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Abstract— This paper addresses the optimal planning prob-
lem on register automata, a special class of finite state machines
which can process continuous inputs. Register automata emerge
as abstractions of a class of switched dynamical systems with
convergent continuous component dynamics, and dwell times
sufficiently large to allow convergence to neighborhoods of
parameterized limit sets in finite time. A word in a register
automaton corresponds to a specific switching sequence in
the switched system. The goal is to construct switching input
sequences with the appropriate limit set parameterizationso
that the switched system is steered to a given region of its state
space in minimum time.

Index Terms— Hybrid systems, register automata, dynamic
programming.

I. INTRODUCTION

This paper investigates the optimal planning and control
design for a class of hybrid systems with convergent con-
tinuous dynamics. A hybrid system in this class consists
a set of low-level continuous controllers, each giving rise
to a vector field which has a parameterized positive limit
set. We assume that the control objectives can be achieved
by temporally sequencinga number of different controllers.
Controller sequences are subject to constraints relating to
how the different parameterized component dynamics can
switch between each other. To plan this temporal sequencing
of controllers in order to achieve a certain reachability task
in a time-optimal fashion, we propose a new purely discrete
abstract computational model, and develop a way to apply
dynamic programming (DP) on this model. The reachability
specification is expressed in terms of first order logic.

The optimal control problem in hybrid systems has been
studied under a diverse set of problem formulations and
approaches. In [2], a hybrid system with a a discretized state
space is considered, a cost function is defined, and a value
function which lower bounds the optimal cost is introduced.
A two stage decomposition is used to parameterize the
switching instants in the switched system in [3], [4]. Refer-
ence [5] addresses optimal timing in hybrid systems when the
scheduling sequence of the control modes is predetermined
and the instantaneous cost function is continuously varying.
Instead of considering the switching times as the design
parameters, the optimal parameterization of a switching
surface is analyzed in [6], A two-layer optimization approach
is adopted in [7], where the lower level optimally selects the
parameters of the switching surface, while the higher level
schedules the transition sequence.
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Similarly to [6], [7], this paper focuses on hybrid systems
in which the switching is controlled through the selection of
a set of parameters. However, here the component continuous
dynamics of this hybrid system have some convergence
properties which support particular discrete abstractions in
the form of register automata [8], [9]. Without including
continuous dynamics—contrary to timed automata—these
models manipulate continuous data. We show that under
certain conditions, the register automata abstractions can
weakly simulate the concrete hybrid system, and preserve
some of its continuous information in a resolution-free way.
We utilize regular expressions [1] to generate the sequenceof
control modes and develop aDP variant yielding the optimal
parameterizations of the controllers sequenced.

Section II introduces the particular class of hybrid system
and some notions from automata theory. Section III presents
the finite model as an abstraction of the hybrid system and
some relevant results to be used in subsequent optimization
method. In Section IV we present a solution to the planning
problem on the register automata. A case study in Section V
serves as an illustration of the abstraction method and time-
optimal control design. Section VI concludes the paper.

II. PRELIMINARIES

Let Σ be a finite set of symbolsσi, andD ⊆ R
k. Pairs of

the formwi = (σi, di) ∈ Σ×D are calleddata atoms, and
form finite sequences overΣ × D, w = w1 · · ·wn, called
data words. The length of w is denoted|w|, and dom(w)
is the index set{1, . . . , |w|} of the positions of the atoms
wi = (σi, di) in w. For i ∈ dom(w), valw(i) = di is the
data projectionmap that gives the data value associated with
the symbolσi. Automata operate on stringsw ∈ (Σ×D)∗.

Definition 1 (Register Automaton [8]–[10]):A non-
deterministic two-way register automaton is a tuple
R = 〈Q, q0, F, Σ, D, k, τ, ∆〉, in which
• Q is a finite set of states;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final states;
• Σ is a finite alphabet;
• D is an infinite set of data;
• k ∈ N indicates the number of registers;
• τ : {1, . . . , k} → D ∪ {∅} is the register assignment,
where∅ means that the register is empty. Given input data
atom(σ, d), define the setTest(τ) of register tests (first order
logic formulae) of the form:ϕ ∈ Test(τ) , d ≤ τ(i) |
d < τ(i) | ¬ϕ | ϕ1 ∧ ϕ2, i ∈ {1, . . . , k}.
• ∆ is a finite set of transitions of the form(i, q, ϕr(i))

σ
→

(q′, δ) and (q, ϕw)
σ
→ (q′, i, δ), where i ∈ {1, . . . , k},

q and q′ ∈ Q, σ ∈ Σ and δ ∈ {stay, left, right}, and



Test(τ) = {∪k
i=1ϕr(i), ϕw}: (1) ϕr(i) : d = τ(i); (2) ϕw :

∧h=1,...,k¬(d = τ(h)).
Given a data wordw, a configurationγ of R is a tuple

[j, q, τ ], where q ∈ Q, τ is a register assignment, and
j ∈ dom+(w) with w(j) = (σj , dj). A configuration[j, q, τ ]
with q ∈ F is accepting, while a configuration of the form
[1, q0, τ0], with q0 ∈ Q is an initial one. The transition
(i, q, ϕr(i))

σj

→ (q′, δ) (respectively(q, ϕw)
σj

→ (q′, i, δ))
applies to γ iff ϕr(i) : dj = τ(i) is true (respectively,
ϕw : dj 6= τ(h) for all h ∈ {1, . . . , k}, is true). For the case
of the read, upon readingwj , R enters statesq′ and the read
head moves in the direction ofδ, i.e.,j′ = j+1, j′ = j, j′ =
j − 1 for δ = right, stay, and left, and the configuration is
updated to[j′, q′, τ ]. For the case of the write,R enters
stateq′, dj is copied to registeri, and the read head onw
moves in the directionδ (in this order). The configuration is
now [j′, q′, τ ′], whereτ ′ denotes the contents of the updated
register. If there are no left-transitions (δ ∈ {stay, right}) in
R, it is calledone-wayregister automaton.

The special class of hybrid systems considered in this
paper is defined as follows.

Definition 2 (Hybrid Agent):The hybrid agent is a tuple:
H = 〈Z, Σ, ι,P , πi,AP , f,←−· ,−→· , s, T 〉.
• Z = X ×L is a set ofcomposite(continuous and boolean)
states, whereX ⊂ R

n is a compact set, andL ⊆ {0, 1}r.
• Σ is a set of finite discrete locations (control modes).
• ι : Σ→ {1, . . . , k} is a bijection, indexingΣ.
• P ⊆ R

m is a vector of continuous parameters.
• πi : R

m → R
mi , for i = 1, . . . , k is a finite set of

canonical projections, such thatp = [π1(p), . . . , πk(p)]T .
• AP: {αh}APh=1 is a set of (logical) propositions and¬AP
is used to denote{¬αh}APh=1.
• fσ: X × L × P −→ TX is a finite set of vector fields
parameterized byp ∈ P andℓ ∈ L, with σ ∈ Σ, with respect
to whichX is positively invariant. These vector fields have
limit sets which are parameterized byp ∈ P .
•
←−· : Σ→ 2AP∪¬AP maps a modeσ to a set of propositions

denoted PRE(σ) that need to be satisfied for the system to
switch to modeσ. When composite statez and parameterp
satisfy PRE(σ) we write (z, p) |=←−σ .
•
−→· : Σ→ 2AP∪¬AP maps a modeσ to a set of propositions

denoted POST(σ) that are satisfied when the vector field
reaches steady state. When composite statez and parameter
p satisfy POST(σ) we write (z, p) |= −→σ .
• s: Z × P → P is the reset map for the parameters. It
assigns to each(z, p) a subset ofP from which the current
value ofp ∈ P can be chosen.
• T : Z×P×Σ→ Z×P×Σ is the location transition map,
according to which(z, p, σ) 7→ (z, p′, σ′) iff (z, p) |= −→σ and
(z, p′) |=

←−
σ′ with p′ ∈ s(z, p).

The configurationof H is denoted[z, p, σ].
This model is intended to describe a continuous dynamical

system that switches between different control laws based on
some discrete logic. InH, the continuous vector fieldfσ of
control modeσ ∈ Σ evolves in the same compact set and
always converges to some limit set, the location and shape
of which is defined by its parameterizationp ∈ P .

Let φσ(t, x0; p) denote the flow of vector fieldfσ(x; ℓ, p)
passing fromx0 at time t = 0. The positive limit set
in control modeσ, when parameterized byp is denoted
L+(p, σ) and its existence is ensured by the compactness and
invariance ofX . We will assume thatL+(p, σ), for a given
σ and for allp ∈ P is path connected. If it is not, and there
areB(σ) isolated componentsL+

i (p, σ) for i = 1, . . . , B(σ),
one can refine control modeσ into σ1, . . .σB(σ), one for each
L+

i (p, σ). Let Ωi(p, σ) ⊂ X be the attraction region of each
σi. The POSTs and PREs are related to the limit sets and
their attraction regions as follows:

{(z, p) | (z, p) |= −→σ } ⊆
{

(x, ℓ, p) | x ∈ L+
i (p, σi)⊕ Bε

}

,

{(z, p) | (z, p) |=←−σ } ⊆
{

(x, ℓ, p) | x ∈ Ωi(p, σi)
}

.

where⊕ the Minkovski (set) sum,Bε is the open ball of
radiusε. For simplicity we assume that forH of Definition 2,
Σ does not afford any further refinement.

As a result of the continuous flow offσ parameterized
by p, we say that the composite statez evolvesto some

other composite statez′, written z
σ[p]
→֒ z′. A sequence of the

form (σ1, p1) · · · (σN , pN ) is an input to H, specifying how
parameterized control modes are to be concatenated inH. At
configuration[z, p, σ] in H, (σ′, p′) is admissibleif there is
a [z, p′, σ′] ∈ Z × Σ× P such thatT ([z, p, σ]) = [z, p′, σ′].
A pair of data atoms(σj , pj)(σj+1 , pj+1) is admissible at
[z, σ, p] if σ = σj , p = pj, and there is az′ ∈ Z for which

z
σj [pj ]
→֒ z′ with (σj+1, pj+1) being admissible at[z′, pj , σj ].

A data word w = w1 · · ·wn = (σ1, p1) · · · (σn, pn) is
admissible if every prefix ofw is admissible.

The planning problem addressed is the following:
Problem 1: Given a hybrid agent H with initial

state z0 and parameterp0, find an admissible input
(σ1, p1) · · · (σN , pN ) (N to be determined) so that the con-
figuration of H after theN th transition satisfies a set of
propositions denoted SPEC⊂ AP ∪ {¬AP} with pN in the
setPf = {p | ∃ z ∈ Z : (z, p) |= SPEC}.

III. SYMBOLIC ABSTRACTION

The relation between the composite states and parameters
of H and the states of the register semiautomaton1 is
formalized by means of a discrete map as follows:

Definition 3 (Valuation map):The valuation mapVM :
X × L × P → V ⊆ {1, 0}|AP| is a function that maps a pair
of composite state and parameter, to a binary vectorv ∈ V
of length|AP|. The element at positioni in v, denotedv[i],
is 1 or 0 if αi, αi ∈ AP is true or false, respectively, for a
particular pair(z, p). We write αi(z, p) = v[i], for v ∈ V .

Let us relate SPEC with a set of binary vectorsVspec ⊆
V according to:∀ v ∈ Vspec, v[i] = 1 if αi ∈ SPEC∩
AP , v[i] = 0 if αi ∈ SPEC∩ ¬AP and v[i] ∈ {0,1} if
αi /∈ SPEC. To representVspec compactly we will denote
any v[i] ∈ {0,1} using the symbol∗.

The register automatonR(H) which serves as an abstrac-
tion of H is now defined as follows:

1A semiautomaton is an automaton without defining initial andfinal
states.



Definition 4 (Induced register semiautomaton):The de-
terministic finite one-way register semiautomaton inducedby
hybrid agentH (with reference to Definition 2), is a tuple
R (H) = (Q, Σ,P , 1, τ, ∆).
• Q =

{

q ∈ {0,1}|AP| | ∃ z ∈ Z, p ∈ P : VM (z, p) = q
}

is a finite set of states.
• Σ is the alphabet shared withH.
• P is an infinite set of data coinciding withP of H.
• 1 denotes a singlek-dimensionalarray register.
• τ : 1 7→ P ∪ {∅} is the register assignment map (we
denoteτ(1) ≡ τ ). Given input data atom(σ, p) ∈ Σ × P ,
the setTest(τ) consists of formulae defined byϕ , p =
τ | πj(p) = πj(τ) | p ∈ ϕ(τ) | ¬ϕ | ϕ ∧ ϕ, where j ∈
{1, . . . , k}, σ ∈ Σ andq ∈ Q.
• ∆ is a finite set of transitions of two types, (a) aread
transition (q,⊤)

σj

→ (q′, right) is defined iff for all z such
that VM (z, τ) = q, it holds that(z, τ) |= ←−σj and∃ z′ ∈ Z
such thatVM (z′, τ) = q′ with (z′, τ) |= −→σj . ⊤ ∈ Test(τ)
is true iff pj = τ given inputwj = (σj , pj). (b) a write
transition (q, ϕi)

σj

→
(

q′, ι(σj), stay
)

is defined iff for all
z such thatVM (z, τ) = q, there existspj ∈ s(z, τ),
VM (z, pj) = q′ and (z, pj) |=

←−σj . Associated with this
transition, a set valued map is defined asϕi(τ) = {p′ |
∀z ∈ Z : VM (z, τ) = q, p′ ∈ s(z, τ) that satisfies(z, p′) |=
←−σj andVM (z, p′) = q′ andπι(σj)(p

′) 6= πι(σj)(τ)}. Each
set-valued map is indexed withi ∈ {1, . . . , W} whereW
is the total number of write transitions. At configuration
[j, q, τ ], upon receiving inputwj = (σj , pj), a read transition
(q,⊤)

σj

→ (q′, right) applies iff pj = τ and the machine
moves to stateq′ and the input read head advances one
position. Onwj = (σj , pj), a write transition(q, ϕi)

σj

→
(

q′, ι(σj), stay
)

appliesiff p ∈ ϕi(τ). The machine reaches
q′ without moving the input read head and updatesτ to
τ ′ = pj.

Without any ambiguity,Φ ,
⋃

i ϕi(·), the set of all set-
valued maps associated with write transitions.

A data atom(σj , pj) is admissibleat configuration[j, q, τ ]
if there is a transition in∆ applies to [j, q, τ ] on input
(σj , pj). A pair of data atoms(σj , pj)(σj+1, pj+1) is ad-
missible if there is a transition in∆ that applies to[j, q, τ ]
on input (σj , pj), taking R(H) to [j + 1, q′, τ ′], where a
subsequent transition in∆ applies to, on input(σj+1, pj+1).
A data word w = w1 . . . wn = (σ1, p1) · · · (σn, pn) is
admissible if every prefix ofw is admissible.

A concatenation of any number of write transitions with a
single read transition triggered by input atomwj , taking the
machine from stateq to stateq′ is denotedq

wj

 q′, and we
refer to this transition sequence as acompositetransition.

Proposition 1: In R(H), any composite transition con-
tains either only one read transition or a pair - a write
transition followed by a read one.

Proof: Let R(H) be at configuration[j, q, τ ]. Suppose
R(H) takes a composite transition,q

wj

 q′, wherewj =
(σj , pj). If pj = τ then the machine jumps fromq to q′

and advances the read head by one position. Ifpj 6= τ ,
no read transition can follow and we have to assumewj

triggers a write transition first. After the write transition, τ
takes the value ofpj. The machine still readswj = (σj , pj)
on the input tape since the read head stays. Upon reading
wj again, the machine now findsτ = pj , a read transition
is triggered and the read head advances one step. In this
case configuration[j, q, τ ] evolves as follows:q

wj

 q′ ⇔

[j, q, τ ]
wj

→ [j, qt, τ ′]
wj

→ [j + 1, q′, τ ], where qt is some
intermediate state where the machine lands right after taking
the write transition. We thus see that a composite transition
either includes a single read transition or a write transition
followed by a read transition—the latter referred to as a
write-read transition pair.

To ensure that plans devised on the abstraction are imple-
mentable on the concrete hybrid system, we need to establish
an equivalence relation betweenR(H) andH such that any
admissible data word generated inR(H) is guaranteed to be
implementable inH. To this end, let us recall the concept
of a transition system.

Definition 5: A labeled transition systemis a tupleT =
(Q, Σ,→) where: 1) Q is a set of states, 2)Σ is a set
of labels, 3)→⊆ Q × Σ × Q is a transition relation. For
(q1, σ, q2) ∈→ we write q1

σ
→ q2.

In T, we distinguish an elementλ ∈ Σ and we call a
transition labeledλ silent. We writeq ; q′ to denote thatq′

is reachable fromq with an arbitrary number ofλ transitions,
andq

σ
; q′ if q′ is reachable fromq with an arbitrary number

of λ transitions interleaved with anσ ∈ Σ \ {λ}; that is,

q;q′ ⇔ q
λ∗

→ q′, while q
σ
; q′ ⇔ q

λ∗σλ∗

−→ q′. 2

Definition 6 (Weak (observable) simulation [11]):
Consider two (labeled) transition systems over the same input
alphabetΣT , T1 = (Q1, ΣT ,→1) andT2 = (Q2, ΣT ,→2),
and letΣǫ ⊂ ΣT be a set of labels associated with silent
transitions. An ordered binary relationR on Q1 × Q2 is a
weak (observable) simulationif: (i) R is total, i.e., for any
q1 ∈ Q1 there existsq2 ∈ Q2 such that(q1, q2) ∈ R, and
(ii) for every ordered pair(q1, q2) ∈ R for which there exists
q′1 such thatq1

σ
;1 q′1, then ∃ (q′1, q

′
2) ∈ R : q2

σ
;2 q′2.

ThenT2 weakly simulatesT1 and we writeT2 & T1.
Theorem 1:The hybrid agentH weakly simulates its

induced register semiautomatonR(H) in the sense that
there exists an ordered total binary relationR such that
(q, z) ∈ R ⇔ ∃ p ∈ P , VM (z, p) = q, which satisfies
(q, z) ∈ R ⊂ Q × Z andq

wj

 q′ with wj = (σj , pj) ⇒

∃ z′ ∈ Z : z
σj [pj ]
→֒ z′ with (q′, z′) ∈ R.

Proof: First we indicate thatR is total by construction,
since any q ∈ Q such that for all (z, p) ∈ Z × P ,
VM (z, p) 6= q would violate the definition ofQ. To establish
that R is a weak simulation, letR(H) be at configuration
[j, q, τ ], where (q, z) ∈ R for some z ∈ Z. Suppose
now that R(H) takes a (composite) transitionw denoted
q

wj

 q′, then according to Proposition 1,q
wj

 q′ is either a
single read transition[j, q, τ ]

wj

→ [j + 1, q′, τ ], or a composite

2∗ is Kleene star.Σ∗ is the collection of all possible finite-length strings
generated from the strings inΣ.



[j, q, τ ]
wj

→ [j, qt, τ ′]
wj

→ [j + 1, q′, τ ′], or a write-read pair.
The mere existence of a transition originating fromq on input
(σj , pj) ensures that forany z that satisfiesVM (z, p) = q,
it holds thatpj ∈ s(z, p) and either(z, p) |=←−σj (in the case
of a single read) or(z, pj) |=

←−σj with VM (z, pj) = qt (in
the case of a write-read pair). For the first case, there must
exist z′ such thatVM (z′, pj) = q′ and (z′, pj) |=

−→σj . By

definition, there exists a (continuous) evolutionz
σj [pj ]
→֒ z′ in

H. SinceVM (z′, pj) = q′ it follows that(q′, z′) ∈ R. For the
second case, after updating its register withτ ′ = pj , R(H)
still reads(σj , pj) on its input tape. Since(z, pj) |=

←−σj and
τ = pj , it follows that R(H) takes a read transition toq′.
The argument of the previous case applies again.

Given H & T(H), it follows that H might be able
to evolve in ways thatR(H) cannot, and therefore the
behavior3 of the former is a superset of the behavior of
the latter. Weakbisimulation can only be established in
special cases when 1) reset maps are constant inz for all
(z, p) : VM (z, p) = q, or 2) ∀σi, σj ∈ Σ either POST(σi)⇒
PRE(σj) ∨ ¬[PRE(σi) ∧ POST(σj)].

Definition 7: The transformation semiautomaton ofR(H)
is a tripleTR(H) = {Q̄, Σ̄, ∆̄} consisting of:

• Q̄ ⊆ Q × {p, p′}, wherep and p′ are two symbols. The
set Q̄ is constructed by first including all pairs(q, p) with
q ∈ Q. Then, for each stateq ∈ Q that R(H) can arrive at
with a write transition, we create a copy(q, p′) to mark the
change in the register contents.
• Σ̄ = Σ ∪ Λ ∪ {idP }, whereΛ is a set of labels for write
transitions inR(H), and idP is a label for linking(q, p)
with their copies(q, p′). (This transition has no effect on
parameters and is denotedidP .)
• ∆̄, the set of transitions of the following types:

(i) (q, p)
λi

99K (q′, p′), defined if q′ is accessible fromq
via a write transition(q, ϕi)

σ
→

(

q′, ι(σ), stay
)

. As each
transition labeledλ ∈ Λ defined in TR(H) is in one-
to-one correspondence with a write transition, the indexi
is the same number as the index of set-valued mapϕi(·)

associated with that write. (ii)(q, p)
idP

99K (q, p′), defined
if q is accessible fromq′ ∈ Q via a write transition;
(iii) (q, p)

σ
→ (q′, p), defined if there exists a read transition

(q,⊤)
σ
→ (q′, right), and q is not accessible via a write

transition from anyq′′ ∈ Q; (iv) (q, p′)
σ
→ (q′, p), defined if

there exists a read transition(q,⊤)
σ
→ (q′, right), and q is

accessible via at least one write transition fromq′′ ∈ Q.
Define idP (·) as the identity map onP . For

M1(·), M2(·) ∈ Φ ∪ {idP(·)}, M2(·) composed withM1(·)
defines a set-valued map:M2 ◦M1(p) = ∪p′∈M1(p)M2(p

′).
The composition can be defined recursively. Besides,
M−1

1 ◦M−1
2 (·) can be obtained in the same manner since

the inverse of a set-valued map is also a set-valued map.
Each walkw in TR(H) can be interpreted as a data word

w = (σ1, p1)(σ2, p2) . . . (σN , pN ) with pi, i = 1, . . . , N as
unknown parameters and a set-valued mapM(·) = MN ◦
MN−1 ◦ . . . ◦M1(·), Mi(·) ∈ Φ∪ {idP (·)} by Algorithm 1.

3Behavior is hereby understood as the set of feasible input data words.

Algorithm 1 dataword(w): for the walk w = u1 . . . um,
compute a data wordw and the set-valued mapM(·) : P → 2P .

i := 1, j := 1;
while i ≤ m do

if ui ∈ Σ then
σj = ui, wj = (σj , pj), Mj = idP (·), j = j + 1, i = i + 1;

else if ui ∈ Λ then
Mj(·) = ϕh(·) whereh is the index such thatλh = ui, λh ∈ Λ,
andσj = ui+1, wj = (σj , pj), j = j + 1, i = i + 2;

else
Mj(·) = idP (·), σj = ui+1, wj = (σj , pj), j = j + 1, i = i + 2;

end if
end while
return M , w.

IV. T IME-OPTIMAL CONTROL DESIGN

Assume that the write transitions (updates in parameters)
in R(H) incur no cost. The cost of a read transition in
R(H) (evolution in H) is determined by the component
continuous dynamics active at that time, the initial condition
for the continuous state and the assignment of parameter.
The component dynamics whenH is at control modeσ
is expressed in the forṁx = fσ (x; ℓ, p) , with σ ∈ Σ,
p ∈ P , ℓ ∈ L, and x ∈ X . An incremental (or running)
cost functionR : X × R+ → R+ can generally be used to
define theatomic costgσ(x0, p) of H evolving in control
modeσ along flowφσ(t; x0, p) for t ∈ [t0, tf ], gσ(x0, p) =
∫ tf

t0
R

(

φσ(t; x0, p), t
)

dt.

In the context of this paper, we takeR(x, t) ,
1{L+(p,σ)⊕Bε}c(x), where1A denotes the indicator function
of setA, and{·}c denotes set complement. Thus,gσ simply
measures the length of the interval[t0, tf ] during which mode
σ is active. Givenp ∈ P , when evaluated over an infinite
time horizon over all(x0, ℓ) ∈ S ⊆ {(x, ℓ) | (x, ℓ, p) |=←−σ .},
we havegσ(S, p) = max(x,p)∈S

∫∞

0 1{−→σ [p]}c(φσ(t; x, p)) dt,
with the understanding that−→σ [p] ⊆ L+(p, σ) ⊕ Bε. The
time required for a continuous statex ∈ X to converge
under controllerσ to an ε neighborhood of−→σ can be
over-approximated using Lyapunov-based techniques which
cannot be elaborated on here due to space constraints.

We define theaccumulated costJw over the execution
of an admissible data wordw = (σ1, p1) . . . (σN , pN ) from
configuration[z, p, σ] with z = (x, ℓ) as Jw(z, {pj}Nj=1) ,

gσ1
(z, p1) +

∑N
i=2 gσi

(−→σ i−1[pi−1], pi).
The optimization problem can then be stated as follows:
Problem 2: Out of all admissible sequencesw =

(σ1, p1) · · · (σN , pN ) that solve Problem 1, find one that

min
{pi}

Jw(z0, {pi}
N
i=1), s.t.pi ∈ s(z, pi−1), (z, pi−1) |=

−→σ i−1

(1)
We want to find a solution for Problem 2 onH without
involving the continuous dynamics; rather, we want get a
(sub)optimal solution to Problem 2 by solving the following
optimization problem on a discrete system:

Problem 3: For a givenz0, p0 and SPEC, and withq0 =
VM (z0, p0), F = Vspec∩Q, find a walk from(q0, p) to some
(qf , p) for qf ∈ F that satisfy the following: 1) The map
M(·) associated withw satisfiesM(p0)∩Pf 6= ∅; 2) among
all walks satisfyingM(p0) ∩ Pf 6= ∅, w is the shortest;



3) The data wordw = (σ1, p1) . . . (σN , pN) associated to
w (Algorithm 1) is such that{pj} solves (1). (Ifqf is not
reachable via a read transition, the final state is(qf , p′).)

After specifying initial state (q0, p) and final state
(qf , p)(or (qf , p′)), TR(H) becomes a deterministic finite
state automaton (DFA) and the problem of finding a set of
walks from the initial to the final state can be solved by
generating the regular expression (RE) of this DFA.

Definition 8 ( [12]): A regular expression is defined re-
cursively as follows: 1)∅ is an (empty)RE, ǫ is aRE denoting
the set including empty string{ǫ} and σ is a RE denoting
the set{σ}, for all σ ∈ Σ; 2) If r and s are REs, then
rs(concatenation),(r + s) (union), r∗, s∗ (Kleene-closure)
areREs; 3) There are noRE other than those constructed by
applying rules 1 and 2 finite number of times.

One way of converting aDFA into a RE is Brzozowski’s
method [13]. By replacing Kleene star∗ in RE(H) with
natural numbers (including0), we can generate all walks of
length m < ∞ and express their set asW(m) , {w|w ∈
RE(H), |w| = m}. To find the shortest walks that solve
Problem 3, we start withm = 1 and increasem until a
walk w is found, with a set-valued mapM(·) which satisfies
M(p0)∩Pf 6= ∅. Then there exists a sequence ofn parameter
values{pj} = p1, . . . , pn with n = |w/Σ| ≤ m such that
w = (σ1, p1) · · · (σn, pn) is an admissible input forR(H)
at configuration[1, q0, p0], and can take it to configuration
[n+1, qf , pf ] with qf ∈ F, pf ∈ Pf . An upper boundU <∞
on the length of walk can be computed if one places a limit
on the maximum allowable cost, saȳJ , and has an estimate
of the minimum cost of executing any controllerσ ∈ Σ,
sayJmin > 0. As any read transition incurs a nonzero cost,
U = J̄

Jmin

. In the current implementation, the walk search is
terminated once a walk satisfyingM(p0)∩Pf 6= ∅ is found.
There might exist walks yielding better plans, which is why
the proposed solutions are considered sub-optimal.

The following DP algorithm is adapted from [14] for
the specific requirements of the problem considered in
this paper. Given the input wordw with set-valued map
M from Algorithm 1, i.e. w = (σ1, p1) . . . (σN , pN ),
M(·) = MN ◦ . . . ◦M1(·), the optimal costJ∗w(z0) equals
J1(z0) given by the following two steps:(1) compute the
set of feasible value of parameterpi: Pi = Mi ◦ · · · ◦
M1(p0) ∩ {∪pN∈Pf

(MN ◦ · · · ◦ Mi+1)
−1(pN )}. (2) the

optimal costJ∗w(z0) is equal toJ1(z0) given by the last
step of the following algorithm, which proceeds from the
stage governed byσN to the one byσ1: JN (pN−1) =
minpN∈PN∩MN (pN−1) gσN

(−→σ N−1[pN−1], pN ), Ji(pi−1) =
minpi∈Pi∩Mi(pi−1)(gσi

(−→σ i−1[pi−1], pi)+ Ji+1(pi)), for i =
2, . . . , N−1, andJ1(z0) = minp1∈P1

(gσ1
(z0, p1)+J2(p1)).

Executing thisDP algorithm in the general case would
typically require a discretization of the parameter space,and
backtracking from the final parameter values to the initial
ones. Due to space limitations we cannot provide the details
of such an implementation. The process however, once the
DP equations have been stated, is straightforward.

V. CASE STUDY: GOLDILOCKS’ THERMOSTAT

The temperature in an indoor space is regulated through a
heating system, which is controlled by a digital thermostat.
We refer to this thermostat as “Goldilocks’ thermostat,”
because it reports the temperature conditions within the space
as one of three states: “too cold,” “too hot,” and “just right.”
The physics of the temperature variation is described by a
first order dynamical system with two modes,H for heating,
andO for (natural) cooling:

ẋ =fH(x, p) = −ah (x− p) , (2a)

ẋ =fo(x, p) = −ao (x− pe) , (2b)

where x denotes the inside temperature,ah and ao are
positive constants, andp is the temperature at which the
thermostat is set, andpe is a constant expressing the exterior
ambient temperature. We takea , ah = ao = 0.5.

The system can be modeled as a hybrid agentH =
{

Z,P , Σ,AP, f,
←
· ,
→
· , s, T

}

, where:

• Z ⊆ R; P ⊆ R, p ∈ P is the set temperature;
• Σ = {H, O1, O2}, whereH denotes heating, andO1, O2

denote cooling modes with different PRE and POST;
• AP =

{

[

α1 : pe ≤ x ≤ (1− ρ)p
]

,
[

α2 : x ≥ p− ǫ
]

,
[

α3 :

x ≥ (1 + ρ)p
]

,
[

α4 : x ≤ p + ǫ
]

}

, whereρ ∈ (0, 1) is a
parameter related to the sensitivity of the thermostat andǫ
incorporates the settling tolerance for control modes;
• fH (see (2a)) andfo1

= fo2
= fo (see (2b));

•

←

O1= {¬α1, α2, α3,¬α4},
→

H=
←

O2=
→

O1=

{¬α1, α2,¬α3, α4},
←

H=
→

O2= {α1,¬α2,¬α3, α4};
• s(z, p) = p′ ∈ P , p 6= p′, ∀(z, p) ∈ Z × P ;
• the transition functionT , which follows Definition 2.

Note as all modes share the same parameterp, there is no
need to use indexingι and the canonical projectionπ.

Problem 4: Given an initial temperaturex0 = 10 ◦C and
an initial thermostat settingp0 = 16 ◦C, find the sequence
of parameterized modes that bring the system to a state that
satisfies SPEC = {α3} with the thermostat set topf = 32
◦C in minimum time.

The induced register semiautomatonR(H) = (Q, Σ,P ∩
{∅}, 1, τ, ∆), where:

• Q = {q1, q2, q3} = {1001, 0101, 0110} is the set of
states: “too cold,” “just right,” and “too hot.”
• Σ andP are as inH;
• τ : 1 → P ∪ {∅} and is associated withTest(τ) =
{⊤ : p′ = τ} ∪ {ϕ : p′ ∈ ϕ(τ), ϕ ∈ Φ}, where
Φ = {∪iϕi}, ϕ1(p) = {p′ | p′ ∈ (p, 100]}, ϕ2(p) =
{p′ | p′ ∈ ( p+ǫ

1−ρ
, 100]}, ϕ3(p) = {p′ | p′ ∈ [pe,

p−ǫ
1+ρ

)},
ϕ4(p) = {p′ | p′ ∈ (p(1 − ρ) − ǫ, p(1 − ρ) + ǫ)}, ϕ5(p) =

{p′ | p′ ∈ [pe,
(1−ρ)p
1+ρ

)}, ϕ6(p) = {p′ | p′ ∈ ( p+ǫ
1+ρ

, p)},

ϕ7(p) = {p′ | p′ ∈ ( (1+ρ)p
1−ρ

, 100]}, ϕ8(p) = {p′ | p′ ∈
(p(1 + ρ)− ǫ, p(1 + ρ) + ǫ)};

• ∆ is a set of (a) Read transitions: (q1,⊤)
H
→

(q2, right), (q3,⊤)
O1→ (q2, right), (q2,⊤)

O2→ (q1, right);

(b) Write transitions: (q1, ϕ1)
H
→

(

q1, ι(H), stay
)

;
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′
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Fig. 1. The transformation semiautomatonTR(H).

(q2, ϕ2)
H
→

(

q1, ι(H), stay
)

; (q2, ϕ3)
O1→

(

q3, ι(O1), stay
)

;

(q1, ϕ4)
O2→

(

q2, ι(O2), stay
)

; (q1, ϕ5)
O1→

(

q3, ι(O1), stay
)

;

(q3, ϕ6)
O1→

(

q3, ι(O1), stay
)

; (q3, ϕ7)
H
→

(

q1, ι(H), stay
)

;

(q3, ϕ8)
O2→

(

q2, ι(O2), stay
)

.
The transformation semiautomaton that can be constructed

from R(H) is the tripleTR(H) = (Q̄, Σ̄, ∆̄) in which:
• Q̄ = {(q1, p), (q1, p

′), (q2, p), (q2, p
′), (q3, p), (q3, p

′)};
• Σ̄ = {H, O1, O2, λ1, . . . , λ8, idP };
• ∆̄ as represented in Fig. 1.
The range for the thermostat settings isP = [pe, 100] ◦C.
The variables in (2) arepe = 6 ◦C, ρ = 0.05, andǫ = 0.1.

The settling times ∆t of each of the modes of
H governed by (2a) or (2b) are given, (witht mea-
sured in minutes)∆t(H) = 1

ah
log

[

p−x(t0)
ǫ

]

, ∆t(O1) =

1
ao

log
[

pe−x(t0)
pe−(p+ǫ)

]

, ∆t(O2) = 1
ao

log
[

pe−x(t0)
pe−p(1−ρ)

]

. With

x0 < (1 − ρ)p0 = 15.2 ◦C and thusq0 = VM (x0, p0) =
1001 = q1. For the final state as SPEC∩Q = {∗∗1∗}∩Q =
{q3} we haveqf = q3.Intuitively, the solution would be
to set the thermostat desired temperatureabove the final
thermostat setting, after which the thermostat is reset topf

and the system finds itself in the “too hot” (q3) state. Simply
searching the graph of Fig. 1 does not yield that solution.
This example shows that the proposed methodology does.

First, given initial and final states(q1, p) and (q3, p
′)

(cannot choose(q3, p) becauseq3 can not be reached
by a read transition), generate the regular expression
RE(H) =

[

((λ1 +idP )H +λ5O1)(λ2H +λ3O1)
∗idP O2 +

λ4O2

]∗
[((λ1 + idP )H + λ5O1)(λ2H + λ3O1)

∗λ3 + λ5].
We first test for walks of lengthm = 1: w1 = λ5,

but pf = 32 /∈ ϕ5(p0) = [pe,
(1−ρ)p0

(1+ρ) ) = [6, 14.47).
Thus w1 is excluded. There is no walk of lengthm = 2
and for m = 3, we havew2 = λ4O2λ5, w3 = λ1Hλ3,
w4 = λ5O1λ3, w5 = idP Hλ3. Checking the associated set-
valued maps, we find that onlyMw3

(p0) = ϕ3 ◦ ϕ1(p0) =
(pe, supp∈(p0,100]

p+ǫ
1+ρ

) = (6, 95.33) has pf in its range.
Since each write transition has to be followed by a read
one, the associated input data word isw = (H, p1)(O1, p2),
p2 = pf = 32 ◦C.4

A (rather trivial) DP implementation can be used to
select p1; however the same principle applies to walks

4The presence ofO1 at the end of each candidate walk has no significance
other than reminding us that the end state for candidate solutions should be
q3 and thus satisfy PRE(O1).

of any finite length. First we computeP1 = M1(p0) ∩
M−1

2 (pf ) = ((1 + ρ)pf − ǫ, 100) = (33.7, 100) and

P2 = {32}. ThenJ2(p1) = 1
ao

log
[

pe−p1(1+ρ)
pe−(p1+ǫ)

]

, J2(p1) =

minp1∈P1

1
ah

log
[

p1−x(t0)
ǫ

]

+ 1
ao

log
[

pe−p1(1+ρ)
pe−(p1+ǫ)

]

, and since
the cost function happens to be a strictly increasing function
of p, the solution isp∗ = 33.71◦C, J∗ = 11.05 min. The
optimal plan is(H, 33.71) (O1, 32).

VI. CONCLUSION

The class of hybrid systems studied in this paper have
convergent continuous dynamics, lending themselves to a
type of predicate abstraction that partitions the continuous
state space based on the convergence properties of the set of
component vector fields. A weak simulation relation between
concrete and abstract system allows the control plan devised
using the abstraction to be implemented on the concrete
one. In this way, one can design time-optimal controller
sequencing working at a purely discrete domain. We pro-
pose a combination of aDP algorithm with a graph search
algorithm to generate these switching sequences and their
associated control parameterizations. Derived solutionsmay
be sub-optimal, depending on the discretization resolution on
the solution (parameter) space.
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