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Abstract— This paper presents synchronous rendezvous con-
ditions for minimally actuated and very short-range com-
municating mobile sensors in open sea environments. The
working assumption is that the ocean currents of interest can
be approximated by gyres or eddy flows arranged over a
grid, in which each gyre is delineated by Lagrangian coherent
structures. Sensor interactions can only occur between sensors
in neighboring gyres, when they drift in close proximity,
and over short time periods where the required distance is
maintained. Within these application-dictated constraints, a
cooperative synchronization controller is designed to establish
and robustify periodic sensor rendezvous. Both the rendezvous
conditions, as well as the rendezvous controller are tested and
validated in simulation.

I. INTRODUCTION

There is history of deployments of low cost vehicles in
swarms for environmental observation and monitoring [1],
[2]. In oceanic applications, such swarms can be used for
sampling complex submesoscales dynamics or for tracking
ocean features [1]–[4]. Among these features, a wind driven
double gyre flow is of interest [5]. This ocean circulation is
widespread across the mid-latitude sea surface [6] (Fig. 1).
Leveraging these currents, ocean vehicles can cover distances
by simply drifting without spending their energy reserves [7].

Fig. 1: Visualization snapshot (August 2005) of ocean surface currents.
Source: NASA/JPL.

Here we consider a collection of minimally actuated
mobile sensors or vehicles that rely predominantly on the
dynamics of the surrounding environment for navigation
within the workspace. We assume that the vehicles are
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capable of communicating and interacting with each other
over extremely short spatial ranges. Such conditions arise
when semi-passive floating sensors, or active drifters, are
deployed over large areas to track and monitor various
biological, chemical, and physical spatio-temporal processes
that occur in the ocean. Since these sensors may have limited
storage, communication, and power capacity, they must rely
on energy aware motion control and coordination strategies
for data harvesting, exchange, and upload. As such, motion
plans and control strategies for these vehicles must capture
the interplay between sensing, communication, and mobility.

The intermittent and short-range interactions between
these drifters give rise to a particular type of dynamic and
sparse sensor network. This network stays disconnected for
most of the time, and has brief periods in which small,
isolated cliques are formed. Cliques may share nodes, but
not at the same time. Questions of interest here are under
which conditions such cliques are formed, how frequently
do they appear, how could information propagate if they
share some members, and how can the formation of such
cliques be made more robust, given that the nodes can only
interact with each other when they are in very close proxim-
ity. This paper presents conditions for the active formation
and maintenance of these cliques by formulating this as a
synchronous rendezvous problem [8]. Specifically, it presents
conditions for synchronous rendezvous for a semi-passive
mobile sensor network, and a nonlinear synchronization
controller to robustly achieve this rendezvous behavior.

The ocean dynamics are abstracted into a grid of gyres
or eddies as shown in Fig. 1. Under such conditions, one
may want to predict where and when two or more drifters
that move along the boundaries of adjacent gyres will come
close to each other so as to devise a scheduling strategy
to enable a more capable surface (or aerial) vehicles to
rendezvous with the drifters to upload data, download new
deployment commands, and/or physically recover the sen-
sors. Assuming periodic circulations and in the absence of
noise and disturbances, such temporally brief encounters
between these drifters should in principle repeat. In this light,
the problem of verifying or initializing such intermittent
periodic drifter rendezvous behaviors is formulated as an
instance of a synchronous rendezvous problem, with the fol-
lowing important distinguishing features: (i) vehicles cannot
be reasonably be expected to stop and wait at rendezvous
locations, (ii) actuation is expensive and vehicles should
leverage the environmental dynamics whenever possible, and
(iii) the environmental dynamics are periodic and nonlinear.

This paper builds on prior work [9], [10] which exam-



ined synchronous rendezvous conditions and controllers in
one and two dimensions, respectively, but under idealized
conditions for the ambient flow dynamics that drive the
vehicles. Here, a simple nonlinear model of large-scale wind-
driven ocean circulation [11] —more realistic compared to
the agent orbit models in recent prior synchronous ren-
dezvous work [9], [10]— is incorporated. The additional
nonlinearities introduced render the periodic rendezvous and
synchronization problem more challenging, to the extend
that earlier results [9], [10] do not directly carry over. After
presenting sufficient conditions for rendezvous on gyres, the
paper introduces a sliding-mode synchronization controller
for pair of vehicles to lock them into periodic synchronous
rendezvous, under the assumption that the vehicles can only
interact with each other when in very close proximity.

The synchronous rendezvous problem arising from the
very short-range inter-agent interactions is traced back to
almost a decade [8]. The original formulation is not appli-
cable here, mainly because the vehicles considered in this
paper cannot realistically stop and wait for other vehicles
[12]. Other work on synchronous rendezvous [13], [14] does
not translate because rendezvous here does not happen at
user-defined points or regions, but is rather determined by
the ambient geophysical dynamics; in addition, the constraint
that forces vehicles to interact intermittently and only when
in very close proximity, precludes earlier analysis based on
coupled oscillator models [15], [16].

Leveraging the Khinchine’s flatness theorem [17] (Sec-
tion II), which is the foundation for existence of solutions
of integer programming problems, and after the problem
addressed here stated (Section III), the paper develops con-
ditions for drifters on idealized ocean circulation models
to spontaneously rendezvous (Section IV). Anticipating the
importance of robustness to noise and disturbances for
control schemes intended for field applications, a sliding
mode controller is then developed and its stability established
(Section IV). Numerical results are presented to corroborate
the conditions derived and the controller design (Section V).

II. TECHNICAL PRELIMINARIES

A. The flatness theorem

Consider a d-dimensional lattice L ⊆ Zd embedded in
Rd (Fig. 2). The feasibility question for an Integer Linear
Programming (ILP) problem [17]–[19] calls one to determine
if there exist lattice points in a convex body K (a full-
dimensional convex compact set), i.e., if K ∩ L 6= ∅. The
answer to this question ultimately relates to a notion of
measure of width for convex bodies.

Definition 1 ([20]): Let K ⊂ Rd. The width of K along
(vector) primitive v 6= 0 in Rd is defined as

widthK(v) = max{vᵀx | x ∈ K} −min{vᵀx | x ∈ K}

The dual lattice [21] of L is defined as L∗ , {y ∈ Rd |
yᵀv ∈ Z, ∀ v ∈ L}.

Fig. 2: A convex body on a hyperplane-decomposed Z2 lattice. Each
lattice point is labeled by an integer pair of coordinates.

Definition 2 ([20]): The lattice width of K is the minimal
width among all directions of L∗:

width(K,L∗) = min
¶

widthK(y) | y ∈ L∗ \ {0}
©

(1)

For a set K ⊂ Rn, K∗ represents its polar, i.e., K∗ =
{y ∈ Rn | yᵀx ≤ 1 ∀x ∈ K}. In the same context, the
notation K −K is understood in a Minkovski sense, where
K −K = {x − y | x ∈ K 3 y}. The following theorem is
key to developing existence conditions for the solutions of
ILP problems.

Theorem 1 (Khinchine’s flatness theorem [17]): For any
convex body K ∈ Rn, either

µ(K,Zn) , inf{s ≥ 0 : Zn + sK = Rn} ≤ 1 or

λ1
Ä
(K −K)∗,Zn

ä
, inf
v∈L∗\{0}

widthK(v) ≤ f(n)

In the above, µ and f(n) are referred to as the covering
radius and the width function of K, respectively. The main
idea of the theorem is that a convex body will contain lattice
points if its covering radius is small enough; otherwise, if it
is “fairly flat,” it can fit inside the lattice without intersecting
with any of its points.

III. PROBLEM STATEMENT

A. Basic formulation

Let us denote (x, y) the position of a single vehicle, with
position parameterized in a Cartesian way relative to origin
of coordinates. With the amplitude and scale parameters
of the gyre flow dynamics (see Fig. 3) denoted A and s,
respectively [22], a vehicle that simply drifts in the gyre
current will move as

ẋ =− πA sin
πx

s
cos

πy

s
(2a)

ẏ =πA cos
πx

s
sin

πy

s
(2b)



Fig. 3: Sketch of wind driven gyre flow when A = 0.02, and s =
1. Surface vehicles drifting along such gyres have the opportunity to
rendezvous along Lagrangian Coherent Structures.

Consider a planar array of gyres (Fig. 3) and index each
with an integer pair (i, j) that determine their location on
the array. Inside each gyre and for C ∈ [−1, 1], (2) admits
a family Φ(i,j) of invariant orbits Φ(i,j) =

⋃
C ΦC(i,j) with

ΦC(i,j) =
¶

(x, y) ∈ R2 | sin πx
s sin πy

s = C
©

(3)

Now consider two vehicles drifting along neighboring
gyres centered at (i, j) and (i + s, j), very close to the
associated Lagrangian Coherent Structure (LCS), each having
dynamics of the form

ẋ =− πA sin πx1

s cos πy1s + ux (4a)
ẏ =πA cos πx1

s sin πy1
s + uy (4b)

which is essentially an actuated version of (2). Assume
that the vehicles can only exchange information if in very
close proximity; when they are in rendezvous. Rendezvous
between vehicles happens when they are at a distance of at
most δ.

Definition 3 (Rendezvous): Two vehicles, each drifting
along ΦC(i,j), Φ−C(i+s,j), respectively, are at time t within
Euclidean distance d(t). For δ > 0, the vehicles rendezvous
at time τ ∈ R+ if d(τ) ≤ δ.

Problem 1: Design a bounded cooperative control law
ensuring that at steady state two vehicles driven by (4)
will spend spend the maximum possible time in rendezvous
without applying control effort.

Note that since the vehicles can only interact with each
other and coordinate when they are already in rendezvous,
this problem only has a solution if the vehicles can come
into a first rendezvous spontaneously. Then, control action
can be applied to ensure subsequent periodic rendezvous;
presumably, with each iteration their coordinating control
action brings them closer to their longest possible ren-
dezvous, which will occur if both vehicles converge to the
common saddle point of their neighboring gyres (Fig. 3)
simultaneously.

IV. TECHNICAL APPROACH

It should come as no surprise that the approach to solving
Problem 1 proceeds in two stages: (i) determine if and when
two vehicles drifting on neighboring invariant orbits will
rendezvous, and (ii) design the controller that is activated
only when the vehicles are in rendezvous and synchronizes
them so that they establish periodic rendezvous and prolong
their close encounter for as long as the flow dynamics allow.

A. Spatial conditions for rendezvous

Let us focus on a single gyre in Fig. 3 and define a number
of symmetry lines that will facilitate the analysis. Placing a
coordinate system at the center of the gyre, the symmetry
lines of interest are defined in pairs

l1(x, y) = {(x, y) : y = x} ∪ {(x, y) : y = −x+ s} (5a)
l2(x, y) = {(x, y) : x = s

2} (5b)
l3(x, y) = {(x, y) : y = s

2} (5c)

Note that for the array of gyres shown in Fig. 3 there will
be a family of such lines, and that each of the loci defined
above for one gyre are shared by others.

The distribution of vehicle speed in (2) is not uniform.
It can be verified that the speed of a vehicle drifting along
Φ−C(i+s,j) is expressed as

‖V ‖ = πA
»

1− C2 − cos2 πxs cos2 πys (6)

and represented as a polar plot in Fig. 4, where speed ‖V ‖
is parameterized in terms of magnitude and phase relative to
a gyre-centered frame. Speed peaks along the low-curvature

Fig. 4: Symmetry axes and velocity norm distribution along the orbit with
C = 0.1, s = 1, and A = 0.02.

areas of Φ−C(i+s,j), specifically on l2 and l3, and is minimal at
the high-curvature areas that appear on l1. The associated
extremal speed values are ‖V ‖max = πA

√
1− C2 and

‖V ‖min = πA
√
C2 − C4, respectively.

Take 0 < C � 1 and consider two neighboring orbits
ΦC(i,j), Φ−C(i+s,j). (Neigborhing gyre flows have opposite di-
rections, so both sides in (3) flips sign.) Picking |C| small
ensures that the two orbits are spatially close, in a Euclidean
set distance sense, to each other. Consider two vehicles, one



at coordinates A1 : (x1, y1) drifting along ΦC(i,j), and another
along Φ−C(i+s,j) at coordinates A2 : (x2, y2).

Let A′1 denote the symmetric to A1 relative to LCS and
onto Φ−C(i+s,j) (Fig. 5). Note that |A′1A2| ≤ |A1A2| due
to symmetry, which implies that the minima of |A′1A2|
provides a very close lower bound of |A1A2|, and motivates
casting the problem of achieving rendezvous between the two
vehicles as a problem of minimizing the distance between
A′1 and A2 which move according to the same unforced
dynamics (2).

Direct derivation yields

d|A′1A2|
dt

=
(x′1 − x2)(ẋ′1 − ẋ2) + (y′1 − y2)(ẏ′1 − ẏ2)

|A′1A2|
With some algebraic manipulation using (2), and (3) for
Φ−C(i,j+1), it follows that

d|A′1A2|
dt = −πAC

{
(x′1 − x2)

î
cot

πy′1
s − cot πy2s

ó
− (y′1 − y2)

î
cot

πx′1
s − cot πx2

s

ó}
which when one sets to zero for |A′1A2| � s, multiple
solutions emerge:

S1
min = {(x′1, x2, y′1, y2) | y2 − y′1 = −(x2 − x′1)}
S2
min = {(x′1, x2, y′1, y2) | y2 − y′1 = x2 − x′1}

S1
max = {(x′1, x2, y′1, y2) | x′1 = x2 ∧ y′1 + y2 = s}
S2
max = {(x′1, x2, y′1, y2) | y′1 = y2 ∧ x′1 + x2 = s}

The minimum distance between A′1 and A2 is obtained
when the coordinates of A′1 and A2 belong to either S1

min or
S2
min, i.e., when A′1 and A2 are symmetric relative to l1 (see

(5)). The following definition is illustrated in Fig. 5.

Fig. 5: Neighboring invariant orbits for C = 2× 10−4.

Definition 4 (Proximity zone): Let p ∈ Φ−C(i+s,j) 3 q, p′ ∈
ΦC(i+s,j), and p′ be symmetric to p relative to the boundary
shared by Φ−C(i+s,j) and ΦC(i+s,j), such that p−q having slope
±1, and ‖p′−q‖ = δ � s. The δ-proximity zone δpq ⊂ R2 is
inscribed by the line defined by vector p−q and the segment
of orbit Φ−C(i+s,j) between points p and q, denoted Ùpq.

With the terminology of Definition 4 rendezvous between
agents 1 and 2 occurs if A′1 ∈ δqp 3 A2 for some t ∈ R+.

Proposition 1: Consider two vehicles A1(t) and A2(t),
evolving according to (2) along orbits ΦC(i,j) and Φ−C(i,j+s),
respectively, with period TC . Let A′1 be the projection of A1

on Φ−C(i,j+s), and denote p and q the end points of the curve
Φ−C(i+s,j) ∩ δpq . With s an arbitrary point on Φ−C(i+s,j), define

T pi =

∫ p

Ai(0)

ds
‖V (s)‖ T qi =

∫ q

Ai(0)

ds
‖V (s)‖

for i ∈ {1, 1′, 2}, and without loss of generality assume that
T pi < T qi . Denote ηi the number of periods elapsed before
Ai ∈ δpq . Then the two points will rendezvous if the region
in the η′1-η2 plane®

(η1′ , η2) ∈ R2

∣∣∣∣∣T p2 − T q1′TC
≤ η1′ − η2 ≤

T q2 − T
p
1′

TC

´
has a nonempty intersection with the lattice Z2.

Proof: Similar to the condition reported in [9], [10].

Corollary 1: Rendezvous will occur if[
T p2 − T

q
1′

TC
,
T q2 − T

p
1′

TC

]
∩ Z 6= ∅

B. Controller design for synchronous rendezvous

Now consider a combination of (2) and (4), presenting the
scenario of a pair of vehicles where one is actuated and the
other is passive:

ẋ1 =− πA sin πx1

s cos πy1s + ux (7a)
ẏ1 =πA cos πx1

s sin πy1
s + uy (7b)

ẋ2 =− πA sin πx2

s cos πy2s (7c)
ẏ2 =πA cos πx2

s sin πy2
s (7d)

Assume that the two vehicles rotate about neighboring
gyre orbits, ΦC(i,j) and Φ−C(i+s,j) that share a common LCS
boundary along the y axis. The control objective would then
be coded as follows: for n ∈ Z,

x1 + x2
2

→ n s y1 − y2 → 0 (8a)

Without loss of generality, let n = 0. (For n 6= 0 one
can always use new variables ε1 = x1 − 2n s, ε2 = x2 to
recast it as ε1 + ε2 = 0.) Now consider the state (similarity)
transformation

R =


1 1 1 −1
1 −1 1 1
1 1 −1 1
1 −1 −1 −1


and introduce the new variables

ψ1

θ1
ψ2

θ2

 = R


x1
y1
x2
y2



u1
w1

u2
w2

 = R


ux
uy
0
0





with which (7) takes the form

ψ̇1 =− 2πA sin πθ1
2s cos πθ22s + u1 (10a)

θ̇1 =− 2πA sin πψ1

2s cos πψ2

2s + w1 (10b)

ψ̇2 =− 2πA sin πθ2
2s cos πθ12s + u1 (10c)

θ̇2 =− 2πA sin πψ2

2s cos πψ1

2s + w1 (10d)

and (8) becomes

θ1 → 0 ψ1 → 0 (11)

Finally, define the signum function as

sgn(τ) =


1 τ > 0

0 τ = 0

−1 τ < 0

With these definitions in place, the following statement can
be made.

Proposition 2: Consider the system (10). Let A, s, and σ
be positive constants and denote Br = {x ∈ R2|‖x‖ ≤ r}.
Then for the control law

u1 = −π(4 + σ)A sgn(τ) (12a)

w1 = 2πA
î
1 + cos πψ2

2s

ó
sin πψ1

2s (12b)

there exists r > 0 such that for all
Ä
ψ1(0), θ1(0)

ä
∈ Br,Ä

ψ1(t), θ1(t)
ä

converges to the origin in finite time.

Proof: Plugging (12b) in (10b) yields

θ̇1 = 2πA sin πψ1

2s (13)

Set τ = ψ1 + θ1 and pick V = 1
2τ

2 as a Lyapunov function
candidate. Then

V̇ = τ τ̇

= τ [2πA(sin πψ1

2s − sin πθ1
2s cos πθ22s ) + u1]

≤ 4πA|τ |+ τu1 ≤ −σπA|τ | ≤ 0 (14)

and W =
√

2V = |τ | satisfies the differential inequality

D+W ≤ −σπA

Invoking the Comparison Lemma [23], it follows that

W
Ä
τ(t)
ä
≤W

Ä
τ(0)
ä
− σπA

Thus the trajectories of (10) reach the manifold τ = 0 in
finite time, and because of (14) they cannot escape. Once
ψ1 + θ1 = 0, (13) becomes

θ̇1 = −2πA sin πθ1
2s (15)

Now when the two vehicles rendezvous ‖θ1‖ = ‖ 14 (x1 −
y1 + x2 + y2)‖ = o(r), and the linearization of (15) at the
origin

θ̇1 = −π
2A

s
θ1

confirms that θ1 → 0, which forces (since τ = 0) ψ1 → 0.
The control objective (11) is thus achieved.

V. VALIDATION

Fig. 6: Invariant orbits Φ2×10−4

( 1
2
, 1
2
)

, Φ2×10−4

(− 1
2
, 1
2
)

, showing vehicles at locations

A1, and A2, and the projected vehicle 1 location A′1 on the orbit of 2. A
proximity zone is also marked.

Consider vehicle 1 and vehicle 2 drifting on Φ2×10−4

(1/2,1/2)

and Φ−2×10
−4

(−1/2,1/2), respectively. Their initial positions are
(0.85, 1.37 × 10−4) and (−0.71, 0.8 × 10−4), respectively.
The motion of these vehicles on their corresponding orbits
can be parameterized by C, and consequently period TC , as
follows:

C TC [sec] T p
i [sec] T q

i [sec]

A′1 2× 10−4 200.69 16.11 48.22
A2 2× 10−4 200.69 12.61 44.72

Under these conditions, Proposition 1 and Corollary 1
suggest that rendezvous is possible for the two vehicles —
Fig. 7 illustrates graphically the inclusion necessary.
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 2 

Fig. 7: Convex body of the rendezvous condition for the simulation
example within the lattice space.

Once the vehicles do rendezvous, control law (12) is
applied, forcing vehicle 1 to regulate its speed relative to
vehicle 2, for the brief time window of this encounter. The
first rendezvous encounter occurs after 14 seconds and lasts
for about a minute (54 seconds, to be exact). The control
activity associated with this interaction is seen at the bottom
subgraphs of Figs. 8 and 9. The effect of this control action
on x1 + x2 and y1 − y2 is seen as a transient in the upper
subgraphs of these figures, which indicate convergence for
both quantities. For the next 147 seconds the vehicles are
too far away from each other to interact (|A1A2| > 0.15).
They come into rendezvous again at the 215th simulation



second, when another wave of control activity that essentially
performs some fine tuning on the controlled quantities. The
(smooth) depressions observed in positions around the 200th
second in Fig. 8 and around the 150th second in Fig. 9 are
due to the velocity distribution along the orbits.
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Fig. 8: Time evolution of x1+x2
2

(up) and the control input |U | =√
u2
x + u2

y (bottom).
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Fig. 9: Time evolution of y1−y2 (up); the control input history is repeated
from Fig. 8 for easier correlation to position variations.

VI. CONCLUSION

Mobile sensors drifting along naturally occurring geo-
physical flows can leverage ambient environmental dynamics
to perform monitoring, sensor coverage, or data harvesting
tasks, while preserving on board power. In instances where
such platforms need to interact with each other or with other
vehicles (e.g. for uploading data, updating own parameters,
recovery, etc.) but they can only communicate over very
short distances (compared to the scale of their motion paths),
knowing when and where they will naturally meet can be
important. This paper demonstrates that it is possible to
predict such encounters under a nonlinear geophysical model
with limit cycles, and presents a cooperative control law that
can lock the vehicles into periodic and robust rendezvous.
Ongoing research involves extending these pairwise syn-
chronization controller to networks of vehicles, over certain
communication topologies.
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