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Abstract— This paper considers the problem of hierarchical
trajectory planning and control for a class of nonlinear systems
which are feedback linearizable. The proposed hierarchy builds
on the notion of approximate simulation relations. We use the
diffeomorphic transformation between the feedback linearized
system and the nonlinear system, along with the associated
interface between the abstraction and the linearization of the
concrete system obtained via feedback, to recast the problem
of trajectory planning and control for the nonlinear system
into a reduced dimensional space. The formal abstraction
framework then enables the control to be mapped to the
space of the concrete nonlinear system using the feedback
linearized system as a “bridge”. Two different hierarchical
control architectures are proposed for this framework and the
method is demonstrated with a quadrotor system.

Keywords: hierarchical control, abstraction, differential flat-
ness, approximate simulation.

I. INTRODUCTION

Advances in manufacturing techniques have allowed one
to build miniaturized robotic systems; however these systems
can carry only a small payload and possess limited com-
putation resources. Implementing sophisticated control and
planning solutions on these systems can be difficult. In addi-
tion, miniaturization sometimes leads to new geometries and
motion generation mechanisms, which if modeled accurately
yield high dimensional dynamics. The design of controllers
for complex, high dimensional nonlinear systems has always
been challenging. In such cases, a hierarchical approach to
design, which includes a detailed complex model at a lower
level and a simpler coarse model at the upper level may be
preferable. Control can be done in the coarse model and then
the solution can be implemented on the complex system. The
challenge here is to ensure consistency between the coarse
and the detailed representations so that some guarantees of
implementability and performance can be ensured.

Different hierarchical approaches have been proposed for
continuous systems in [1]–[3]. The notion of hierarchical
control framework for continuous control systems proposed
in [1] utilizes vector fields related through a smooth map to
obtain abstract systems. The method is illustrated with linear
systems. An extension of the abstraction to nonlinear (affine)
systems is presented in [4], where it is shown that the local
accessibility of the abstract system is equivalent to the local
accessibility of the nonlinear one. In [4], the abstraction map
is constructed for the purpose of formal verification.
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A constructive method for hierarchical trajectory planning
for nonlinear affine systems is proposed in [2], and ensures
that the trajectories generated in the abstract system are fea-
sible in the concrete one. The notion of simulation relations
[5] is employed for hierarchical control design in [3], while
a relaxation where the simulation relation is approximate is
proposed in [3]. The control law for the abstracted system is
translated from the abstract to the concrete system through
an interface, and a constructive procedure is offered for the
case of linear controllable systems. The important aspect of
the approximate simulation framework is that the output of
the abstract system is not required to match the output of the
concrete system exactly. Instead, the difference between their
output trajectories is bounded to an adjustable tolerance.

The hierarchical trajectory generation method proposed in
[2] is similar to the one suggested herein, although here
abstract trajectories uniquely define the output trajectories
of the concrete system. The emphasis in [2] is on trajectory
generation rather than control design, while the hierarchical
control design of [3] gives constructive tools only for linear
controllable systems. In this paper, we extend these methods
so that they also apply to a class of nonlinear systems which
can be feedback linearized (possibly after prolongations) by
linking differential flatness theory with the framework of [3].
Intuitively, feedback linearization maps the original nonlinear
system into a linear one in Brunovsky canonical form. The
benefit is that at that state the system representation is linear
and the results of [3] apply directly.

We present two methods to construct controllers hierarchi-
cally and show that differentially flat systems admit linear
abstractions where the number of state variables equals the
number of inputs in the system. In one of the hierarchical
methods, the linearized system is used explicitly in the
control loop to construct a dual feedback controller robust to
initial condition errors or disturbances. In this way, one can
apply the methodology to systems for which the set of flat
outputs can only be obtained after reasonable approximations
of the system dynamics. The second one uses a simpler hier-
archical control architecture more preferable to differentially
flat nonlinear dynamics in no need for such approximation.

We demonstrate the application of our method through
an example of quadrotor system. It should be noted that
the feedback linearization is a common method for control
of quadrotors [6], [7]. However, the presented paper goes
one step further and reduces the dimension of the system
through approximate simulation relation. The contribution
of this paper is to reduce complexity and dimensionality
of nonlinear systems that are feedback linearizable through



approximate simulation relations.
Section II which follows reviews approximate simulation

relations from [3] and briefly comments on the differential
flatness property of dynamic systems. Section III shows
how feedback linearizable nonlinear systems are abstracted
and illustrates the design of abstraction based hierarchical
controllers. Section IV presents the design and simulation
results for the dynamical model of a quadrotor helicopter,
and the paper concludes with Section V.

II. PRELIMINARIES

A. Abstractions of linear systems

Consider the following two linear systems:

Σ1 : ξ̇ = Aξ +Bu, y = Cξ (1)

where ξ ∈ Rn is the concrete state, u ∈ Rm is the concrete
control input, y ∈ Rm is the concrete output.1 It is also
assumed that (A,B) is stabilizable, i.e., there exists a m×n
matrix K for which A+BK is Hurwitz. Consider also

Σ2 : ż = Fz +Gv, η = Hz (2)

where z ∈ Rp is the abstract state, v ∈ Rk is the abstract
input and η ∈ Rm is the abstract output. It is assumed
rank(B) = m and rank(C) = m and p ≤ n as Σ2 is
ideally smaller in dimension compared to Σ1.

System Σ2 is Π-related [3] to Σ1 if there is a p×n matrix
Π such that for all ξ ∈ Rn and u ∈ Rm there exists v ∈ Rk
that satisfies Π(Aξ +Bu) = FΠξ +Gv and C = HΠ .

If Σ1 and Σ2 are Π-related, then for any state trajectory
ξ(t) there exists a state trajectory z(t) such that for all t,
z(t) = Πξ(t) and the output trajectory satisfies y(t) = η(t)
[1]. Given Σ1, we can construct Σ2 to be Π-related to Σ1

and call it an abstraction of Σ1.
Thinking of P as the pseudo-inverse of Π, we have the

following [3, Theorem 4]:
Theorem 1 ( [3]): P is an injective map such that

im(AP ) ⊆ im(B) + im(P ) and im(P ) + ker(C) = Rn.

Let D, E and Π to be chosen such that im(P )⊕im(D) = Rn
(⊕ denotes direct sum), im(D) ⊆ ker(C) and PΠ +DE =
In, where In is a n × n identity matrix. Let F and Q be
chosen such that AP = PF − BQ, and set H = CP and
G =

[
ΠB ΠAD

]
. Then Σ2 is Π-related to Σ1.

Through an interface between Σ1 and Σ2, which is a
function of v, ξ, z, the concrete input u can be obtained in
a way that the difference between the output trajectories of
Σ1 and Σ2 is bounded from above for all t. The bound on
the difference between the output trajectories is given by a
simulation function V(z, ξ) [3, Lemma 1].

Lemma 1 ( [3]): There exists a positive definite matrix M
and a positive scalar number λ such that (for a stabilizing
K of Σ1) the following matrix inequalities hold:

M ≥ CTC
(A+BK)TM +M(A+BK) ≤ −2λM

(3)

1In [3], one may have y ∈ Rs where s 6= m.

The matrix M in (3) is related to the matrix P of The-
orem 1, and together they are used to define the simulation
function and the system’s interface:

Theorem 2 ( [3]): Let us assume there exists a n × p
matrix P and an m× p matrix Q such that

PF = AP +BQ and H = CP .

Then the function V(z, ξ) =
√

(Pz − ξ)TM(Pz − ξ) is a
simulation function of Σ2 by Σ1 and an associated interface
is given by

uv(v, z, ξ) = Rv +Qz +K(ξ − Pz) (4)

where R can be an arbitrary m× k matrix.
If one defines 2

γ(v) =
‖
√
M(BR− PG)‖

λ
v (5)

(a K-class function) then for all v ∈ Rk it holds that
γ(‖v‖) < V(z, ξ) [3]. The function γ defined by (5) is
minimal for

R = (BTMB)−1BTMPG . (6)

For Σ2 steered by v(t) and Σ1 by uv(v(t), z(t), ξ(t)) we
will have [3]

‖y(t)− η(t)‖ ≤ max{V(z(0), ξ(0)), γ(‖v‖∞)} . (7)

B. Differential flatness

We extend the results of the previous section to a class of
nonlinear systems that enjoy a structural property known as
differential flatness. For a more comprehensive introduction
to flatness the reader is referred to [8].

Consider the multiple-input-multiple-output (MIMO) non-
linear system

Σ0 :

{
ẋ(t) = f(x) +

∑m
j=1 gj(x)wj

yi = hi(x), i = 1, 2, . . . ,m
(8)

where x ∈ Rn, wj ∈ Rm and y ∈ Rm.
The system is static feedback linearizable (SFL) if the sum

of relative degrees ri of outputs yi satisfy r ,
∑m
i=1 ri = n.

In the case that a system is not SFL, it may be dynamic
feedback linearizable (DFL) through prolongation. In this
paper we restrict our focus to the type of nonlinear systems
that can be feedback linearized either through SFL or DFL.
Assume that (8) is either SFL or DFL (and prolonged if
necessary). Then there exists a diffeomorphism ξ = T (x)
that transforms Σ0 into a linear controllable system with state

ξ = (y1, . . . , y
(r1−1)
1 , y2, . . . , y

(r2−1)
2 , . . . , ym, . . . , y

(rm−1)
m )T

2Since M is positive definite by Theorem 2, it is always nonsingular and
thus

√
M exists.



where y(rj)i denotes the rj-order time derivative of yi:

ξ̇1 = ξ2 = L1
fh1(x), ξ1 , y1.

...

ξ̇r1 = Lrif h1(x) +

m∑
j=1

Lgj (L
r1−1
f h1)wj , u1

ξ̇r1+1 = L1
fy2, ξr1+1 , y2

...

ξ̇r = Lrmf hm(x) +

m∑
j=1

Lgj (L
rm−1
f hm)wj , um .

(9)

In the above L stands for the Lie derivative.
When the diffeomorphic transformation T (x) can be found

to bring (8) into the the Brunovsky canonical form (9), we
say that Σ0 is differentially flat [8]. In such a case, each
of the states and the inputs of Σ0 is a function of y and
a finite number of its (higher order) time derivatives. The
components of y are referred to as flat outputs.

III. HIERARCHICAL DESIGN

In this section we demonstrate how an abstraction of a
feedback linearized system in Brunovksy canonical form (9)
can be related to the nonlinear system Σ0. We saw that a
differentially flat nonlinear system Σ0 can take the form of
the concrete linear system given by (1):

Σ1 : ξ̇ = Aξ +Bu, y = h(x) = Cξ (10)

and the m-dimensional input of Σ0 and Σ1 can be related
through (9); written compactly, the inputs are related as

w = a(x) + b(x)u

where a ∈ Rm, b ∈ Rm×m, and the elements of both a and
b are (generally nonlinear) functions of x.

A. Features of abstract system

Theorem 3: Every (statically or dynamically) feedback
linearizable system Σ0 admits a linear abstraction Σ2 in
which the number of states equals the number of inputs.

Proof: Consider the single-input-single-output (SISO)
case where the A,B,C matrices in Σ1 are of the form

A = J0,r, B =
[
01,r−1 1

]T
, C =

[
1 01,r−1

]
where r is the relative degree of the flat output y. The Jordan
block J0,r has dimension r×r block and eigenvalue 0, Ik is
the identity in Rk×k, 0k1,k2 is the zero in Rk1×k2 , 0k ≡ 0k,k.

Given that (C,A) is observable, P can be chosen as a
matrix whose range spans an arbitrary A-invariant subspace
of dimension greater than or equal to m [3], where m is
the number of outputs in Σ1. (In the SISO case, m =
1.) Choose PT =

[
1 01,r−1

]
and verify that im(P ) ⊕

ker(C) = Rr. According to Theorem 1, the choice of

D =

[
01,r−1
Ir−1

]
, Π =

[
1 01,r−1

]
, together with F = 0,

Q = 0 so that AP = PF − BQ, yield H = CP = 1

and G =
[
ΠB ΠAD

]
=
[
0 1 01,r−2

]
. (Redefining

the dimension of the inputs of the abstract system, one can
simply take G = 1.) After substituting in (2), the SISO Σ2

becomes a single dimensional controllable linear system

ż = Fz +Gv = v, η = z .

Consider now the MIMO case. For each flat output yi, i =
1, . . . ,m, the dynamics of the associated state variables
ξi1, . . . , ξiri can each be described by a SISO subsystem.
The abstract system is essentially a collection of single
integrators, one for each flat output yi. Once the variables
are stacked, the abstract system takes the (trivial) form

ż = v, η = z (11)

where z, v ∈ Rm.

B. Hierarchical Planning and Control Design

The objective is to develop a feedback controller for Σ0

that steers it from an initial state x(t0) to a final state
x(tf ), with t0, tf known. Given that y and its higher order
derivatives are one-to-one mapped to ξ (and x through the
diffeomorphism T ), planning a trajectory from x(t0) to x(tf )
is reduced to finding a trajectory in the (flat) output space y
that satisfies specific initial and terminal constraints.

We present two different control architectures depending
on the fidelity of the abstractions obtained through feedback
linearization. Both architectures can compensate for errors
(mismatches) in the initial condition x(t0) of Σ0, and the
difference lies in how errors induced by modeling simplifi-
cation in the nonlinear dynamics, which are required to find
the flat outputs, are compensated for.

In the first case we assume that flat outputs can be found
without simplification of the dynamics of Σ0. Then the
feedback linearized system Σ1 is an equivalent representation
of the original system. We can plan trajectories that link
x(t0) to x(tf ) and implement them exactly. In the second
case, we essentially assume that flat outputs can only be
found if certain simplifications have to be made in the
dynamics of nonlinear system Σ0. The simplifications would
inevitably introduce a mismatch between the image ξd of
the states x of the nonlinear system under T , and the
states ξd of the feedback linearization Σd1 of the simplified
nonlinear dynamics Σ̃0. Then, an additional feedback loop
is introduced to compensate for the mismatch.

1) When flat outputs are acquired without simplification:
If Σ0 is feedback linearizable, there is a diffeomorphic
transformation ξ = T (x), under which the initial and final
conditions x(t0), x(tf ) are mapped to some initial and final
conditions ξ(t0) = T (x(t0)), ξ(tf ) = T (x(tf )).

For given initial ξ(t0) and desired final states ξ(tf ) for Σ1,
the corresponding initial and final states of its abstraction Σ2

are given as z(t0) = Πξ(t0) and z(tf ) = Πξ(tf ). Since Σ2

of (11) is fully actuated, the design of control input v to
produce trajectories satisfying z(t0) = Πξ(t0) and z(tf ) =
Πξ(tf ) is straightforward. With v specified, the control input
u of Σ1 is given by the associated interface uv defined in
(4), with R given in (6) to guarantee minimal deviation of y



from η (see (7)). Note, however, that in our formulation we
have η = z so the simulation function practically measures
the difference between the output of the concrete (feedback)
linearization Σ1, and the abstract state of Σ2.

Abstract System Σ2

Interface uv

Input Transformation

Nonlinear System Σ0

v

x

w

uv

v
z

State Transformation T (x)

y

η

Fig. 1. A two-level hierarchical control system architecture. The scheme
enables planning and control using models of smaller dimension when the
concrete nonlinear model Σ0 is differentially flat.

This architecture is depicted in Fig. 1. Given Π is surjec-
tive, not all the components of x(t0) and x(tf ) (read ξ(t0)
and ξ(tf )) can be matched when regulating z(t) through v.
Some of this information is lost in the abstraction process.
However, even if the abstraction Σ2 is initiated from an ar-
bitrary initial condition, the approximate simulation relation
[3] that has been established between Σ1 and Σ2 guarantees
that at least m of these components will approximately come
and remain close to the desired values in x(tf ).

2) When flat outputs are acquired after simplifications:
It is often the case that no appropriate output vector y can
be found for the system to be feedback linearized. In certain
cases, some reasonable simplifications in modeling system
dynamics may enable us to obtain the set of flat outputs
for (still nonlinear) system Σ̃0. Due to the errors introduced
by the simplifications, an additional control loop may be
necessary to generate corrective control action in Σ0 that
compensates for the discrepancy between Σ0 and Σ1.

The augmented architecture (in Fig. 2) contains an addi-
tional dynamical system — the flat reference system Σd1:

Σd1 : ξ̇d = Aξd +Buv, ηd = yd .

This system is the (dynamic) feedback linearization of the
simplified system Σ̃0. Implementing the simulation interface
input uv on Σd1 generates a reference trajectory ξd(t) on the
flat space. If Σ0 were flat (no simplifications) then ξd(t)
would be equal to T (x(t)) with x(t) being the trajectory of
Σ0 driven by input a(x) + b(x)uv . But with x(t) being the
state of Σ0 (not Σ̃0), ξ = T (x) and ξd do not match. This
is where the additional control loop is closed around.

Let yd , Cξd and y = h(x) = CT (x) (see (10)).
Define e , y − yd and construct a pseudo-input uF =
(uF1 , u

F
2 , . . . , u

F
m)T for Σ1 component-wise as

uFi = y
(ri)
i d − ki 1e

(ri−1)
i − ki 2e(ri−2)i − . . .− ki riei (12)

where yi d, . . . , y
(ri−1)
i d are obtained through ξd, and y

(ri)
i d

equals uv(i). The gains ki 1, . . . , ki ri are chosen so that the

polynomial sri +ki 1s
ri−1 + · · ·+ki ri is Hurwitz. What uF

does is to modify the input for Σ0 as w = a(x) + b(x)uF

so that the mismatch between the intended concrete state
T−1(ξd) of Σ̃0 and the true state x of Σ0 is minimized. This
hierarchical control architecture is shown in Fig. 2.

Abstract system Σ2

Interface uv
z

Flat Reference System Σd
1

uv

Pseudo input uF

Nonlinear System Σ0

ξd

ξd

uF

w State tranformation
ξ = T (x)

x y

yd

η

x

Input transformation

ξuv → y
(r)
d

v

v

Fig. 2. A three-level hierarchical control system architecture. It applies to
nonlinear systems that can be made differentially flat after some approxi-
mations. An additional control loop is established through uF to mitigate
the effect of the approximation.

The three-level hierarchical control tends to be more robust
to disturbances, initial and terminal state errors compared
to the one with two-levels. The two-level hierarchy can be
applied to systems that can be feedback linearized after
simplification, but its capability to suppress errors and dis-
turbances through its own internal feedback loop is more
limited. In the two-level hierarchy there appears to be an
upper bound on λ in (5) (enters in (3)) and regulates the
magnitude of the residual output trajectory error.

It is known that there may exist singularities in the
controller derived through differential flatness theory [9].
Also there exists input constraints in all practical systems.
To avoid singularities and ensure the feasibility of control
inputs, a general approach is to optimize the output trajectory
in flat space [10]. In the proposed hierarchical control system
architecture, an optimization problem can be formulated
for planning trajectory in the abstract system taking into
consideration of input constraints and the singularities.

IV. EXAMPLE

In this section we consider the dynamical model of a
quadrotor [11]. A quadrotor is an underactuated flying ve-
hicle with four inputs (thrust forces or angular velocities of
each rotor). Schematically, such a system is shown in Fig. 3.

The equations of motions of a quadrotor robot after input
transformation (see [11]) can be described as

ẍ = w1(cosφ sin θ cosψ + sinφ sinψ); θ̈ = w2L

ÿ = w1(sinφ sin θ cosψ − cosφ sinψ); ψ̈ = w3L

z̈ = w1(cos θ cosψ)− g; φ̈ = w4

(13)

where L (not to be confused with the Lie derivative) is the
length from center to rotor and w = (w1, w2, w3, w4)T is the
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Fig. 3. A quadrotor helicopter configuration with roll(rotation along x-
axis), pitch(rotation along y-axis), yaw(rotation along z-axis), where the
Euler angles are ψ, θ, and φ respectively.

vector of inputs obtained through a linear transformation of
the thrust forces Fi for i = 1, . . . , 4. One can refer to [12]
for details on the derivation of (13).

The state vector x for this nonlinear model is defined as

[x1, x2, . . . , x12] = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇] .

For our numerical tests, L = 3. The desired initial and final
conditions of the nonlinear system are

x(t0) = [ 1 2 3 0 0.02 0.1 0.1 0.1 0.3 0.1 0.1 0.1 1 0.1 ]T

x(tf ) = [ 5 7 8 0 0.02 0 0.02 0.03 0.03 0 0 0.1 2 0.1 ]T .

Assuming that the yaw angle φ is sufficiently small yields
a slightly more simplified model:

Σ̃0 :


ẍ = w1(sin θ cosψ); θ̈ = w2L

ÿ = −w1 sinψ; ψ̈ = w3L

z̈ = w1(cos θ cosψ)− g; φ̈ = w4

It can be shown that Σ̃0 is DFL after prolongation with
x13 = w1 and x14 = ẇ1 [11]. The input for Σ̃0 after
prolongation is w′ = [ẅ1, w2, w3, w4]T . The flat outputs are

y = [x1, x2, x3, x4]T = [x, y, z, φ]T .

The vector relative degree of the system is [r1, r2, r3, r4] =
[4, 4, 4, 2]. Under the small angle approximation for φ, its
dynamics are decoupled from the rest of the system, and a
PD controller can be independently designed [11] to set φ
tracking a reference φd(t) = 0,∀t ∈ [t0, tf ], w4 = φ̈d −
kφ1(φ̇ − φ̇d) − kφ2(φ − φd). (That ensures that the small
angle assumption remains valid.) For the rest of the states
we set ξ = [x, ẋ, ẍ, x(3), y, ẏ, ÿ, y(3), z, ż, z̈, z(3)]T and form
the feedback linearized system as

Σ1 : ξ̇ = Aξ +Bu, η = Cξ.

where A = diag(J0,4, J0,4, J0,4). With ξ = T (x) we get

ξ(t0) =[ 1 0.1 0.02 0.10 2 0.1 −0.09 −0.11 3 0.3 −8.82 0.09 ]T

ξ(tf ) =[ 5 0.02 0.04 0 7 0.03 0 −0.2 8 0.03 −7.81 0.1 ]T .

The input w = [ẅ1, w2, w3] (of Σ0) is obtained from input
u (of Σ1) through the nonlinear transformation (where sϕ,
cϕ abbreviate sinϕ, cosϕ respectively)[

ẅ1
w2
w3

]
=

[
sθ w1cθ 0
−sφ 0 −w1cφ
cθ cφ −w1sθ cφ −w1cθ sφ

]−1
·
[

−2ẇ1θ̇cθ+w1θ̇
2sθ+u(1)

2ẇ1φ̇φ−w1φ̇
2sφ+u(2)

2ẇ1θ̇sθ cφ+2ẇ1φ̇cθ sφ−2w1θ̇φ̇sθ sφ+w1(θ̇
2−φ̇2)cθ cφ+u(3)

]

that enables the abstract system Σ2 to be constructed by
setting F = 0, G = I3, H = I3, PT = diag(P4,P4,P4) for
Pk =

[
1 01,k−1

]
, Π = PT :

Σ2 : ż = v, r = η = z

where v, z, r ∈ R3. With z = Πξ we have

z(t0) =[ 1 2 3 ]T , z(tf ) = [ 5 7 8 ]T .

In the abstract system Σ2, as it is fully actuated, we plan
z(t) to be a straight line from z(t0) to z(tf ). This yields
v =

[
v1 v2 v3

]T
=
[
0.2 0.25 0.25

]T
.

A. Two-level hierarchical control design

Ignoring for now the errors introduced by the small
angle assumption, the two-level hierarchical control design
approach is adopted. Setting λ = 3 we have R = 119.868 I3,
Q = 03 and K = diag(Kb,Kb,Kb), where Kb =
103×[−3.129,−1.678,−0.3294,−0.025] and

[
kφ2 kφ1

]
=[

2 1
]
. We assume that the actual initial state of Σ0, xe(t0)

does not coincide with x(t0), but is rather equal to

xe(t0) = [ 1.5 2.5 3.5 0 0.02 0 0.01 0.01 0.03 0 0 0.1 10 0.1 ]T .

For a desired trajectory which requires the quadrotor to
follow a straight line path in the cartesian workspace, the
system’s simulated trajectory is shown in Fig. 4.
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Fig. 4. Quadrotor position and attitude using the two-level hierarchical
controller. The dash lines are the desired trajectories for flat outputs yd =
ηd = z.

B. Three level Hierarchical Controller

Taking into account the small angle errors, the additional
control loop of the three-level hierarchical control archi-
tecture is now established. In this case, with λ = 10, the
interface uv = Rv + Qz + K(ξ − Pz) is constructed with
R = 2.88×103 I3, Q = 03 and K = diag(Kb,Kb,Kb) with
Kb = 105 × [−2.13,−0.41,−0.0281,−0.0007].



The pseudo-input uF is constructed as

uF1 = x
(4)
d − k1 1e

(3)
1 − k1 2ë1 − k1 3ė1 − k1 4e1

uF2 = y
(4)
d − k2 1e

(3)
1 − k2 2ë2 − k2 3ė2 − k2 4e2

uF3 = z
(4)
d − k3 1e

(3)
3 − k3 2ë3 − k3 3ė3 − k3 4e3

where e1 = x − xd, e2 = y − yd and e3 = z − zd. Note
that x(4)d = uv(1), y(4)d = uv(2), z

(4)
d = uv(3). The desired

values for the flat outputs and their derivatives are found
using the state of flat reference system ξd. The gains of uF

are selected as
[
ki 4 ki 3 ki 2 ki 1

]
=
[
40 70 50 12

]
for i = 1, 2, 3 and

[
kφ2 kφ1

]
=
[
2 1

]
. Fig. 5 shows the

evolution of the state variables [x, y, z, φ, θ, ψ]T as they are
steered from xe(t0) to x(tf ) with t0 = 0s and tf = 20s.
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Fig. 5. Position and attitude of the quadrotor using the three-level
hierarchical controller. The dash lines are the desired trajectories for flat
outputs yd = ηd = z.

We performed simulations to study the sensitivity of the
controllers with respect to constant noise. In case of two-
level controller, the system remains stable with noise of
magnitute up to 0.7 in all states with λ = 1.0. In case of
three-level controller, the system remains stable with noise of
magnitute up to 0.4 in all states with λ = 20 (both controllers
performed well under different λ). More thorough analysis
of these methods under noise will be done in the future work.

For practical realization, one needs to measure the com-
plete state vector for feedback. The flat outputs and their
derivatives are computed using ξ = T (x). Comparing the
performance of the two control hierarchies, we find that the
distance between two output trajectories of the abstract sys-
tem and the original quadrotor system in Fig. 4 is larger than
in Fig. 5. This is due to the usage of different values for the
λ parameters. If λ is chosen to be the same, we would obtain
the same bound on the distance between the outputs between
the abstraction and the nonlinear one, as well as similar
system performance. However, because of the simplification
that were made in the dynamics of the nonlinear system,
two-level hierarchical control design cannot afford λ ≥ 5,
while the three-level hierarchical control design can allow
λ > 20 and achieve a smaller difference between the two

output trajectories. This difference between our two control
architectures requires further investigation.

V. CONCLUSION

Feedback linearizable (statically or dynamically) nonlinear
systems admit lower dimensional linear abstractions. The
paper offers a procedure for obtaining these abstractions,
by exploiting the constructive methods available for linear
systems. This procedure allows a trajectory to be planned
on a low dimensional space, and then a control input to be
constructed in order for a refinement of this trajectory to
be implemented on the concrete nonlinear system. Depend-
ing on the nonlinear system’s ability to be fully feedback
linearized, two hierarchical control design architectures are
presented. The first assumes that the nonlinear system is
differentially flat, while the second addresses the case where
reasonable modeling simplifications to the nonlinear dynam-
ics can produce a differentially flat system. In the second
case, a control loop is introduced to compensate for the
approximation errors. The approaches are implemented on
the dynamical model of a quadrotor and simulation results
show that the trajectory of nonlinear system remains bounded
with respect to abstract trajectory where the bound is given
by the approximate simulation function between the feedback
linearized system and the abstract system. A challenge left
to be addressed is to determine how uncertain or stochastic
nonlinear systems can be controlled through a similar type
of hierarchical abstraction design.
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