
Reactive motion planning for temporal logic tasks
without workspace discretization

Ashkan Zehfroosh and Herbert G. Tanner

Abstract— The curse of dimensionality is a challenge in many
applications of Linear Temporal Logic robot motion planning,
and is linked to the discretization of the robot’s workspace.
The discretization aggravates the problem by introducing a
multitude of atomic propositions. This paper argues that a
large portion of these atomic propositions is unnecessary. It
demonstrates this point by introducing local navigation func-
tions within a temporal logic planning framework, and utilizing
register automata for reactive motion planning without explicit,
high-resolution workspace discretization. Motivation for this
approach comes from applications in pediatric motor rehabilita-
tion involving play-based social child-robot interactions, where
the appropriate robot behavior in response to child actions is
best described in temporal logic terms. A simulation example
drawn from the aforementioned pediatric rehabilitation studies
illustrates the advantages of the approach.

I. INTRODUCTION

Linear Temporal Logic (LTL) has expressive power to de-
scribe a wide variety of high-level robotic missions. Robotic
planning using LTL has traditionally been based on model
checking LTL specification in automata [1]. This approach
generally involves two steps [2], [3]: the construction of
(i) a Buchi automaton encoding the LTL task, and (ii) a
discrete abstraction of the plant dynamics in the form of
a deterministic transition system. The complexity of this
process is exponential in the size of the LTL formula [1],
and it is implicitly assumed that the valuation of the atomic
propositions in the task specification are under the control
of the robot. This problem can be solved by reactive LTL
synthesis [4], with doubly exponential complexity in the
size of the LTL formula. The latter can make the solution
intractable for some applications.

Generalized Reactivity(1) (GR(1)) synthesis appears to
have addressed the complexity issue [5]. The price comes in
terms of expressivity: GR(1) covers only a special subclass
of LTL —although the restriction does not seem to result
in considerable loss [6]. Along the lines of GR(1) synthesis
one would be given sensor information about environment
actions (truth value of atomic propositions not under the
control of the robot), and be asked to realize some desired be-
havior as a reaction (set the truth value of atomic propositions
under robot’s control), either in the form of motion or an
inanimate response [7]. The solution provided is in the form
of a game strategy, continuous execution of which allows

Ashkan Zehfroosh, and Bert Tanner are with the Department
of Mechanical Engineering, University of Delaware. {ashkanz,
btanner}@udel.edu

This work was supported by NIH under grant # R01HD87133.

timely reaction to changes in the environment in addition to
satisfaction of the given specification [7].

GR(1) synthesis is computationally efficient in general;
yet, the size of the state-space in this game is exponential in
the number of atomic propositions in the LTL specification, a
challenge that is typically referred to as state-explosion [8].
Multiple mitigating methods have been suggested, including
a receding horizon approach [9], [10]. The problem is
exacerbated in multi-robot planning cases, and decentralized
solutions are desirable [11].

Most LTL planning formulations discretize the robot’s
workspace, therefore increasing the number of atomic propo-
sitions, and complicating further the expression of task
specifications. However, many of the atomic propositions
introduced are not central to expressing the specification;
rather they are artifacts of the discretization process itself.
The main idea of this paper therefore is to perform GR(1)
synthesis without high-resolution workspace discretization.
The workspace is still partitioned, but this decomposition
is dictated primarily by the specifications given. Rather than
thinking of robot motion as transition from cell to cell, gross
robot motion is driven by globally convergent navigation
function [12] controllers. Linking the continuous robot space
to the discrete “mind” of the planner is facilitated by the
adaptation and utilization of a computation model known as
a register automaton [13]–[16].

Motivation for this approach comes from applications in
early pediatric rehabilitation, in which robots try to socially
interact with children who have motor disabilities. This play-
based interaction between robot and child is designed to
encourage physical activity as a means of assisting and
triggering new motor developmental transitions [17]–[19],
since motor skills and mobility has been shown to promote
cognition [20]–[22]. Preliminary work [23] has offered some
evidence that in this context, appropriate and effective robot
reactions to children behavior are better modeled in LTL.

II. TECHNICAL PRELIMINARIES

Given a set of atomic propositions AP, LTL formulas are
recursively defined as

ϕ ::= True | a ∈ AP | ¬ϕ | ϕ ∧ ϕ′ | © ϕ | ϕ u ϕ′

Given negation (¬) and conjunction (∧), one defines disjunc-
tion (∨), implication (=⇒) and equivalence (⇐⇒); given
temporal operators “until” (u) and “next” (©), one obtains
“finally” (♦ϕ = True u ϕ) and “always” (�ϕ = ¬♦¬ϕ).

The truth value of an LTL formula is evaluated over
infinite sequence σ of (temporal) truth assignments to the
atomic propositions in AP. Denote σ(i), the set of atomic
propositions that are true at position i. The suffix of σ from
position i is denoted σ[i . . .]. Whether σ satisfies LTL formula
ϕ, written σ |= ϕ, can be recursively defined as1

σ |= a iff a ∈ σ(0)
σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2

σ |= ¬ϕ iff σ 2 ϕ
σ |= ϕ1 ∨ ϕ2 iff σ |= ¬(¬ϕ1 ∧ ¬ϕ2)
σ |= ϕ1 ⇒ ϕ2 iff σ |= ¬ϕ1 ∨ ϕ2

σ |=©ϕ iff σ[1...] |= ϕ

σ |= ϕ1 u ϕ2 iff
{
∃j > 0, σ[j...] |= ϕ2 and
∀ 0 6 i < j, σ[i...] |= ϕ1

}
σ |= ♦ϕ iff ∃i > 0, σ[i...] |= ϕ
σ |= �ϕ iff ∀i > 0, σ[i...] |= ϕ

The “always-eventually” operator (�♦) is also useful

σ |= �♦ϕ iff ∀i > 0, ∃j > i, σ[j...] |= ϕ

A formula free of temporal operators, is called Boolean.

A. Atomic propositions

Consider the finite set of atomic propositions AP =
E ∪ Y , where E is the set of atomic propositions controlled
by the environment, and which the robot can react to after
evaluating their truth value, and Y is the set of atomic
propositions the truth value of which is under robot control.

B. Task specification

Specifications are expressed in a special class of LTL [7],
according to which if the environment adheres to certain LTL
assumptions ϕe, the robot should satisfy an LTL formula ϕr:

ϕ = ϕe ⇒ ϕr (1)

A formula ϕα for α ∈ {e, r}, is a conjunction of:
(a) Boolean formulas ϕiα that specify initial conditions
of the environment and the robot. (b) Environment safety
guarantees ϕte =

∧
j=1�Bi where Bi is a Boolean formula

involving propositions in Y ∪ E ∪ E′, and E′ containing
all propositions in E prefixed by the next operator ©; and
robot safety guarantees ϕtr =

∧
j=1�Aj , where Aj is a

Boolean formula involving propositions in Y ∪E ∪Y ′ ∪E′,
with Y ′ constructed from Y just like E′ is from E. (c) Goal
specification ϕgα in the form

∧
j=1�♦Dj where Boolean

formulas Dj are constructed from propositions in Y ∪ E.
A specification ϕ is said to be unsatisfiable if ϕr cannot be

satisfied no matter what the behavior of the environment is. A
specification ϕ is said to be unrealizable if the environment
can force a violation of ϕ. A specification is unsynthesizable
if it is either unsatisfiable or unrealizable. The environment
plays fair if its behavior satisfies ϕie ∧ ϕte [7].

1For a comprehensive exposition of LTL semantics, see [24].

C. GR(1) solutions

Checking for synthesizablity of, and designing a strategy
to satisfy a given task specification ϕ, can be done using
GR(1) [5]. This framework considers the problem as a two-
player game G = (V,E, Y, ϕie, ϕ

i
r, ϕ

t
e, ϕ

t
r, ϕ

g) between the
robot and the environment, where V = Y ∪ E. The game
states are the elements of 2V .

The game starts at initial states s0 ∈ S0 ⊂ 2V such that
s0 |= ϕie ∧ ϕis. Labeling functions γE : 2V → 2E and
γY : 2V → 2Y single out the atomic propositions e ⊆ E
and y ⊆ Y , respectively, that are true in the particular game
state. In every state s ∈ 2V , the environment chooses a
next state having atomic propositions e′ ∈ 2E such that
(s, e′) |= ϕte, in the sense that atomic propositions E and Y
are evaluated based on γE(s) and γY (s) respectively, while
atomic propositions©E are evaluated based on e′. Once the
environment has “played” the robot makes a move picking
atomic propositions y′ ∈ 2Y such that (s, e′, y′) |= ϕtr;
similarly here, atomic propositions E and Y are evaluated
based on γE(s) and γy(s), while those in ©E and ©Y are
evaluated based on e′ and y′, respectively. The robot wins if
ϕg = ϕge ⇒ ϕgr .

There is a set of (winning) states W ⊆ 2V from which
the robot can force its winning condition [5]. If S0 ⊆ W ,
then the specification is synthesizable [25].

The winning strategy is a transition function [25]

δs : W × 2E →W (2)

which prescribes its next winning robot “move.” All state
sequences σ = [s0, s1, s2, . . .] generated based on δs, will
satisfy the specification (1).

III. PROBLEM STATEMENT

Let R = {r1, r2, . . . , rn} be a set of region propositions
defining n disjoint subsets of the robot’s workspace that
have to be visited, and thus necessary to encode the task
specification. Let A = {a1, a2, . . . , am} be a set of Boolean
(action) propositions which the robot can render true or false
at any time, and set Y = R ∪ A. Then with reference to
game G (Section II-C), define γA : 2V → 2A as the labeling
function that identifies the robot actions licensed by the
specification at each state of the game, and γR : 2V → R the
labeling function that projects to the robot’s region associated
with the game state.

The robot evolves with single integrator dynamics

ẋ(t) = u(t), x(t) ∈ X ⊂ R2, u(t) ∈ Ur ⊂ R2 (3)

Proposition ri is true if x belongs in the corresponding
region. Proposition ai becomes true if the robot is performing
the corresponding action. In what follows, hopefully without
causing confusion, the term action is used to refer to both the
atomic proposition, and the physical event the robot triggers.
The robot can “multitask,” and act(t) ⊆ A denotes the set of
actions performed at time t, meaning that ai ∈ act(t) ⇐⇒
ai = 1 (True) at time t.

Problem 1: Given robot model as (3) and a synthesizable
task ϕ as (1), we want to find the control input u(t) as well as
act(t) at each time t, such that the robot’s behavior satisfies
the task ϕ in a fair environment.

IV. TECHNICAL APPROACH

A. Overview

The approach followed here combines two components
hierarchically: a planner sits at the top and determines a
series of waypoints that need to be hit, and actions from
act(t) to be triggered in sequence for specification (1) to
be satisfied; at the bottom we have a continuous feedback
controller u responsible for taking the system through these
waypoints in the order prescribed. The two components are
interlinked, and communication flows bidirectionally at the
frequency of a discrete clock that runs at the time-scale of
the continuous dynamics.

Consider first of the continuous control u that drives
the robot with dynamics ẋ = u between the different
regions of interest: from ri to ri′ . A navigation function
Fii′ is constructed, parameterized by its goal configuration
xg (selected as a point inside ri′ and treating regions rj
for i′ 6= j 6= i as obstacles), and control is assigned as
u = −∇Fii′ .

The high-level planner is a particular register automaton
T = {Q,Q0, F,Σ, D, h, τ,∆} having

Q a finite set of states
Q0 ⊆ Q the set of initial states
F set of final states
Σ the finite alphabet
D a infinite set of vector dataα

h a (vector) registerβ

τ the register assignment mapγ

∆ the transition functionδ

α examples of which can be elements of Rn.
β the register is essentially a static memory buffer.
γ τ : {1, 2, . . . , h} → D ∪ {#} assigns data to registers;
symbol # represents an empty register. Given input data
atom (σ, d) ∈ Σ × D ∪ {#}, a test Test(τ) is performed
on the registers by evaluating Boolean formulas constructed
from AP∪{τ(i) � d} with i ∈ {1, . . . , h}, where � denotes
element-wise inequality.
δ Assume that the automaton is at state q ∈ Q, the register
content is given by τ , and the machine reads (σ, d) ∈ Σ×D∪
{#} at its input. Then there can be two types of transitions(

[q, τ], φr
) (σ,d)−−−→ [q′, τ] (4)(

[q, τ], φiw
) (σ,d)−−−→ [q′, τ ′] (5)

with the following semantics: In (4), the register test φr is
performed and if φr evaluates true then the automaton jumps
to state q′; this is referred to as a read transition. In (5), the
register test φiw is performed and if it evaluates true then the
automaton jumps to state q′ and overwrites the registers with
d; this is referred to as a write transition.

Thus the high-level planner monitors the evolution of the
lower-level continuous dynamics and stores it in its vector
registers. The register conditions Test(τ) then inform it when
it is time to trigger a transition and licensed by the task
specification. This transition determines a new navigation
and Boolean actions (act(t)) for the robot.

B. Particularization to the motivating application

This section instantiates the register automaton of Sec-
tion IV-A in a way that serves the purposes of the motivating
application described in Section I and sets the stage for
the numerical analysis of Section V. The mathematical
constructions of Sections II and III are now recalled.

The set of states is Q = 2Y ∪E —same as those of the
game. Recalling that Y = R∪A and V = Y ∪E, a (region
membership) function r : X → R identifies which element
in R contains a given x ∈ X .

The initial states of the register automaton Q0 are the same
as the initial states of the game structure G. The set of final
states is set to F = ∅; this register automaton has essentially
the structure of a semiautomaton [26]. Alternatively, one can
think of all states being final. The alphabet of this register
automaton is a copy of its state set Σ = Q. The data space of
this machine is D = X ⊂ R2. The register matches the size
of the data: it is a two dimensional array, which is essentially
used to hold the current position of the robot.

The transition function ∆ processes inputs to the register
automaton that are produced by Algorithm 1 and the current
observed position of the robot. Algorithm 1 gets the current
environment state e(t) and current state/register value of the
automaton [q, τ] and returns the next state that need to be
visited s (according to δs) and the intermediate goal point
xg that the robot should head toward (in order to be able
to make transition to state s). The current observed position
xc takes the place of the data atom d in the automaton’s
input (σ, d); the symbolic part of the input is generated
by Algorithm 1 which is the next state of game G to be
visited (as explained above) i.e., σ = s. In other words,
game G through Algorithm 1 attempts to push T to a new
state, while the continuous dynamics periodically updates the
automaton’s register. The transition in T occurs if the register
test condition licenses it. Specifically, upon receiving input
(σ, d) = (s, xc) at state q with register content τ , with s
provided by the game and xc by the continuous dynamics,
the register automaton runs the test r(d) = γR(s); if true, it
takes a write transition(

[q, τ], [r(xc) = γR(s)]
) (s,xc)−−−−→ [s, xc]

and if the test fails, the automaton takes the write transition(
[q, τ], [r(xc) 6= γR(s)]

) (s,xc)−−−−→ [q, xc]

Concurrently, Algorithm 1 informs the continuous dynam-
ics of the current goal position xg; that information, together
with the robot’s current position determine the navigation
function utilized: If xc ∈ ri and xg ∈ rj , pick Fij (Fig. 1).
At the same time, the register automaton T keeps track of

the visiting states and decides which immediate actions (i.e.
act(t)) should be activated at each time to ensure that the
overall robot behavior satisfies the LTL specification.

G Algorithm 1

T

Dynamics (3)

δs

xc(t)

[q, τ]

s

e(t), xc(t)Fij

Fig. 1. Diagram showing the flow of information between the three
key components of the planner: game G, Algorithm 1, and the register
automaton T .

Input: current register automaton state q, current robot’s
position xc(t), observed (sensed) environment signal
e(t), last step goal point x′g , transition function δs,
arbitrary small neighborhood ε around a point that
indicates converging to that point.

1) next state s = δs(q, e(t))
2) intermediate goal region rg = γR(s)
3) randomly choose a point xg ∈ rg
4) if (r(x′g) = rg) ∧ (xc(t) /∈ ε(x′g)) then xg = x′g

Return s, xg
End

Algorithm 1: Algorithm of finding intermediate goal positions.

V. VALIDATION

In the pediatric rehabilitation example that motivated the
approach outlined in this paper (Fig. 2), infants with motor
disabilities are socially interacting with robots in play-based
scenarios that involve physical activity. The play-based in-
tervention is intended to incite infant mobility. If this form
of human-robot interaction (HRI) is to be automated, the
robot has to have a way of deciding what is the intervention-
appropriate response to child behavior in order to keep her
engaged in play-based physical activity.

Similar to other instances of HRI application reported in
literature [27]–[29], a Markovian model is used to model the
interaction at the high level. The parameters of this Marko-
vian model are learned through observations in sessions with
human subjects [23], [30]. Initial approaches to encoding
high-level robot actions in this play-based intervention were
based on describing simple atomic responses like “approach
infant,” “step back from infant,” “stand still,” “make a

Fig. 2. Robot workspace in a child-robot interaction scenario. Two robots
interact with the subject: NAO and Dash.

sound,” etc. Analysis of mobility data from rehabilitation ses-
sions, however, revealed that robot behaviors that appeared
to trigger infant responses were rarely atomic; they usually
involved some combination of proximity conditions with a
temporal pattern of cycling between atomic behaviors. For
example, as a social non-verbal cue to “follow me,” the robot
would typically succeed if it initially approached the child
up to about a meter, stood still for a short time interval, and
then attempted to increase the distance slightly.

We thus conjecture that robot responses modeled in an LTL
framework may be more effective in triggering the desired
subject responses. Toward this end, consider the workspace
of Dash (blue robot in Fig. 2) featured in Fig. 3. The
workspace consists of three labeled regions R = {r1, r2, r3},
with the robot initialized in region r2, while and the human
subject is still. In plain English, we would encode our task
specification related to getting the human subject to follow
the robot as follows:

Infinitely often visit region r3 (reduce distance),
and infinitely often visit r2 (back and forth
movements), and infinitely often make a sound
or flash a light. Never visit region r1 (do not
increase distance beyond its initial value). If the
child starts to follow you, do not remain inside
or visit r3 (to encourage more mobility).

When the human subject changes her state from “not
moving” to “moving,” the high-level plan is considered
successful, the system resets, and the robot waits for the
decision-making algorithm to decide a new optimal high-
level behavior to implement.

Let us see now how the task specification can be encoded
in LTL. Define first the atomic propositions AP = E ∪ Y :
E = {m} is the environment signal that shows if the child

is moving or not. If m is true the infant is moving, and
false otherwise.

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

Dash robot

Infant

Obstacle
r
3

r
2

r
1

Fig. 3. Schematic of Dash’s robot workspace.

Y = R ∪A = {r1, r2, r3, asound/light} are the robot’s
atomic propositions. Predicate ri being true means
the robot is in region i. Similarly, if Boolean action
asound/light evaluates true the robot is making a sound
and flashing a light.

Consider now the following robot and environment formulae
for expressing (1):
ϕie = ¬m : the subject is not moving when the action is

introduced.
ϕte = �(True) : no specific environmental assumptions.
ϕge = �♦(True) : no specific environment goal.
ϕir = r2 ∧ ¬asound/light : the robot initiates the action in

region r2 without making a sound or flashing lights.
ϕtr = �[r1 =⇒ (©r1 ∨©r2)]
∧ �[r2 =⇒ (©r1 ∨©r2 ∨©r3)]
∧ �[r3 =⇒ (©r2 ∨©r3)]
∧
∧
j �[©rj =⇒ ¬

∧
i 6=j©ri]

∧ �[¬© r1]
∧ �[©m =⇒ ¬© r3]
The first part of ϕtr encodes workspace topology, the
second part captures the mutual exclusion region con-
straint (robot in one region only), and the third specifies
the desired robot behavior.

ϕgr = �♦[r3 ∨m] ∧ �♦[asound/light] ∧ �♦[r2 ∨m]

With the exception of partitioning into regions of in-
terest, the approach above does not involve any uniform
high resolution workspace discretization. For comparison
purposes, consider a typical convex polygonal workspace
discretization shown in Fig. 4, with resolution dictated by
the physical size of Dash, which is approximately 20 cm
× 20 cm. This discretization alone brings the length of the
specification and the size of the game machine to 9 × 104

and 2207, respectively, with complexity being exponential in
these parameters. In contrast, the reported approach affords

a task specification of length 92 and a game machine with
32 states.

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

Fig. 4. A convex polygonal workspace discretization.

Implementing now the high-level planner as a combination
(Fig. 1) of game G + Algorithm 1 + register automaton T ,
and populating the set of required navigation functions allows
one to automate the behavior of the robot as it interacts with
the subject. Figure 5 illustrates a possible scenario run in
simulation.

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

6

5

4

r
3

r
1

r
2

2

7

1

3

Fig. 5. Simulated HRI scenario with the robot steered by the planner.
The interaction between robot and subject in this scenario consists of seven
distinct stages.

The simulated HRI scenario of Fig. 5 includes 7 interaction
stages. In stages 1 through 4, the robot senses ¬m, and so it
performs random back and forth motion between regions r2
and r3, while running asound/light attempting to attract the
subject’s attention. In stages 5 and 6, the robot senses m, and

returns to region r2 where it waits. Stage 7 brings back ¬m
measurements, and the robot resumes its attention-grabbing
routine of stages 1–4.

VI. CONCLUSION

Reactive LTL robot motion planning robot is feasible
without resorting to relatively high-resolution discretization
of the robot’s physical workspace. In fact, a workspace par-
titioning that identifies the regions of interest with regards to
problem constraints and task specification, is sufficient. The
workspace discretization that would otherwise be necessary
to track the evolution of the concrete continuous dynamics,
and capture them in discrete form, can be circumvented
with the introduction of an interface between the concrete
continuous dynamics and the very high-level planner, that
takes the form of a register automaton and a collection of
navigation functions for the robot. The introduction of such
an interface promises substantial computational savings.

REFERENCES

[1] Moshe Y Vardi and Pierre Wolper. Automata-theoretic techniques for
modal logics of programs. Journal of Computer and System Sciences,
32(2):183–221, 1986.

[2] Georgios E Fainekos, Hadas Kress-Gazit, and George J Pappas.
Temporal logic motion planning for mobile robots. In Proceedings of
the 2005 IEEE International Conference on Robotics and Automation,
pages 2020–2025. IEEE, 2005.

[3] Geogios E Fainekos, Hadas Kress-Gazit, and George J Pappas. Hybrid
controllers for path planning: A temporal logic approach. 2005.

[4] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module.
In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 179–190. ACM, 1989.

[5] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive (1)
designs. In International Workshop on Verification, Model Checking,
and Abstract Interpretation, pages 364–380. Springer, 2006.

[6] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas.
Where’s waldo? sensor-based temporal logic motion planning. In 2007
IEEE International Conference on Robotics and Automation, pages
3116–3121. IEEE, 2007.

[7] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas.
Temporal-logic-based reactive mission and motion planning. IEEE
Transactions on Robotics, 25(6):1370–1381, 2009.

[8] Hadas Kress-Gazit, Tichakorn Wongpiromsarn, and Ufuk Topcu. Cor-
rect, reactive, high-level robot control. IEEE Robotics & Automation
Magazine, 18(3):65–74, 2011.

[9] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray.
Receding horizon temporal logic planning for dynamical systems. In
Proceedings of the 48h IEEE Conference on Decision and Control
CDC held jointly with 2009 28th Chinese Control Conferenc, pages
5997–6004. IEEE, 2009.

[10] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray.
Receding horizon control for temporal logic specifications. In Proceed-
ings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control, pages 101–110. ACM, 2010.

[11] Jana Tumova and Dimos V Dimarogonas. Decomposition of multi-
agent planning under distributed motion and task ltl specifications. In
54th IEEE Conference on Decision and Control CDC, pages 7448–
7453. IEEE, 2015.

[12] Elon Rimon and Daniel E Koditschek. Exact robot navigation using
artificial potential functions. IEEE Transactions on Robotics and
Automation, 8(5):501–518, 1992.

[13] Michael Kaminski and Nissim Francez. Finite-memory automata.
Theoretical Computer Science, 134(2):329–363, 1994.

[14] Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state
machines for strings over infinite alphabets. ACM Transactions on
Computational Logic (TOCL), 5(3):403–435, 2004.

[15] Yael Cohen-Sygal and Shuly Wintner. Finite-state registered au-
tomata for non-concatenative morphology. Computational Linguistics,
32(1):49–82, 2006.

[16] Jie Fu and Herbert G Tanner. Optimal planning on register automata.
In 2012 Annual American Control Conference ACC, pages 4540–4545.
IEEE, 2012.

[17] Karen Adolph. Motor development. Handbook of child psychology
and developmental science, 2:114–157, 2015.

[18] Laura A Prosser, Laurie B Ohlrich, Lindsey A Curatalo, Katharine E
Alter, and Diane L Damiano. Feasibility and preliminary effectiveness
of a novel mobility training intervention in infants and toddlers with
cerebral palsy. Developmental Neurorehabilitation, 15(4):259–66,
2012.

[19] Karina Pereira, Renata Pedrolongo Basso, Ana Raquel Rodrigues
Lindquist, Louise Gracelli Pereira da Silva, and Eloisa Tudella. Infants
with Down syndrome: percentage and age for acquisition of gross
motor skills. Research in Developmental Disabilities, 34(3):894–901,
3 2013.

[20] J. J. Campos, D. I. Anderson, M. A. Barbu-Roth, E. M. Hubbard, M. J.
Hertenstein, and D. Witherington. Travel broadens the mind. Infancy,
1(2):149–219, 2000.

[21] M. W. Clearfield. The role of crawling and walking experience in
infant spatial memory. Journal of Experimental Child Psychology,
89:214–241, 2004.

[22] Eric A Walle and Joseph J Campos. Infant language development
is related to the acquisition of walking. Developmental Psychology,
50(2):336–348, 2014.

[23] A. Zehfroosh, E. Kokkoni, H. G. Tanner, and J. Heinz. Learning
models of human-robot interaction from small data. In 2017 25th
Mediterranean Conference on Control and Automation, pages 223–
228, July 2017.

[24] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[25] Kai Weng Wong, Rüdiger Ehlers, and Hadas Kress-Gazit. Correct
high-level robot behavior in environments with unexpected events. In
Robotics: Science and Systems, 2014.

[26] Jie Fu, Herbert G. Tanner, Jeffrey N. Heinz, Konstantinos Karydis,
Jane Chandlee, and Cesar Koirala. Symbolic planning and control us-
ing game theory and grammatical inference. Engineering Applications
of Artificial Intelligence, 37:378—391, 2015.

[27] Frank Broz, Illah Nourbakhsh, and Reid Simmons. Planning for
Human-Robot Interaction in Socially Situated Tasks: The Impact of
Representing Time and Intention. International Journal of Social
Robotics, 5(2):193–214, 2013.

[28] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David
Hsu, Wee Sun Lee, and Daniela Rus. Intention-Aware Motion
Planning. In E. Frazzoli et al., editor, Algorithmic Foundations of
Robotics X, volume 86, pages 475–491. Springer-Verlag, 2013.

[29] Catharine LR McGhan, Ali Nasir, and Ella M Atkins. Human intent
prediction using markov decision processes. Journal of Aerospace
Information Systems, 5(12):393–397, 2015.

[30] A. Zehfroosh, H. G. Tanner, and J. Heinz. Learning option mdps from
small data. In 2018 Annual American Control Conference ACC, pages
252–257. IEEE, 2018.

