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Abstract— In this paper we explore a randomized alternative
for the optimization of hybrid systems’ performance. The basic
approach is to generate samples from the family of possible
solutions, and to test them on the plant’s model to evaluate
their performance. This result is obtained by first presenting the
general hybrid optimal control problem, and then converting
it into an optimization problem within a statistical learni ng
framework. The results are applied to examples already existing
in the literature, in order to highlight certain operationa l
aspects of the proposed methods.

I. I NTRODUCTION

A great effort has been devoted to developing optimal con-
trol theory for hybrid systems, extending gradient techniques
[4], [5], [7], [10], [21], dynamic programming theory [11],
and Pontryagin’s Minimum Principle [15], [16]. However,
the general hybrid optimal control problem is far from trivial,
so various restrictions have been imposed in order to obtain
meaningful, and computationally feasible results.

One approach is to limit the control inputs to the discrete
domain. Thus, a performance function is optimized by choos-
ing the modal sequence and the corresponding switching
times. This idea was proposed in [10], [21] restricting the at-
tention to the switching times using a fixed modal sequence.
The result in [10] was later modified [1] to vary the sequence
by iteratively inserting new modes and optimizing a new
fixed sequence until no further improvements were achieved.
The same idea was pursued in [5], with the system restricted
to two modes only, and in [4] with the attention concentrated
on systems with linear continuous dynamics ( [1], [5], [10],
[21] dealt with nonlinear dynamics). Other methods use non-
smooth optimization [14], switching surfaces optimization
[7], model predictive control for optimization of continuous
inputs [3], and game theoretic approaches [18].

An alternative to classical methods is provided by statis-
tical learning algorithms [17], [19]. The objective of such
methods is to optimize a performance measureon average,
guaranteeing that the error between the obtained solution
and the optimal one isarbitrarily small with probability
arbitrarily close to one. This is achieved bysamplingthe set
of potential solutions, and choosing the sample that yields
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the best performance. Randomized techniques have been
previously used to solve some robust control problems that
are NP-hard [12], [20] and for reachability analysis of hybrid
systems [6]. The advantage of statistical methods is that they
simplify the analysis and design tasks at the cost of not being
able to guarantee the optimality of the solution.

We show in this paper that randomized approaches can
also be pursued to study optimal control of hybrid systems, as
previously discussed in [9] using a simulation example. We
present a procedure to use randomized algorithms, obtained
in a manner similar to [20], to solve a class of optimiza-
tion problems for hybrid systems that may include discrete
and continuous control inputs, as well as autonomous or
controlled transitions between modes. An expression that
relates the desired properties of the solution to the numberof
samples needed to obtain them is provided as a mechanism
for controlling the trade-off between the computational com-
plexity (number of samples), and the performance of the so-
lution. The algorithm is tested in simulations, and compared
to results obtained via gradient procedures, showing that
one advantage that the randomized approach (a model-free
technique) has over model-based techniques (e.g. gradient
techniques) is that the theoretical analysis is simpler, making
it applicable for complex situations, at the price of obtaining
a solution that is not guaranteed to bethe optimal.

II. A H YBRID OPTIMAL CONTROL PROBLEM

The hybrid model provided here allows continuous as well
as discrete inputs, autonomous and controlled transitions, and
discontinuities in the state trajectory, as given in [8], [15].

Definition 1 (Controlled Hybrid Dynamical System [8])
A Controlled Hybrid Dynamical System (CHDS) is a tuple
H = [Q,Σ,GA,RA,V,GC ,RC ] where:

• Q is the set of discrete states.
• Σ = {Σq}q∈Q is the collection of dynamical systems

with Σq = (Xq, T , fq, Uq), whereXq is the continuous
state space,T ≡ R

+ is the time set,fq is the continuous
dynamics, andUq is the set of continuous controls .

• V = {V A
q }q∈Q

⋃{V C
q }q∈Q is the set of discrete transi-

tion labels.vA ∈ V A
q determines the next discrete mode

for an autonomous transition, andvC ∈ V C
q determines

the next mode for a controlled transition.
• GA = {GA

q }q∈Q, whereGA
q : V A

q → Xq, is a guard
condition for an autonomous jump for eachq ∈ Q.

• GC = {GC
q }q∈Q, whereGC

q : V C
q → Xq, is a guard

condition for a controlled jump for eachq ∈ Q.
• RA = {RA

q }q∈Q whereRA
q : GA

q ×V A
q → {Xp}p∈Q is

the autonomous transition map.



• RC = {RC
q }q∈Q, whereRC

q : GC
q × V C

q → {Xp}p∈Q

is the controlled transition map.

Finally, H =
(
⋃

q∈Q Xq

)

× Q is the hybrid state space of
H. Note thatV may include the no transition element{id}.

The following notation is used: Labels of different modes
are denoted asvq, elements of discrete sequences asv[i], and
continuous time signals asv(t). v′ denotes the statev at the
end of an active period (just before a transition), whilev
denotes its state at the beginning of an active period.

A Hybrid Time Trajectory[13], [15] is a finite or infinite
sequenceτ := {τ[0], τ[1], τ[2], ...} such thatτ[i] ≤ τ[i+1]

for all i, where τ[i] are the times at which the discrete
transition from modeq[i−1] to q[i] takes place. AHybrid
Switching Sequence[13], [15] is a finite or infinite sequence
(τ,v) = {(τ[0], v[0]), (τ[1], v[1])...} of pairs of switching
timesτ[i] and discrete transition eventsv[i] ∈ V (autonomous
or controlled), whereτ is a hybrid time trajectory, andv is
called a location schedule.

Definition 2 (Hybrid Input and State Trajectory [15])
A hybrid input I := (τ,v,u) consists of a hybrid
switching sequence(τ,v) and a piecewise continuous input
u = {u[0], u[1]...}, where u[i] ∈ U[i] for all i ∈ N and
all t ∈ [τ[i], τ

′
[i]). A hybrid state trajectoryH = (τ,q,x)

consists of hybrid time trajectoryτ , a sequence of discrete
statesq = {q[0], q[1], q[2], ...} and a sequence of absolutely
continuous functionsx = {x[0], x[1], x[2]...}, where
x[i](t) : [τ[i], τ

′
[i]) → X[i] for all i ∈ N and all t ∈ [τ[i], τ

′
[i]).

Definition 3 (Hybrid Execution [13], [15]) An execution
of a CHDS is a collectionEH = (τ,v,u,q,x), composed by
a hybrid inputI and a hybrid state trajectoryH such that
(τ,v,u,q,x) satisfies:

• h0 = (q[0], x[0](0)) is an initial condition ofH
• Continuous Dynamics: For allt ∈ [τ[i], τ

′
[i]), ẋ[i](t) =

fq[i]

(

x[i](t)
)

and x[i](t) ∈ Xq[i]
for all i ∈ N;

• Discrete Dynamics (Autonomous or Controlled): For all
i ∈ N, q[i+1] = v∗(q[i]) ∈ V ∗

q[i]
, x[i](τ

′
[i]) ∈ G∗

q[i]
, and

(

q[i+1], x[i+1](τ[i+1])
)

∈ R∗
q[i]

.

Where (·)∗ denotes(·)Aor (·)C depending on the type of
dynamics (autonomous or controlled respectively).

We now define the optimal control problem. Let{l[i]}i∈N

be a family of continuous flow cost functions withl[i] : X[i]×
U[i] → R

+. Let {ca,[i]}i∈N be a family of autonomous jump
costs withca,[i] : GA

[i] × V A
[i] → R

+. Let {cc,[i]}i∈N be a
family of controlled jump costs withcc,[i] : GC

[i]×V C
[i] → R

+.
Let cf be the terminal cost functioncf : Q × {Xq}q∈Q →
R

+. Let the hybrid cost functionJ(t0, tf , h0, I) = J(I) be:

J(I) :=

L
∑

i=0

(

∫ t[i+1]

t[i]

l[i](s)ds + ca,[i] + cc,[i]

)

+ cf (1)

where [t0, tf ] is the optimization interval (assumed finite),
h0 is the initial condition of the system, andI is the hybrid
input. The optimal control problem can then be stated as:

P1 [15]: Given a systemH (Definition 1) with hybrid
executionEH (Definition 3), optimization interval[t0, tf ],
and initial conditionh0, the Hybrid Optimal Control Problem
(HOCP) is to minimize the total cost (1), over the family of
input trajectories{I}. If a hybrid inputI∗ minimizesJ(I),
then it is called a hybrid optimal control forH.

III. STATISTICAL LEARNING THEORY

Suppose you have a system with decision vectorf ∈ F
and cost functionalR : F → R, and consider the problem
of estimating the best performance of the systemR∗ =
inff∈F R(f). For this purposeN independent and identically
distributed (i.i.d.) random samplesfi; i = 1, ..., N are taken
from F according to a probability distributionP (f). Then
the sample minimum is defined asR0 = mini=1,...,N R(fi),
and the objective becomes that of makingR0 as close as
possible toR∗ [17]. This leads to:

Definition 4 (Probable Near Minimum) GivenR(f), δ ∈
(0, 1), α ∈ (0, 1), a numberR0 ∈ R is said to be a probable
near minimum ofR(f) to level α and confidence1 − δ if
there exists a set̃F ⊆ F with Pr{F̃} ≤ α such that

Pr
{

inf
F

R(f) ≤ R0 ≤ inf
F\F̃

R(f)
}

≥ 1 − δ (2)

Loosely speaking, the levelα describes a set of potential
solutions that may not be represented in the samples taken
for optimization. If this set is made small there will be a
small probability of finding a better solution than the sample
minimum. The confidence (1 − δ) describes the probability
of obtaining the desired level. Definition 4 then implies that
if α and δ are made small (but different than zero), the
probability of finding a better solution will be small (α),
with high confidence (1 − δ).

The mechanism to control the level and confidence of the
sample minimum is the number of samplesN taken from the
set of possible solutions. In order to obtain a probable near
minimum (Definition 4) from the samples,N can be obtained
as a function ofα andδ using the following Lemma [19]:

Lemma 1 (Lemma 11.1 [19])Suppose (F ,S, P ) is a
probability space1, and that R : F → R is a random
variable. Let f1, ..., fN ∈ F be N i.i.d. samples drawn
according toP , and define

R0(f) = min
1≤i≤N

ν(fi) (3)

and pf = P
{

f ∈ F : R(x) < R0(f)
}

, then if 0 < α < 1

PN
{

f ∈ Fm : pf > α
}

≤ (1 − α)N (4)

In words, this result estates that for a sufficiently large
number of samplesN , the probability that the sample min-
imum (3) is close to the optimal solution, will be close to
one. Detailed coverage of theory on Randomized Algorithms
or Statistical Learning can be found in [17], [19].

1P differs fromPr in that the former is assumed to satisfy the properties
of a probability measure



IV. RANDOMIZED OPTIMIZATION OF HYBRID SYSTEMS

In order to use learning theory to solve optimization
problems for hybrid systems, we restate the HOCP (P1) as a
statistical learning one. So instead of looking for a solution
I∗ that guarantees that the cost function (1) achieves its
absolute minimum, we seek an approximateI0 that evaluates
(1) arbitrarily close to its minimum with probability almost
equal to one. The Randomized HOCP can be stated as:

P2: Given a level parameterα ∈ (0, 1) and a confi-
dence parameterδ ∈ (0, 1). The Randomized HOCP is to
find a hybrid inputI0 such thatJ(I0) is a probable near
minimum (Definition 4) with levelα and confidence1 − δ
of the actual minimumJ(I∗) (P1).

Assumption 1 We assume that:

• There is no uncertainty in the dynamics of the system.
• The plant only allows for controlled transitions, i.e. in

Definition 1V = {V C
q }q∈Q, GA = {}, andRA = {}

for all q ∈ Q; and the ExecutionsEH (Definition 3) do
not contain autonomous discrete dynamics.

We initially restrict our attention to plants without un-
certainties. This simplifies the problem at the learning level
because this assumption states the the system’s model is
perfectly known, implying that the estimation of the prob-
ability distribution of the plant (done in [12], [20]) is not
needed. We also restrict ourselves to plants that allow only
controlled transitions. However most of the work in model-
based optimization makes the same assumption [1], [4], [5],
[14], [21]. Note also that we consider systems with both
continuous and discrete inputs.

Denote by{Î} the set of the input samples{Î1, ...ÎN}
that will be used to estimate the optimal hybrid input. Let

J∗ = inf
I∈{I}

J(I) = J(I∗) (5)

be the minimum cost value for the system over the complete
family of hybrid inputs{I} (true optimum), and let

J0 = min
1≤i≤N

J(Îi) = J(I0) (6)

be the minimum cost value for the system over the set of
input samples{Î}. We then have the following results.

Theorem 1 (Minimum number of input samples) The
minimum number of samplesN that guarantee thatJ0 is a
probable near minimum to levelα and confidenceδ of J∗

is

N ≥ ln(1/δ)

ln(1/(1 − α))
(7)

Proof: 2 In Definition 4 letR0 beJ0 andR(f) beJ(I).
Then (2) can be expressed as

Pr{J0 ∈ [inf{I} J(I), inf{I}\{Ĩ} J(I)]} ≥ 1 − δ

with Pr{{Ĩ}} ≤ α, where{Ĩ} ⊆ {I}.

2Proof adapted from Tempo et al. [17] Theorem 9.1 for our problem

This expression is equivalent to

Pr{J0 /∈ [inf{I} J(I), inf{I}\{Ĩ} J(I)]} ≤ δ (8)

with Pr{{Ĩ}} ≤ α.
SincePr{J0 < inf{I} J(I)} = 0 the inner part of (8)

J0 /∈ J0[inf{I} J(I), inf{I}\{Ĩ} J(I)] with Pr{{Ĩ}} ≤ α

is equivalent toPr{I ∈ {I} : J(I) < J0} > α, whereJ0

is obtained from (6). LetI = (Î1, Î2, ...ÎN ), so (8) can be
expressed (due to the i.i.d assumption onÎ1, Î2, ...ÎN ) as

PrN{I ∈ {Î}N : Pr{I ∈ {I} : J(I) < J0} > α} (9)

Comparing (9) to (4) we note that it is upper-bounded by
(1−α)N . Since we want (9) to be smaller thanδ, (8) implies
(1 − α)N ≤ δ, which implies (7).

Algorithm 1 (Randomized optimization of hybrid input)
Given a desired levelα a desired confidence1 − δ and the
complete description of the system (Definition 1):

1) Calculate the minimum number of samplesN needed
to obtain a probable near minimum (p.n.m.) using(7)

2) GenerateN i.i.d. input samplesÎ1, Î2, ...ÎN from the
family of all possible hybrid inputs{I}

3) Test each input samplêIi for i = 1, 2, ..., N in the
plant and calculate their performanceJ(Îi).

4) The p.n.m. costJ0 is given by(3) and the p.n.m. hybrid
input is I0 = arg minÎ1,Î2,...ÎN

J(Îi).

Remark 1 (On the hybrid switching sequence)The pro-
cedure to sample hybrid switching sequences(τ,v) can
vary according to each particular problem. If a switching
sequence has to be obtained directly, a promising procedure
is composed of two steps: First, randomly select a desired
number of transitionsϑ for the sample, and then pick a
random switching sequence(τ,v) of ϑ + 1 elements, with
the times inside the optimization interval[t0, tf ], and the
transition events chosen fromV. Note that one can pick
any distribution for number of transitions or the switching
sequence, while keeping the number of transitions bounded.

Remark 2 (On the piecewise continuous input)Since on
each mode interval the continuous part of the hybrid input
must be continuous, one could generate a large number
of classes of input signals using a set of parameterized
basis functions (e.g. linear, sinusoidal, exponential), such
that during the sampling, their parameters and their weights
are chosen to obtain the final input signal. Another option
may be to express the continuous input as a parameterized
(feedback) function of the state.

A. An application example

We provide an example to test and clarify the proposed
approach. For comparison purposes, we use an example that
already exists in the literature. In this example we optimize
the performance of a dynamical system by choosing the hy-
brid switching sequence. There is no continuous component
in the hybrid input of the existing example [2].
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Fig. 1. Graphical description of the tank system.

The system is composed of two tanks, where the objective
is to control the fluid level of the second tank via the input
flow rate to the first tank (Figure 1). The input variable
u(t) is the input flow rate to the first tank, and the state
variablesx1(t) andx2(t) are the fluid levels at the first and
second tanks respectively. Definingx(t) = [x1(t), x2(t)]

T

the system’s equations (by Torricelli’s principle) are:

ẋ = f(x, u) =

[

−γ1
√

x1 + u
γ1
√

x1 − γ2
√

x2

]

(10)

where γ1, γ2 > 0 are fixed constants. The control input
is constrained to three operating states: fully open, half
open, and fully closed, i.e,u(t) ∈ {umax, 1

2umax, 0}, for
some umax > 0. Since these are discrete values, each
operating state generates a discrete modeq ∈ Q in a
hybrid model (Definition 1). If the set of locations isQ =
{1, 2, 3}, the dynamical systemsΣ1, Σ2, Σ3 are described
as: f1(x, u) = f(x, umax), f2(x, u) = f(x, 1

2umax), and
f3(x, u) = f(x, 0), X1 = X2 = X3 = {x ∈ R

2 : x1 ≥
0, x2 ≥ 0}, and U1 = U2 = U3 = {}. V C

q = Q for all
q ∈ Q (no restrictions on the mode transitions),GC

q = Xq

for all q ∈ Q (a discrete transition is possible for any value
of x), andRC

q leaves the continuous state unchanged for all
q ∈ Q. Note that the system satisfies Assumption 1.

Given an initial conditionx0 = x(0) and a final timeT >
0, the objective is to select a switching sequence that drives
the error betweenx2(t) and a reference signalxr(t) ∈ R to
zero. To this end, the cost function is defined as

J = K

∫ T

0

(x2(t) − xr(t))
2dt (11)

for someK > 0. Comparing (1) to (11), the final cost and
the transition costs are zero, and the flow cost is a continuous
function (because the state flows are continuous).

The chosen parameters for the simulation (identical to [2])
are x0 = [0.4, 0.4]T , T = 5, K = 10, γ1 = γ2 = 1,
umax = 1, and xr(t) = 0.5 + 0.25 t

T
. The level and con-

fidence parameters areα = δ = 0.002 yielding N = 3105
samples, generated according to Remark 1 with the number
of transitions distributed according to a uniform distribution
U [1, 10], the transition times according toU [0, T ] and the
modes according toU(1, 2, 3). The approximate optimal

costs values in three different simulations were0.1072,
0.1090 and 0.1058. The switching sequence and the state
trajectories forJ0 = 0.1058 are shown in Figures 2 and 3.
Comparing this result to that reported in [2], the performance
obtained using the proposed approach is very close to that
obtained using gradient techniques, where the reported final
costs, under the same conditions, were0.107 and 0.105
[2]. The continuous state trajectories also look similar, even
though the mode schedules are different.
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Fig. 2. Optimal mode sequence for tanks problem using the proposed
randomized approach.
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Fig. 3. Optimal state trajectories and reference signal fortanks problem
using the proposed randomized approach (xr(t): Reference,x1(t) and
x2(t): State trajectories).

V. RELAXING ASSUMPTION 1

In this section we show how the procedure explained
above can be applied to systems that instead of having
controlled transitions, are subject to autonomous transitions
triggered by internal events. We also discuss how we can
extend this procedure for the control uncertain systems.

A. Systems with internal autonomous transitions

In order to study systems with purely internal autonomous
transitions we modify Assumption 1 as follows:



Assumption 2 We assume that:
• There is no uncertainty in the dynamics of the system.
• The plant only allows for autonomous transitions. i.e. in

Definition 1V = {V A
q }q∈Q, GC = {}, andRC = {}

for all q ∈ Q; and the ExecutionsEH (Definition 3) do
not contain controlled discrete dynamics. Furthermore,
the autonomous transitions are completely determined
by the dynamics of the system.

The second point in Assumption 2 implies that when
a guard condition inGA is satisfied during the system’s
operation, that transition must occur immediately (forced
transition). Note that the hybrid input of the system can not
be controlled directly. However a special type of hybrid input
is generated and completely determined by the autonomous
discrete dynamics. Thus if these dynamics were modified,
different hybrid inputs could be generated.

The procedure to modify these dynamics is to consider
the transition guards and reset maps inGA, and RA as
control variables. Thus Theorem 1 and Algorithm 1 may
be applied to autonomous discrete dynamics if instead of
sampling hybrid inputs directly, one generates samples for
the switching guards, reset maps, and feedback functions
of continuous state of the system, generating hybrid input
samples indirectly.

B. An example of autonomous transitions optimization

This example was previously presented in [7]. The prob-
lem consists of a unicycle mobile robot, that has to reach a
point in the plane departing from an initial condition while
avoiding a point obstacle. The robot may be controlled by
switching between two discrete behaviors, “approach goal”
(mode 1) and “avoid obstacle” (mode 2). The obstacle is
surrounded by two circular guards (centered at the obstacle
position) that determine which modes are active. If the robot
is in mode 1 and reaches the inner guard, it switches to mode
2. If it is in mode 2 and reaches the outer guard, it switches
to mode 1. The optimization problem is to choose the best
radii for these two circular guards such that the robot gets
as close as possible to the goal without hitting the obstacle.

The robot is described using its kinematic model as:

ẋ = v cosφ (12a)

ẏ = v sin φ (12b)

φ̇ = ω (12c)

where the position of the robot(x, y) and its orientationφ
form the continuous state of the system, andv andω are its
linear and angular speeds. The goal is located at(xg, yg) ∈
R

2, and the obstacle at(xo, yo) ∈ R
2. v has a constant value

while ω is the feedback control input that changes according
to each mode: In mode1, ω is given byω1 = C1(φg − φ)
whereφg = arctan((yg − y)/(xg − x)) and C1 > 0 is a
constant. In mode2, ω is given byω2 = C2(φ − φo) where
φo = arctan((yo − y)/(xo − x)) andC2 > 0 is a constant.

The procedure to map the robot model (12) to the hybrid
system (Definition 1) is similar to that on the previous ex-
ample. However the parametrization of the switching guards

and reset maps is different (similarly to [7] we assume a
fixed continuous control input (C1, C2) that is not considered
as an optimization variable). Note from the nature of the
system that the reset mapsRC

q leave the continuous state
unchanged for allq ∈ Q, while the transition guards must
be parameterized according to the circular guards described
in the problem. Therefore, let

GA
1 (v1 = 2, rin) = (xo − x)2 + (yo − y)2 − r2

in (13a)

GA
2 (v2 = 1, rout) = (xo − x)2 + (yo − y)2 − r2

out (13b)

where theGA
1 is the guard to jump from mode 1 to mode

2, GA
2 is to jump from mode 2 to mode 1, andrin androut

are the radii of the inner and outer guards respectively. The
cost functional is defined as

J =

∫ T

0

[

(xg −x)2 +(yg −y)2 +βe−ξ[(xo−x)2+(yo−y)2]
]

dt.

The simulations parameters arev = 1, C1 = 2, C2 =
0.4, T = 3, ξ = 10, β = 5, (xg , yg) = (2.25, 2),
(xo, yo) = (1, 1), and (x(0), y(0), φ(0)) = (0, 0, 0). The
level and confidence parameters areα = 0.02 andδ = 0.02
yielding N = 194 (note that because the sampling space is
simple, low values of level and confidence parameters can
yield to good results). The resulting approximate optimal
cost was J0 = 10.4695 with optimal r0

in = 0.4807,
r0
out = 0.5006, while an optimization performed using

the algorithm reported in [7] with the same values yielded
J∗ = 10.4609, r∗in = 0.4963, r∗out = 0.4963. A comparison
of the trajectories and guards obtained via the randomized
approach (Figure 4), and those obtained using the gradient
descent approach [7] (Figure 5) shows that both results are
almost identical.
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Fig. 4. Robot trajectory and optimal guards using the proposed randomized
approach

C. Possible extensions for uncertain systems

Statistical learning is useful in the control of uncertain
systems [12], [17], [20]. Particularly, in the case of hybrid
systems, these uncertainties may be encountered in the form
of parameter uncertainties, noise, or externally triggered
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Fig. 5. Evolution of the robot trajectory and switching guards using a
gradient descent approach. The optimum configuration is where the two
guards collide.

transitions (discrete jumps caused by external events that
are not known a priori). Thus consider a hybrid system
with any of the two transition types previously treated
(controlled or autonomous internally triggered) togetherwith
modeling uncertainty. In order to control such system, the
approach would be to split the hybrid inputI in two separate
sequences, one that can be completely controlledIc and
another representing the uncertaintiesIu. With these two
sequences the goal would be to obtain the average behavior
of the uncertain sequenceIu in order to apply the result
obtained in this paper (or a similar one) to optimize the ex-
pected value of the performance of the systemE[J(Ic, Iu)]
by choosing the best control sequenceIc. In this manner,
we would guarantee that the system performs optimallyon
average, with certain accuracy (given for the average part of
the procedure), level, and confidence. To this end, we must
apply concepts such as Hoeffding inequality [17], or VC-
theory [17], [19], together with the ideas explained in this
paper.

VI. CONCLUSIONS

We have presented a randomized approach for optimal
control of hybrid systems. We defined a general hybrid
optimal control problem, and stated an equivalent problem
in the randomized framework. We provided an expression
that relates the requirements of the desired solution (level
α and confidence1 − δ) with the computational complexity
(number samples) needed to guarantee such requirements.
In this form the performance/ computational complexity
trade-off can be controlled. We tested our approach on two
different examples and obtained comparable results to those
available in the literature using model-based approaches.The
advantage of the proposed approach is that the theoretical
analysis is simplified due to its model-free nature, making
it attractive for complicated systems where model-based
techniques may face difficulties. However, the price to pay
for this problem simplification is that the proposed approach
does not guarantee the optimality of the final solution.

The results obtained so far are useful for special subclasses
of the general hybrid system defined in the paper, but
future research directions include the generalization of the
proposed algorithm to be applicable for both types of discrete
dynamics, and for control of uncertain systems.
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