
hinge point set, and workspace boundary.

V. DISCUSSION

The main advantage of the reported methodology is that it
obviates the need for high-fidelity (e.g. finite-element based)
models for the deformable cable in order to estimate its
configuration and inform on the succession of the robot’s
kinematic modes. As it turns out, the critical elements that
determine the transition between these modes in relatively
simple situations as the ones analyzed and reported in this
paper, are (a) the topology of the workspace which is
assumed known, and (b) the location of tether points in the
neighborhood of which the combined robot-tether system can
behave as a pendulum. Once the tethered robot is represented
mathematically in the form of a hybrid system, knowledge of



vertical

rolling on flat surface

ascent

swinging
free
fall

I
II

III

IV

V

VI

Fig. 6: Path of the robot during the wall climbing maneuver and the
different phases of motion. (I) rolling toward the wall; (II) pendulum motion
from hinge point 1©; (III) rolling on top of the wall; (IV) free fall off the
wall; (V) rolling away from the wall.
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Fig. 7: Pre- and post-impact to wall simulation results. (a) Time evolution
of the angle θ of the pendulum formed between the robot and the hinge
point 1© once the robot loses contact with the ground; just after the first
simulation second, the robot hits the vertical wall and starts climbing up
as it reels in its tether. (b) History of θ̇ during this transition. (c) angular
acceleration.

these elements can allow a fairly accurate and fast simulation
of the system’s kinematics, without resorting to PDE solvers.

The analysis presented here is only a first step in this
direction; it remains to be extended and tested in higher-
dimensional spaces and more complex cluttered environ-
ments. In addition, preliminary analysis indicated the appear-
ance of transient hinge points during motion where there is
no contact between the robot and the workspace boundaries
(ground, walls, etc.) Such phenomena occur for instance
when the tether wraps around an object while the robot
swings, causing a sudden, temporary shortening of the active
tether length.

VI. CONCLUSION

While untethered robotic devices are appealing in terms of
autonomy, tethers and umbilical cords have their role in robot
deployments, especially in unknown and adversarial environ-
ments. In fact, they can enhance the mobility capabilities of
the platforms utilizing them, allowing them new modes of
operation, but they bring analysis challenges of their own, as
the motion of tethered robots can ultimately depend on the
configuration of the tether. Under the right assumptions, it
is possible for this configuration to be approximated to the
degree that the tether’s effect on the vehicle motion behavior
can be accurately predicted. The methodology reported in
this paper is a step in the direction of incorporating such
information in high-level motion planners for tethered robots.
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