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Abstract— In this paper we explore a randomized alternative the best performance. Randomized techniques have been
for the optimization of hybrid systems’ performance. The basic  previously used to solve some robust control problems that
approach is to generate samples from the family of possible are NP-hard [12], [20] and for reachability analysis of Hglbr

solutions, and to test them on the plant's model to evaluate L .
their performance. This result is obtained by first presenting the systems [6]. The advantage of statistical methods is tiest th

general hybrid optimal control problem, and then converting ~ SImplify the analysis and design tasks at the cost of notgoein
it into an optimization problem within a statistical learning ~ able to guarantee the optimality of the solution.
framework. The results are applied to examples already extsg We show in this paper that randomized approaches can
in the literature, in order to highlight certain operational also be pursued to study optimal control of hybrid systems, a
aspects of the proposed methods. . . . . . .
previously discussed in [9] using a simulation example. We
. INTRODUCTION present a procedure to use randomized algorithms, obtained

A great effort has been devoted to developing optimal codd @ manner similar to [20], to solve a class of optimiza-
trol theory for hybrid systems, extending gradient techeig tion problems for hybrid systems that may include discrete
[4], [5], [7]. [10], [21], dynamic programming theory [11], and continuous control inputs, as well as autonomous or
and Pontryagin’s Minimum Principle [15], [16]. However, controlled transitions between modes. An expression that
the general hybrid optimal control problem is far from tailyi relates the desired properties of the solution to the nurber
so various restrictions have been imposed in order to obtafi#mMples needed to obtain them is provided as a mechanism
meaningful, and computationally feasible results. for controlling the trade-off between the computationaheo

One approach is to limit the control inputs to the discret@lexity (number of samples), and the performance of the so-
domain. Thus, a performance function is optimized by choodution. The algorithm is tested in simulations, and comgare
ing the modal sequence and the corresponding switchig@ results obtained via gradient procedures, showing that
times. This idea was proposed in [10], [21] restricting the a©ne advantage that the randomized approach (a model-free
tention to the switching times using a fixed modal sequenctechnique) has over model-based techniques (e.g. gradient
The result in [10] was later modified [1] to vary the sequenctechniques) is that the theoretical analysis is simplekinga
by iteratively inserting new modes and optimizing a newt applicable for complex situations, at the price of obitagn
fixed sequence until no further improvements were achieved.solution that is not guaranteed to the optimal
The same idea was purg.ued in_ [5], with the.system restricted || A HYBRID OPTIMAL CONTROL PROBLEM
to two modes only, and in [4] with the attention concentrated . . .
on systems with linear continuous dynamics ( [1], [5], [10], The hybrid model provided here allows continuous as well

[21] dealt with nonlinear dynamics). Other methods use nor’('fjl-.S d|sctret§t!npgts,t:utotn?mtoug atn d contro!led tfa”Z'tm‘f
smooth optimization [14], switching surfaces optimizatio iscontinuities in the state trajectory, as given in [8B]l

[7], model predictive control for optimization of continus

inputs [3], and game theoretic approaches [18]. Definition 1 (Controlled Hybrid Dynamical System [8])

An alternative to classical methods is provided by statié6 Controlled Hybrid Dynamical System (CHDS) is a tuple
; - - A H=[Q,%, G4 R V,GY R where:
tical learning algorithms [17], [19]. The objective of such R v T ’ '
methods is to optimize a performance measameaverage « Q is the set of discrete states. _
guaranteeing that the error between the obtained solution® = = {¥q}4cq i the collection of dynamical systems
and the optimal one isrbitrarily small with probability with 33, = (Xq,T,fq., U,), whereX, is the continuous
arbitrarily close to one This is achieved bgamplingthe set state space/ = R is the time setf, is the continuous

of potential solutions, and choosing the sample that yields dynamics, and/, is the set of continuous controls .
o V={VAeqU{V }eeq is the set of discrete transi-

J. Piovesan (corresponding author) and C. Abdallah are thighDe- tion labels.v? € VA determines the next discrete mode
partment of Electrical and Computer Engineering of the ©rsity of New q . nd c .
Mexico, Albuquerque NM 87131{jlpiovesan,chaouki@ece.unm.edu. M. for an autonomous transition, a € V:; determines
Egerstedt and Y. Wardi are with the School of Electrical armmputer the next mode for a controlled transition.

Engineering at the Georgia Institute of Technology, AganBA 30332, « G4 = {G?}quy whereG;;‘ . V:]A N Xq, is a guard

{magnus,ywardi@ece.gatech.edu. H. Tanner is with the Department of . .

Mechanical Engineering of the University of New Mexico, Atuerque condition for an autonomous Jjump for ea_qhz Q.

NM 87131, tanner@unm.edu. e GC = {Gg}qu, WhereGqC : ch — X, is a guard
J. Piovesan and C. Abde}l!ah are partially supported by N_Sfrdi\AZNS condition for a controlled jump for eac@ €qQ.

0626380 under the FIND initiative. M. Egerstedt and Y. Wandi supported RA — (RA hereRA - GA x VA X .

in part by NSF under Grant #0509064. H. Tanner is supporteth®yNSF ° = { q }QEQ W ere_ Yqg - Yygq XVg — { p}pEQ IS

Career award #0447898 the autonomous transition map.



e RY = {R{}4eq. whereRS : GY x VE — {Xp}peq P1 [15]: Given a systenH (Definition 1) with hybrid
is the controlled transition map. execution&y (Definition 3), optimization intervalto, ¢ ],
Finally, H = (quQ Xq) x @ is the hybrid state space of and initial conditior, the Hybrid Optimal Control Problem
H. Note thatV may include the no transition elemefitz}.  (HOCP) is to minimize the total cost (1), over the family of
input trajectories{Z}. If a hybrid inputZ* minimizesJ(Z),
The following notation is used: Labels of different modeshen it is called a hybrid optimal control fdH.
are denoted as,, elements of discrete sequences@s and
continuous time signals agt). v' denotes the state at the Il. STATISTICAL LEARNING THEORY
end of an active period (just before a transition), while  Suppose you have a system with decision vegtar F
denotes its state at the beginning of an active period. and cost functionaR : 7 — R, and consider the problem
A Hybrid Time Trajectory[13], [15] is a finite or infinite of estimating the best performance of the syst&h =
sequencer := {7y, 71, T[], ---} Such thatry < 7,44  infrer R(f). For this purposéV independent and identically
for all i, where 7;; are the times at which the discretedistributed (i.i.d.) random samplefs; i = 1,..., N are taken
transition from modey;_,; to ¢, takes place. AHybrid from F according to a probability distributio®(f). Then
Switching Sequenq&3] [15] is a finite or infinite sequence the sample minimum is defined & = min,—1,_n R(f:),
(r,v) = {(70]:vj)), (71}, vp1))---} of pairs of switching and the objective becomes that of makiR as close as
timeSTm and discrete transition eventg; € V (autonomous possible toR* [17]. This leads to:
or controlled), where- is a hybrid time trajectory, ang is
called a location schedule. Definition 4 (Probable Near Minimum) GivenR(f), 6 €
(0,1), @ € (0,1), a numberR, € R is said to be a probable
Definition 2 (Hybrid Input and State Trajectory [15]) near minimum ofR(f) to level« and confidencd — § if
A hybrid input Z := (r,v,u) consists of a hybrid there exists a sef C F with Pr{F} < a such that
switching sequencér, v) and a piecewise continuous input
u = {u u[l] .}, whereuy;; € Uy for all i € N and {
all t € r[z], A hybrid state trajectoryH = (7,q,x)
consists of hy%)nd time trajectory, a sequence of discrete Loosely speaking, the level describes a set of potential
statesq = {qo, g1}, 421, ---} and a sequence of absolutelysolutions that may not be represented in the samples taken

continuous functlonSX = {x LT[, T ..}, where for optimizati_qn. If t.his_ set is made small there will be a
2 (t) - [T[i]ﬁ{i]) — X forall i e N and aII t € [, H) small probability of finding a better solution than the saenpl
minimum. The confidencel (— §) describes the probability
Definition 3 (Hybrid Execution [13], [15]) An execution Of obtaining the desired level. Definition 4 then impliesttha
of a CHDS is a collectiody; = (7, v,u, q,x), composed by if « and¢§ are made small (but different than zero), the
a hybrid inputZ and a hybrid state trajectory{ such that probability of finding a better solution will be smalk),
(7,v,u,q,x) satisfies: with high confidencel(— ¢).
« ho = (g}, 20)(0)) is an initial condition of The me.chanism to control the level and confidence of the
. Continuous Dynamics: For all € [r;, [/])’ day(t) = sample minimum is the number of sampmgaken from the
Fa (I[i] (t)) and z(; () € X, for all i EZN; set of possible solutions. In order to obtain a probable near

« Discrete Dynamics (Autonomous or Controlled): For aIIminimum (Definition 4) from the samples; can be obtained
as a function ofx andé using the following Lemma [19]:

infR(f) < Ro < inf R()}>1-6 ()
F F\F

1 €N, qi+1) = v ( H) EVqH [](T[Il-]) eG;m,and

(@511 @i (Tigny)) € R - Lemma 1 (Lemma 11.1 [19])Suppose (F,S,P) is a
Where (-)* denotes(-)"or (-) depending on the type of probability spacé, and thatR : F — R is a random
dynamics (autonomous or controlled respectively). variable. Let f1,...,fy € F be N ii.d. samples drawn

We now define the optimal control problem. LEt; }icn according toP, and define

be a family of continuous flow cost functions willy : X; x RY(f) = min v(f;) (3)

Uiy — R Let {c, [ Fien be a family of autonomous jump 1isN

costs Withc, [ Gﬁ] x Vi — RT. Let {c.i}ien be @ andpy = P{f € F: R(z) < R(f)}, then if0 < a < 1

family of controlled jump costs with, ; : G5 xV,§ — R*. N _— N

Let c; be the terminal cost functioa;]: Q [>l {X[q]}qu — PHEeF™:pr>ap<(1-a) )

R*. Let the hybrid cost functiod (to, s, ho,Z) = J(Z) be: In words, this result estates that for a sufficiently large

) number of sampledV, the probability that the sample min-

Z / L (8)ds + cq i + Co [Z]) SEYCTI () imum (3) is close to the optimal solution, will be close to
im0 Jtu one. Detailed coverage of theory on Randomized Algorithms

where [to, t7] is the optimization interval (assumed finite),or Statistical Learning can be found in [17], [19].

hO is the initial_ condition of the system, ardis the hybrid 1p differs from Pr in that the former is assumed to satisfy the properties
input. The optimal control problem can then be stated as: of a probability measure



IV. RANDOMIZED OPTIMIZATION OF HYBRID SYSTEMS This expression is equivalent to

In order to use learning theory to solve optimization 0 4 [ : _
problems for hybrid systems, we restate the HOEP)(as a PriJ" ¢ linfizy J(@). mf{z}\{z} IOy <o @®)
statistical learning one. So instead of looking for a soluti with Pr{{Z}} < a.
7* that guarantees that the cost function (1) achieves its Since Pr{J° < inf{7y J(Z)} = 0 the inner part of (8)
absolute minimum, we seek an approxiniaiehat evaluates O ¢ JO[inf 7, J(T),inf 7y, 7y J(T)] with Pr{{Z}} < a
(1) arbitrarily close to its minimum with probability almbs s equivalent toPr{Z € {Z}: J(T) < J°} > a, whereJ°
equal to one. The Randomized HOCP can be stated as: is obtained from (6). Lel = (fl,j% .-.I}v), so (8) can be
P2: Given a level parameter € (0,1) and a confi- expressed (due to the i.i.d assumption@nZ,, ...Zy) as
dence parametef € (0,1). The Randomized HOCP is to N . 0
find a hybrid inputZ® such that/(Z°) is a probable near P {1 €{Z}": Pr{Z €{Z}: J(I) <J'} > a} (9)
minimum (Deflr_nt_lon 4) with levelo and confidencd — § Comparing (9) to (4) we note that it is upper-bounded by
of the actual minimum/(z*) (P1). (1—a)™N. Since we want (9) to be smaller than(8) implies
(1 — )V < 6, which implies (7). [
Assumption 1 We assume that:
» There is no uncertainty in the dynamics of the systemAlgorithm 1 (Randomized optimization of hybrid input)
« The plant only allows for controlled transitions, i.e. in Given a desired levek a desired confidencé — § and the
Definition 1V = {V },eq, G* = {}, andR* = {}  complete description of the system (Definition 1):
for all ¢ € Q; and the Executiong (Definition 3) do 1) calculate the minimum number of sampl§¥sneeded
not contain autonomous discrete dynamics. to obtain a probable near minimum (p.n.m.) usifg

I . . . _ 2) GenerateN i.i.d. input sample<;,Z,,...Iy from the
We initially restrict our attention to plants without un family of all possible hybrid input§Z}

certainties. This simplifies the problem at the learninglev . N .
because this assumption states the the system’s model isg) Test each input sampl@» fori=12..,N inthe
plant and calculate their performanc&(Z;).

perfectly known, implying that the estimation of the prob- S .
ability distribution of the plant (done in [12], [20]) is not 4 The P.n.m.cost” is given by3) and the p.n.m. hybrid
needed. We also restrict ourselves to plants that allow only input is 7% = argming, 7, . 7, J(Zi).
controlled transitions. However most of the work in model-
based optimization makes the same assumption [1], [4], [
[14], [21]. Note also that we consider systems with bot
continuous and discrete inputs.

Denote by{Z} the set of the input sample&;, .. Zx}
that will be used to estimate the optimal hybrid input. Let

emark 1 (On the hybrid switching sequence)The pro-
edure to sample hybrid switching sequengesv) can
vary according to each particular problem. If a switching
sequence has to be obtained directly, a promising procedure
is composed of two steps: First, randomly select a desired
number of transitionsy for the sample, and then pick a
J*= inf J(Z)=J(T") (5) random switching sequende,v) of ¢ + 1 elements, with
Te{T} the times inside the optimization intervih, ], and the
be the minimum cost value for the system over the completeansition events chosen froiW. Note that one can pick
family of hybrid inputs{Z} (true optimum), and let any distribution for number of transitions or the switching
o ) N sequence, while keeping the number of transitions bounded.
JO = min J(Z;) = J(Z") (6)
o Remark 2 (On the piecewise continuous input)Since on
each mode interval the continuous part of the hybrid input
must be continuous, one could generate a large number
of classes of input signals using a set of parameterized
basis functions (e.g. linear, sinusoidal, exponential)cts
that during the sampling, their parameters and their weight
are chosen to obtain the final input signal. Another option
In(1/6) may be to express the continuous input as a parameterized
N2 70 —an (7)  (feedback) function of the state.
n(1/(1-a))

be the minimum cost value for the system over the set
input samplegZ}. We then have the following results.

Theorem 1 (Minimum number of input samples) The

minimum number of sample¥$ that guarantee that’® is a
probable near minimum to levet and confidenceé of J*
is

Proof: 2 In Definition 4 letR, be J° andR(f) beJ(Z). A An application example
Then (2) can be expressed as We provide an example to test and clarify the proposed
o ] approach. For comparison purposes, we use an example that
PriJ® € [inf(zy J(T), inf 7y g7y J@)]} 21 -6 already exists in the literature. In this example we opténiz
with Pr{{Z}} < a, where{Z} C {T}. thg penforrr_]ance of a dynamical _system by choosing the hy-
brid switching sequence. There is no continuous component

2proof adapted from Tempo et al. [17] Theorem 9.1 for our Ewbl in the hybrid input of the existing example [2].



¢ . . . .
;:;(Q)ﬂ costs values in three different simulations werd072,

0.1090 and 0.1058. The switching sequence and the state
trajectories forJ® = 0.1058 are shown in Figures 2 and 3.
Comparing this result to that reported in [2], the perforoan
obtained using the proposed approach is very close to that
%U}— obtained using gradient techniques, where the reportet fina
costs, under the same conditions, wéré07 and 0.105
[2]. The continuous state trajectories also look similaere
though the mode schedules are different.

Ty xo

4{ U }7 Hybrid input sequence
T T T T T T

g=1

Fig. 1. Graphical description of the tank system.

The system is composed of two tanks, where the objective
is to control the fluid level of the second tank via the input
flow rate to the first tank (Figure 1). The input variable
u(t) is the input flow rate to the first tank, and the state
variablesz; (t) andz2(t) are the fluid levels at the first and
second tanks respectively. Definingt) = [z1(t), zo(t)]"
the system'’s equations (by Torricelli's principle) are:

Modes

=2

=3} ]

i=f@w=| AT (10) I P
where v1,72 > 0 are fixed constants. The control inputFig. 2.  Optimal mode sequence for tanks problem using thegsed
is constrained to three operating states: fully open, half"domized approach.
open, and fully closed, i.ex(t) € {wmaz, %umaz,o}, for
some unq.: > 0. Since these are discrete values, each

operating state generates a discrete medes @ in a D TR T :

hybrid model (Definition 1). If the set of locations @ = ossl ]
{1,2,3}, the dynamical systems;, X,, X5 are described ol V]
as: fi(z,u) = f(x,Umaz), fo(z,u) = f(z, %umam), and I //\ \

fg(ZC,’UJ) = f(x,O), X1 = Xo = X3 = {CC S R2 : r >
0,22 > 0}, andUy = Uy = Uz = {}. V& = Q for all
q € @ (no restrictions on the mode transitioné;qc =X,
for all ¢ € @ (a discrete transition is possible for any value
of x), andRqC leaves the continuous state unchanged for all
q € Q. Note that the system satisfies Assumption 1.

Given an initial conditionzy = 2(0) and a final timel" >
0, the objective is to select a switching sequence that drives
the error between(¢) and a reference signal.(t) € R to
zero. To this end, the cost function is defined as

. . . . . . . . .
0.5 1 15 2 25 3 35 4 4.5 5
Time [s]

T Fig. 3. Optimal state trajectories and reference signaltdoks problem
J = K/ (xQ(t) — xr(t))th (11) using the proposed randomized approach (¢): Reference,z:(t) and
0 x2(t): State trajectories).
for some K > 0. Comparing (1) to (11), the final cost and
the transition costs are zero, and the flow cost is a contisuou V. RELAXING ASSUMPTION 1

function (because the state flows are continuous). In this section we show how the procedure explained
The chosen parameters for the simulation (identical to [2Qpove can be applied to systems that instead of having

arexy = [04,04]", T =5 K =10, m1 = %2 = L, controlled transitions, are subject to autonomous trimsit

Umaz = 1, and z,(t) = 0.5 + 0.251. The level and con- yrigqered by internal events. We also discuss how we can

fidence parameters are = ¢ = 0.002 yielding N = 3105  extend this procedure for the control uncertain systems.
samples, generated according to Remark 1 with the number

of transitions distributed according to a uniform disttibn ~ A- Systems with internal autonomous transitions
Ul1,10], the transition times according [0, 7] and the In order to study systems with purely internal autonomous
modes according td/(1,2,3). The approximate optimal transitions we modify Assumption 1 as follows:



Assumption 2 We assume that: and reset maps is different (similarly to [7] we assume a
« There is no uncertainty in the dynamics of the systenfixed continuous control input{;, C) that is not considered
« The plant only allows for autonomous transitions. i.e. irdS an optimization variable). Note from the nature of the
Definition 1V = {V},c0, G¢ = {}, andR® = {}  system that the reset mayfy, leave the continuous state
for all ¢ € Q; and the Executionsy; (Definition 3) do unchanged for aly € @, while the transition guards must
not contain controlled discrete dynamics. Furthermorebe parameterized according to the circular guards destribe
the autonomous transitions are completely determinei® the problem. Therefore, let

by the dynamics of the system. Gy = 2,74) = (20 — )% + (4o — y)% — 72,  (133)

The second point in Assumption 2 implies that when GZ'(vy = 1,70u) = (2o — ) + (yo — y)* — r2,, (13b)
a guard condition inG4 is satisfied during the system’s a4 )
operation, that transition must occur immediately (forceéﬂvhe;e,theql is the guard to jump from mode 1 to mode
transition). Note that the hybrid input of the system can not @2 1S t0 jump from mode 2 to mode 1, and, androu;
be controlled directly. However a special type of hybrictinp are the radii of the inner and outer guards respectively. The

is generated and completely determined by the autonomofSt functional is defined as

discrete dynamics. Thus if these dynamics were modified, T 9 9 —€[(19—1) %+ (yo—y)?
different hybrid inputs could be generated. (}_/0 [(xg_x) + (g =)+ B Clre T G th'

The procedure to modify these dynamics is to consider 1o cimulations parameters are— 1, Cy = 2, Cy —
the transition guards and reset mapsGi, andR* as (, 7 _ 5 € =10, 8 = 5 (= 7;) _ (2’ 25.2)
control variables. Thus Theorem 1 and Algorithm 1 ma: '0’7 vo) = (1'71)’ and (’x(O),y(O):d)(Og)’)( v (070’0')_ The

be applied to autonomous discrete dynamics if instead Qf o/ and confidence parameters are- 0.02 andd = 0.02

Samp”ng hybrid inputs directly, one generates samples.f felding NV = 194 (note that because the sampling space is
tr:ce sw!tchmg guards,f rﬁset maps, and fe?dbaﬁkbf%”‘.?“o ﬁnple, low values of level and confidence parameters can
0 cor|‘1t|nl_10(;1_s stlate of the system, generating hybri Inp%eld to good results). The resulting approximate optimal
samples indirectly. cost was.J® = 10.4695 with optimal r), = 0.4807,
B. An example of autonomous transitions optimization ~ 79,, = 0.5006, while an optimization performed using
This example was previously presented in [7]. The probth*e algorithm riported in [7] *Wlth the same values yielded
lem consists of a unicycle mobile robot, that has to reach = 104609, 75, = 0.4963, r5,, = 0.4963. A comparison
point in the plane departing from an initial condition while©f the trajectories and guards obtained via the randomized

avoiding a point obstacle. The robot may be controlled b§PProach (Figure 4), and those obtained using the gradient

switching between two discrete behaviors, “approach goaf€Scent approach [7] (Figure 5) shows that both results are

(mode 1) and “avoid obstacle” (mode 2). The obstacle j@lmost identical.
surrounded by two circular guards (centered at the obstacle
position) that determine which modes are active. If the tobo 2
is in mode 1 and reaches the inner guard, it switches to mode
2. Ifitis in mode 2 and reaches the outer guard, it switches
to mode 1. The optimization problem is to choose the best
radii for these two circular guards such that the robot gets \
as close as possible to the goal without hitting the obstacle 12f K Y
The robot is described using its kinematic model as: -l ! o !

& =wvcos¢ (12a) o8t ¥ 7
Y =wvsing¢ (12b) o o

— Trajectory
d=uw (12¢) o4 " oner coard

* Goal
O _Obstacle

Approximate optimal switching parameters
T T

where the position of the robdt:, y) and its orientationp

form the continuous state of the system, anandw are its o o5 i is 2 25

linear and angular speeds. The goal is locatetaty,) €

R2, and the obstacle dtr,, yo) € RZ2. v has a constant value Fig. 4. Robot trajectory and optimal guards using the pregaandomized

while w is the feedback control input that changes according?2"

to each mode: In modg, w is given byw; = Ci(¢4 — ¢)

where ¢, = arctan((y, — y)/(zy —x)) andC; > 0 is a ) ] .

constant. In mode, w is given byws = Ca (¢ — ¢,) where C. Possible extensions for uncertain systems

¢o = arctan((y, — y)/(z, — x)) andCy > 0 is a constant. Statistical learning is useful in the control of uncertain
The procedure to map the robot model (12) to the hybridystems [12], [17], [20]. Particularly, in the case of hybri

system (Definition 1) is similar to that on the previous exsystems, these uncertainties may be encountered in the form

ample. However the parametrization of the switching guardsf parameter uncertainties, noise, or externally trigdere




Gradient-descent evolution of the switching parameters
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Fig. 5. Evolution of the robot trajectory and switching gigmrusing a
gradient descent approach. The optimum configuration isreviiee two
guards collide.

(4]

transitions (discrete jumps caused by external events tha[é]
are not known a priori). Thus consider a hybrid systeml]
with any of the two transition types previously treated
(controlled or autonomous internally triggered) togethith
modeling uncertainty. In order to control such system, the
approach would be to split the hybrid ingliin two separate
sequences, one that can be completely contradllecand
another representing the uncertainti#s. With these two  [8]
sequences the goal would be to obtain the average behavior
of the uncertain sequenc® in order to apply the result |9
obtained in this paper (or a similar one) to optimize the ex-
pected value of the performance of the systBfd (Z¢, Z")]
by choosing the best control sequeri€e In this manner,
we would guarantee that the system performs optimeaily
average with certain accuracy (given for the average part 0{11]
the procedure), level, and confidence. To this end, we must
apply concepts such as Hoeffding inequality [17], or VC-
theory [17], [19], together with the ideas explained in thid!?

paper.

[20]

VI. CONCLUSIONS [13]

We have presented a randomized approach for optim@#
control of hybrid systems. We defined a general hybring]
optimal control problem, and stated an equivalent problem
in the randomized framework. We provided an expression
that relates the requirements of the desired solution I(Iev@f6]
« and confidencé — ¢) with the computational complexity

(number samples) needed to guarantee such requiremefitg.

In this form the performance/ computational complexity
trade-off can be controlled. We tested our approach on twas]
different examples and obtained comparable results tethos
available in the literature using model-based approadies. 4
advantage of the proposed approach is that the theoretical
analysis is simplified due to its model-free nature, makin{0l
it attractive for complicated systems where model-based
technigues may face difficulties. However, the price to pap1]
for this problem simplification is that the proposed apphoac
does not guarantee the optimality of the final solution.

The results obtained so far are useful for special subdasse
| of the general hybrid system defined in the paper, but
future research directions include the generalizationhef t
proposed algorithm to be applicable for both types of discre
dynamics, and for control of uncertain systems.
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