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Abstract— This paper outlines a methodology for construct-

ing multiple dynamical behaviors for a multi-agent system

within the motivation dynamics theoretical framework. Recent

work introduced analytical conditions for a dynamical system

to undergo a Hopf bifurcation and generate multiple dynam-

ical behaviors from a single family of continuous dynamics.

The paper contributes by leveraging these recent results to

develop a multi-agent system capable of switching its dynamic

behavior without changing its underlying continuous dynamics.

Simulation and experimental results are provided, confirming

the theoretical results which guarantee the existence of a Hopf

bifurcation in the dynamics of the multi-robot system.

I. INTRODUCTION

A. Motivation

The advent of swarming and flocking control architectures
based on nearest-neighbor interactions was hailed as a break-
through a couple of decades back (e.g. [1]–[3]), giving a
definitive answer to the problem of scalability of earlier,
mostly centralized, multi-robot coordination architectures.
For all its additional advantages in terms of robustness
and simplicity of implementation, however, it appears that
the paradigm merely shifted system vulnerabilities: while
centralized architectures expose the central coordinator as
a single point of failure, the decentralized ones that are
based on nearest-neighbor interaction can still in principle
be disrupted by blocking the agent interaction mechanisms.

In fact, whereas it could take a degree of sophistication for
a targeted attack on the central system node to succeed and
cripple the system, disrupting the interaction mechanisms in
robot swarms and flocks can be relatively low tech, especially
given the main argument for scalability being that the sensing
and computational payload of individual group members
is relatively inexpensive. Indeed, for example, image-based
sensing and localization is problematic in smoke or darkness,
and wireless communication can be jammed. It could be that
the swarming paradigm of the early 2000’s traded one type
of vulnerability for another.

Ultimately, it may not be wise to completely dismiss one
paradigm to fully adopt another, since both have benefits to
offer, especially if a way is found to reign in scalability issues
that come with the increased dimensionality. In fact, there
appear to be ways to make apparently centralized multi-robot
coordination architectures far more robust [4]–[6]. Interest-
ingly, there can also be a third way: a coordination approach
that neither relies on agent interaction, nor does it require
the full state vector of all the robots in order to impose a
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Fig. 1: (Left) Sphero Bolt: A commercially available educational robotic
toy. (Right) Snapshot of infant physically interacting with Sphero [9].

desired collective behavior. This perspective highlights the
distinction between the predominant Lagrangian approach
to multi-agent coordination versus an arguably leaner Eu-
lerian approach [7], taking a position closer to the latter—
in the sense of a common state-dependent (but identity-
independent) control vector field utilization—but without a
reliance on permutation invariance properties.

In this alternative paradigm, all robots in the collective
essentially receive their marching orders in the form of
a common (to all) mathematical specification of desired
behavior, that can be thought of as a universal feedback
law broadcast by a central supervisor. There may be local
reactive adjustments to this universal directive, depending
on the capacity for onboard sensing, but otherwise agents do
not need to interact with each other directly, and each can
be acting as an individual. Interestingly from the viewpoint
of robustness and resiliency, once the directive is issued and
unless it is updated, there is practically nothing that can stop
the swarm from executing its mission, other perhaps than the
disabling of all swarm members.

There are, in fact, cases where the complete lack of inter-
agent sensing and communication capabilities forces the
adoption of a swarm coordination strategy in this regime.
One such case is the deployment of swarms of micro robots
for the delivery of biochemical payload [8]; these tiny
devices have extremely limited to no capacity for sensing
each other, and no potential for onboard computation and
communication. Yet they can all be steered using gradient
fields generated e.g., by chemicals, light, or magnets.

Another case, which is the one motivating the approach
in this paper, is the utilization of collection of inexpen-
sive, commercial-off-the-shelf (COTS) toy robots (Fig. 1) for
initiating purposeful play-based social interaction between
the toy system and children, in order to serve specific
pediatric rehabilitation objectives [10]. In such a robot-child
social interaction context, one control objective for the robot
collective is to exhibit different motion behaviors depending
on the children’s response, to attract and preserve their



attention, focus, and active engagement. One such possibility
is for the robot group to switch between periodic motion
around, and convergence to, a given target (e.g., the child)
in a controllable and stable manner. Here, of course, the
toys themselves can be constructed to be more sophisticated
from a computation and sensing standpoint, but the economic
incentive for the manufacturers to do so may be lacking, and
low-level system access for re-engineering can be limited.

B. Related Work
Existing work on multi-robot control with the objective

of converging to a moving geometric formation around a
target has been mostly based on local interaction (e.g. [11]–
[13]), often using strategies that impose constant inter-agent
bearing [14], [15]—extensions include the utilization of a
beacon as a fixed reference [16]—in an effort to control the
location of the circumcenter and the radius of the circular
orbit. These control schemes, however, are inapplicable when
robots cannot communicate or sense each other.

Convergence to a formation, without requiring local in-
teraction can still be achieved through vector field based
guidance schemes (e.g. [17]). Such schemes might not have
any obstacle avoidance feature incorporated (see [18] for an
exception), yet in a miniature scale, robots can recover easily
from collisions usually unharmed [19], and if collisions must
be avoided at all cost, then reactive schemes can still be
employed if some minimal local sensing is possible [13].

Along the lines of coordinating the motion of robotic
systems using reference vector fields (e.g. [20]) is an ap-
proach that allows them to switch behaviors on the fly
through the adjustment of a single scalar parameter, and
is based on bifurcation theory [21]. Of course, a behavior
effect of this type can also be achieved in a switching or
hybrid systems framework through the utilization of temporal
logic (e.g. [22], [23]), but the former approach obviates
several analytical (e.g. stability during switching; see [24])
and computational (e.g. model checking) considerations. In
the bifurcation theory-based paradigm, the behaviors of the
system are the result of the interaction between a single set of
continuous navigation dynamics and a set of also continuous
motivation dynamics; they can be expressed as a weighted
sum with the weights taking real values in the [0, 1] interval.

There is potential for bifurcation theory to be leveraged
for endowing a swarm of robots with multiple collective
behaviors, the latter encoded in the vector fields resulting
from the nontrivial combinations of that motivational dy-
namics yield. At the time of this writing, there is still no
instance of the utilization of this mathematical methodology
for the coordination of collection of mobile robots in the
peer-reviewed literature. This paper attempts to contribute
into closing this gap.

C. Contribution and Paper Organization
The contribution of this paper is in outlining a new

methodology for a robot swarm to be able to exhibit multiple
dynamic behaviors and rapidly switch among them, without
resorting to local interaction or switching its underlying

continuous dynamics. Thus, rather than switching between
a family of dynamical systems as dictated by some temporal
logic protocol, the behavioral transitions are realized by
updating a small finite set of constant parameters within the
same swarm member dynamics.

The approach reported here follows the motivational
dynamics paradigm for behavior switching. By extending
earlier work in this direction that focuses on single-agent
systems [25], this paper incorporates an additional mean-
ingful tuning parameter in the agent dynamics which adjusts
agent speed, and generalizes the coordination paradigm from
one to many. The modification and generalization essentially
allows the regulation of the intensity of the resulting vector
field that steers the whole swarm, introducing an additional
layer of reconfiguration and customizability to the swarm
coordination protocol.

The rest of the paper is organized as follows. Section II
introduces a key theorem1 [26, Theorem 4.3.2] which estab-
lishes the conditions for the existence of a Hopf bifurcation in
the multi-behavioral system of this paper. Then, Section III
introduces the new parameter of the system and lays out
the mathematical description of the problem considered
here, and is followed by the main results of the paper in
Section IV. Numerical and experimental results confirming
the theoretical predictions are presented in Section V. The
paper concludes by highlighting a few remarks of this work
in Section VI.

II. MATHEMATICAL PRELIMINARIES

Consider a dynamical system parameterized by a contin-
uous constant µ 2 R, that has x 2 Rn as its state:

ẋ = fµ(x) , (1)

and assume that it has an equilibrium at x0 for µ = µ0. For
that equilibrium, suppose that the conditions of the following
theorem hold (cf. [26, Theorem 3.4.2]):

Theorem 1 ( [26], [27]): If the Jacobian Dxfµ0 |x0
of the

right-hand-side of (1) has a simple pair of purely imaginary
eigenvalues ±i! for ! > 0 and no other eigenvalues with
zero real parts, then there is a smooth curve of equilibria�
x(µ), µ

�
with x(µ0) = x0, and the eigenvalues �(µ), �̄(µ)

of Dxfµ0

�
x(µ)

�
which are imaginary for µ = µ0, vary

smoothly with µ. If, in addition, dRe�(µ)
dµ

���
µ=µ0

= d 6= 0,
then there exists a unique three-dimensional center manifold
passing through (x0, µ0) 2 Rn⇥R, and a smooth change of
coordinates for which the Taylor expansion of (1) of degree
3 on the center manifold, is given in polar coordinates:

ṙ = (dµ+ a r2)r ✓̇ = ! + c µ+ b r2 ,

for suitable constants a, b, and c. For a 6= 0, there is a
surface of periodic solutions on the center manifold, and

• if a > 0, the periodic solutions are repelling; whereas
• if a < 0, the periodic solutions are stable limit cycles.

⇧
1The theorem statement is slightly adapted here for simplicity and com-

pleteness, suppressing some background information which is not central to
this analysis.



In view of Theorem 1, let w = (x, y) 2 D ✓ R2,
and consider planar component vector fields Fi(w) : D !
TD, for i 2 {1, 2}. Each vector field has an associated
(Lyapunov) function fi : D ! R for which it is known
that ḟi = r|fi Fi  0 ,

with equality when evaluated at the equilibrium points.
Now let m1, and m2 represent scalar variables ranging in

the interval [0, 1], such that m1 + m2 = ⇢, where ⇢ 2 R+

is a tunable regulation parameter. Then, one can define the
motivation state of the system as the pair (m1,m2), with
each mi having its own dynamics.

Based on Fi and mi, the navigation dynamics is defined
as a new dynamical system formed as a convex combination
of Fi using the motivation state variables mi as weights

ẇ , m1(t) · F1(w) +m2(t) · F2(w) . (2)

Intuitively, each mi expresses the degree to which the
dynamical behavior captured by Fi manifests itself in (2).

Define now the mean-difference coordinates

F̄ , F1(w) + F2(w)

2
�F , F1(w)� F2(w) (3a)

f̄ , f1(w) + f2(w)

2
�f , f1(w)� f2(w) (3b)

m̄ , m1(t) +m2(t)

2
�m , m1(t)�m2(t) , (3c)

in terms of which, (2) can be expressed as
ẇ = 1

2 (�m ·�F + 4m̄ · F̄ ) . (4)

Now fix m̄ = ⇢/2, and for � 2 R impose the following
dynamics on �m:

d�m

dt
= �m (� ��m2) +�f (1��m2) , (5)

which will be referred to as the motivation dynamics of
the combined system. The motivation dynamics introduce
a pitchfork Hopf bifurcation with � as its parameter [28].

Having fixed m̄, (4) now reduces to

ẇ = 1
2�m ·�F + ⇢ F̄ . (6)

Definition 1: An equilibrium (wd,�md) of (5)–(6) is
called a deadlock if �md = 0. ⇧

III. PROBLEM FORMULATION

A. Problem statement
Consider a collection of N robots moving on the plane,

each located at (xrj , yrj , ✓rj ) and having unicycle dynamics
of the form

ẋrj = vj cos ✓rj ẏrj = vj sin ✓rj ✓̇rj = !j , (7)

for j = {1, . . . , N} and assume that each has an output
defined as

⌘j = hj

�
xrj , yrj

�
=


xrj + " cos ✓rj
yrj + " sin ✓rj

�
, (8)

for some small " > 0. It is well known that this system
is output feedback linearizable (see e.g. [29]), so the input
transformation will not be repeated here.

The control objective for this robot collection is to follow
a reference vector field, appropriately defined through (2),

which will steer them along four different attractors, namely
three distinct planar limit cycles and a stable node, selecting
on-line the desired attractor through the choice of a finite set
of parameters.

For i 2 N, and for (xci, yci) 2 R2, ri > 0, consider planar
vector fields Fi of the form:
ẋ = ri(y � yci)

� (x� xci)
⇥
(x� xci)

2 + (y � yci)
2 � r2i

⇤
(9a)ẏ = �ri(x� xci)

� (y � yci)
⇥
(x� xci)

2 + (y � yci)
2 � r2i

⇤
. (9b)

These vector fields admit stable limit cycles that have the
shape of circles centered at (xci, yci) with radii ri. The
associated Lyapunov functions for the vector fields in (9)
is given in the generic form

fi(x, y) =
1
2

⇥
(x� xci)

2 + (y � yci)
2 � r2i

⇤2
.

The control objective is to design navigation and motivation
dynamics (5)–(6) that can exhibit a multitude of stable
steady-state behaviors, including those expressed by (9) but
also distinct others, depending on the choice of µ.

B. Assumptions
For the purposes of the analysis in this paper, the following

simplifying assumptions are made:
Assumption 1: i 2 {1, 2}.
Assumption 2: ri = r > 0.
The following assumption simplifies analysis without any

significant loss of generality:
Assumption 3:

(xc1, yc1) = (0, 0) , yc2 = 0 , xc2 = xdis > 0 .
With these assumptions in place, the expressions for

the component vector fields and their associated Lyapunov
functions reduce to

F1 :

(
ẋ = ry � x(x2 + y2 � r2)

ẏ = �rx� y(x2 + y2 � r2)
(10a)

F2 :

(
ẋ = ry � (x� xdis)[(x� xdis)2 + y2 � r2]

ẏ = �r(x� xdis)� y[(x� xdis)2 + y2 � r2]

(10b)

and
f1(x, y) =

(x2 + y2 � r2)2

2
(11a)

f2(x, y) =
[(x� xdis)2 + y2 � r2]2

2
. (11b)

IV. MAIN RESULTS

Proposition 1 (cf. [25]): Given (10)–(11), there is a dead-
lock for (5)–(6) at (wd,�md) = (xdis/2, 0, 0). ⇧

Proof: A detailed proof of Proposition 1 for the specific
case where ⇢ = 1 can be found in [25]. The proof of
Proposition 1, follows closely on the footsteps of that of
the related result in [25], and thus only a sketch is outlined
below.

With Definition 1 allowing �md = 0, one has

d�m
dt

���
�md=0

= 0
(5)
=) �f = 0

(3b)(11)
=) f1(wd) = f2(wd) . (12)



One of the solutions of (12) is xd = xdis/2. Substituting into
(6)—given that (wd,�md) is equilibrium (and recalling that
w = (x, y))—yields

dx
dt

���
xd,�md

= 0
(6)
=) ⇢F̄x |xd,�md

= 0
(3a)(10)
=) yd = 0 ,

which suggests that yd = 0. Therefore, the equilibrium
coordinates are indeed (wd,�md) = (xdis/2, 0, 0).

The Jacobian of the system vector field (5)–(6) is a 3-
dimensional matrix represented in the form

J(w,�m) =

2

4
J11 J12 J13
J21 J22 J23
J31 J32 J33

3

5 , (13)

which is naturally parameterized by xdis, r, ⇢, and �, given
(10) and (5). Matrix J(w,�m) evaluated at the deadlock,
yields:

Jd , J(w,�m) |w=wd,�m=�md
.

Proposition 2 (cf. [25]): Under the following two condi-
tions on the elements of Jd , J(w,�m) |w=wd,�m=�md

:

(i) The equality constraint:

�J2
11(J22+J33)�J2

22(J11+J33)�J2
33(J22+J33)

+ J11J12J21 + J11J13J31 + J22J23J32

+ J22J12J21 + J33J23J32 + J33J13J31+

J12J23J31 + J21J13J32 � 2J11J22J33 = 0 , (14a)

(ii) and the inequality constraint (tr denotes trace):

tr Jd = J11 + J22 + J33 < 0 , (14b)

the Jacobian of system (5)–(6) evaluated at the deadlock has
two purely imaginary, and one negative real eigenvalue. ⇧

Proof: The detailed proof of Proposition 2 for the case
of ⇢ = 1 can be found in [25]. The general case is not
included in this paper since the same steps can be followed
without the inclusion of ⇢ to disturb the argumentation.

The trace of the Jacobian seen in (14b) can be written as
a function of (r, xdis, ⇢,�):

trJd = �+0.5⇢
⇣
2r2 � 0.5x2

dis

⌘
+0.5⇢

⇣
2r2 � 1.5x2

dis

⌘
.

Defining
P (r, xdis, ⇢) , r8x4

dis� r6x6
dis+a1⇢

2r6x4
dis+a2⇢

2r6x2
dis

+ a3⇢
4r6 + a4r

4x8
dis � a1⇢ r

4x6
dis + (⇢4 � 6⇢2)r4x4

dis

+ (⇢2 � ⇢4)r2x6
dis � a3⇢

4r4x2
dis + a5 r

2x10
dis � a5⇢

2 r2x8
dis

+ a6⇢
4r2x4

dis + a7 x
12
dis + a5⇢

2 x10
dis + a8⇢

4 x8
dis , (15)

with coefficients a1 = 2, a2 = 8, a3 = �16, a4 = 0.375,
a5 = �0.0625, a6 = �4, a7 = 0.00390625, and a8 = 0.25,
and identifying condition (14a) of Proposition 2 as a 2nd

order polynomial in �, allows one to express the two possible
solutions for � in terms of xdis, r as follows:

�1,2 =
1

2⇢
�
2r2 � x2

dis

�
h
� (x2

dis + 4⇢2)r4

+ (0.5x2
dis + 4⇢2r2)x2

disr
2

� 0.0625x6
dis � ⇢2x4

dis ±
p
P (r, xdis)

i
. (16)

In the case of P (r, xdis) < 0, both solutions drawn by
(16) are complex and are discarded; then it is acknowledged
that there no Hopf bifurcation that can be triggered for the
particular choice of (xdis, r, ⇢). For a real solution for �, and
to guarantee the existence of a Hopf bifurcation, the second
condition (14b) should also be satisfied. Hence, there exists a
choice of (xdis, r, ⇢) for which the corresponding bifurcation
parameter solution given by (14a), also satisfies:

� < ⇢x2
dis � 2⇢ r2 . (17)

Ultimately, a real solution of (16) which also satisfies
(17) signifies the existence of a Hopf bifurcation; in fact, it
becomes itself the critical value for the bifurcation parameter
which is henceforth referred to simply as �.

V. VALIDATION

A. Simulation Results

Consider two limit cycles generated by (10) with radius
r = 1.2 and distance between the two centers xdis = 2.5 with
the associated Lyapunov functions given by (11) as shown
in Fig. 2a, and the regulation parameter of the system is set
at ⇢ = 0.75. Proposition 1, indicates that a deadlock of the
system where F̄ = 0 and �f = 0 exists at wd = (1.25, 0).
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Fig. 2: (a) Component vector fields F1 and F2 as limit cycles of radii
r = 1.2 and with centers xdis = 2.5 apart. (b) Flow lines of the navigation
dynamics with � = 0.4 > �c, (red) converging to an elliptical limit cycle,
and with � = 0.3 > �c (blue) converging to the deadlock.

Equation (16) suggests that critical value of the bifurca-
tion parameter for a system with parameters (xdis, r, ⇢) =
(2.5, 1.2, 0.75), is �c = 0.362. As it can be verified, this
critical value of the bifurcation parameter satisfies both con-
ditions of Theorem 1 since the Jacobian (13) has two purely
imaginary eigenvalues and one negative real eigenvalue:

�1,2 = ±0.46 i , �3 = �2.16 ,

while
d�

d�

���
�=0.362

= 0.051 6= 0 .

Figure 2b shows the paths of a robotic agent driven by
the motivational dynamics with two different instantiations
of the bifurcation parameter. When � = 0.4 > �c, the
agent undergoes an eliptical limit cycle; when the bifurcation
parameter is reset to � = 0.3 < �c, the limit cycle disappears
and the agent is led to converge to the deadlock.



The behavior of a robotic agent driven by all the fea-
tures of the navigation-motivation dynamics of (6)–(5) is
illustrated in Fig. 3. First, the motivational dynamics are
frozen ẇ = d�m

dt = 0 at values m1 = 0.75 and m2 = 0
for 100 seconds, letting the component vector field F1 fully
express itself; then the motivational dynamics variables are
reset to m1 = 0 and m2 = 0.75, allowing the component
vector field F2 fully express itself instead for another 100
seconds; following that, the motivational dynamics are let to
evolve with � = 0.4 > �c in the 200–300 second interval,
triggering a limit cycle in between F1 and F2; and finally,
in the 300–400 second interval, the bifurcation parameter is
reset to � = 0.3 < �c, forcing the agent to converge to the
deadlock located at (1.25, 0). It is noteworthy that all four
behaviors are produced by the same vector field structure
given by (2) (or (6), equivalently), with different settings of
the driving motivational dynamics (5).

100 200 300 400
time (t)

-1

0

1

2

3

4

5
x(t)

Fig. 3: The x coordinate of an agent continuously undergoing all behavior
regimes encoded in the motivational dynamics: first the circular limit cycle
centered at (0, 0) and radius 1.2 in the time interval [0, 100]; then the
circular limit cycle centered at (2.5, 0) with the same radius for the interval
[100, 200]; then the elliptical limit cycle around the deadlock at (1.25, 0)
for t 2 [200, 300]; and finally the convergence to the deadlock over the
interval [300, 400].

Figure 4 illustrates the composite behavior of a group
of five agents as it is reflected in the full state dynamics
(x, y,�m), i.e., the agents’ planar position, as well as the
state of the motivational dynamics regulating the composite
reference vector field that drives them. The figure makes it
clearer that as the time-invariant component vector fields
are blended with the help of the motivational dynamics,
the resulting reference vector field is now time-varying.
The system starts evolving with the bifurcation parameter
set above the critical value � = 0.4 > �c. In this case
the reference vector field steers them all into the elliptical
limit cycle, on which they stably converge and follow for
80 seconds. At tc = 80 s the bifurcation parameter resets
instantaneously to a value less than the critical, �0 = 0.3 <
�c. Consequently, the behavior of the system switches, and
the agents’ states continuously transition to a new behavior
where they converge to the deadlock at (1.25, 0).

B. Experimental Results
The objective of this preliminary experimental trial is to

validate the implementability of the vector field approach
to multiple physical robots sharing the same workspace and
directed by the same navigational dynamics. While the group
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Δm(t)

Fig. 4: The system is simulated starting with the bifurcation parameter set
at � = 0.4 admitting a limit cycle. At time tc = 80 sec the bifurcation
parameter changes to � = 0.3 (blue dashed line), and the system switches
to the converging behavior in a continuous manner.

size in this first trial is minimal (n = 2), it still is indicative
of at least two things: (i) physical robots that cannot directly
communicate and are unaware of each other’s presence
can still be coordinated through some shared navigational
dynamics, and that (ii) experimental observations match
simulation results in terms of the ability of the robots exhibit
different behaviors using the same motivational dynamics but
with a different value of the bifurcation parameter each time.
Both robots move at the same desired constant speed of 20
cm/s.

The navigation dynamics utilized in this experimental trial
are exactly the one created in simulation, with parameters set
as (x2

dis = 2.5, r = 1.2, ⇢ = 0.75). The two robotic agents
were realized in the form of Sphero Bolt robots (Fig. 1-
Left). The robots are equipped with an LED array, which
a Zed overhead camera uses to localize them through color
detection, and are directed to track the navigational dynamics
reference vector field. Figure 5 shows the estimated x and
y planar coordinates of the two robots when they follow
the field with � = 0.3 < �c, and � = 0.4 > �c. The
measurements are admittedly noisy, not only due to the color
detection scheme but primarily due to the incapability of
these toy robots to precisely position themselves, in addition
to them moving on a bumpy foamy surface (Fig. 1-Left)
where they will be interacting with children. The physical
volume also needs to be factored in when assessing their mo-
tion in Fig. 5a, as it is impossible for both robots to occupy
the same exact location in space. Similarly, when moving
along the elliptical limit cycle created when the bifurcation
parameter crosses the critical threshold in Fig. 5b, the closed
curve’s eccentricity often forces them to collide producing



additional motion disturbances. Still, the periodicity of the
steady state behavior is still visible in Fig. 5b and the range
of oscillation matches the shape and size of the limit cycle
(Fig. 2a).
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(a) Convergence to deadlock for � = 0.3
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(b) Convergence to limit cycle for � = 0.4

Fig. 5: Behavior of two spheros steered by the navigational dynamics to
converge to a point (a), and to a limit cycle (b) using the same motivational
dynamics with different bifurcation parameters. The horizontal axis in all
graphs measures time in seconds.

VI. CONCLUSION

Swarms of robots that can neither sense nor communi-
cate can still be coordinated to exhibit multiple dynamical
behaviors using navigational dynamics, tunable through a
small set of parameters, as a reference velocity field common
to all swarm members. One of the parameters determines
the nature of the swarm member’s trajectories, while the
other regulates the desired speed along the path. This paper
demonstrates the potential of this type of tunable navigational
dynamics to coordinate groups of minimally instrumented
robots through a common feedback control law that does
not rely on robot-to-robot interaction.
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