
and government crash safety require-
ments. This increasing reliance on sim-
ulation is due to the development of
theoretically sound and robust nonlin-
ear finite-element (FE) methods cou-
pled with the availability of affordable
but powerful computers. FE-based
crash analysis codes have successfully
simulated many laboratory vehicle crash
events. Today, most major automotive
companies routinely use FE simulation
to analyze and design vehicles that meet
safety guidelines for frontal impact, side
impact, roof crush, interior head im-
pact, rear impact, and rollover. 

Crash simulation is fundamentally
computation-intensive, and it requires
fast and powerful supercomputers to
ensure reasonable turnaround time for
the analyses. Because the explicit FE
method is computationally efficient, re-
searchers generally prefer it for crash
simulation. Explicit FE codes are avail-
able from several third-party mechani-
cal computer-aided engineering (CAE)
software vendors, and the major auto-
motive manufacturers, including Ford
Motor Company, use them for crash
simulation.

This article focuses on how this
technology has been extended to per-
form design optimization and robust-
ness assessment.

FE crash codes 
Although each software vendor pro-

vides some unique functionality, all ex-
plicit FE crash analysis codes are based
on the computational scheme described
here.

We can write the equation of motion
in semidiscrete form as

Mü = f = fext – fint

where M is the diagonalized mass ma-
trix, ü is the nodal acceleration vector,
and fext and fint are the external and in-
ternal force vectors.

To obtain a time-domain solution, we
use an incremental updated Lagrangian
scheme. Applying the central difference
equations, we can write the velocity and
acceleration at any time step as

.

We can update velocities and positions
at any time step using these equations:

where the incremental time step at the
nth increment is 

∆tn = (∆tn–1/2 + ∆tn+1/2)/2 .

We can write the internal element
force vector fint as

where σ is an element stress vector, B
is a strain-displacement matrix, and Ve
is the element volume.

Typical FE analysis models for any
crash mode might contain more than
100,000 shell elements. Simulation time
can range from six to 20 hours, depend-
ing on the problem’s size, computer
hardware, and number of processors
used. Efforts to parallelize commercial
crash analysis software have had limited
success when applied to realistic simu-
lation problems. Single simulations can
rarely effectively use more than eight
processors—the surface contact algo-
rithms and a heterogeneous mixture of
element types in the full vehicle model
inhibit load balancing and efficient par-
allel speedup. However, the increased
speed of RISC-based processors has re-
duced the turnaround time even for
large simulations to within acceptable
limits. Turnaround time is further re-
duced by using a modest number of
processors in parallel. So, FE-based full
vehicle structural crash simulation has
become a design tool used throughout
the automotive industry to evaluate ve-
hicle crash performance.
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Design of experiments and SOAR 
Crash simulation gives crash safety

design engineers the opportunity to ex-
plore many more alternative designs
than they could with hardware. How-
ever, design improvements are still
based on engineering judgment—en-
gineers typically use a trial-and-error
approach. That approach does not
guarantee that they will achieve an op-
timal design. Automatic optimization
techniques that directly apply the FE
crash model require more simulations
than can be performed in a reasonable
amount of time for a reasonable cost,
even with increases in processor speed
and the availability of less expensive
high-speed computers. Robustness as-
sessment will further increase the sim-
ulation requirements by at least an-
other order of magnitude.

One way out of this dilemma is to
apply computer design of experiments
(DOE) techniques with a few carefully
chosen samples in the design space to
characterize the desired response. We
can then use these samples as the basis
for creating a surrogate or response 
surface model. We use this surrogate
model in all subsequent steps to perform
optimization and robustness assessment. 

A systematic computer-based DOE
followed by a response-surface-based
optimization and robustness assessment
scheme are critical steps in the safety 
optimization and robustness (SOAR)
process. This process helps achieve a
balance between delivering the desired
accuracy and simulation time and cost.
Figure 1 outlines the entire process.

LHS experimental design. The opti-
mal Latin hypercube sampling1 (LHS)
generates a sample of design points for
response surface construction. We se-
lected the optimal LHS, because we
didn’t have prior knowledge of the
model’s parametric form. This experi-

mental design minimizes the bias part
of the mean square error by distribut-
ing the sample points uniformly over
the entire design region. The LHS
space-filling design is better at captur-
ing response nonlinearities than those
used for hardware experimentation—it
avoids computing unnecessary repli-
cates. The total number of variables
(including control and noise variables
in the optimization problem) deter-
mines the number of CAE simulations
in the optimal LHS. To construct a rea-
sonably accurate response surface for
the optimization and robustness assess-
ment, we need a minimum of 3N LHS
points—N being the total number of
design variables. Therefore the number
of initial simulations should range be-
tween 3N and 4N for best results. The
number of levels for each variable in
LHS is quite flexible and can be as high
as the total number of simulations. 

Because each simulation in the exper-
imental design is entirely independent,
the problem is trivially parallel. There-
fore, we can also use a loosely coupled
system of inexpensive networked com-
puters to perform the numerical simula-

tions required for the SOAR process.
We can finish the SOAR process for a
typical 10-design-variable case, includ-
ing additional simulations that might be
required for improving the response sur-
face or confirming the optimal design, in
about a week, using 24 processors on an
SGI Origin 2000, Sun E10000 super-
computers, or a cluster of systems of com-
parable performance. We can use a mod-
est number of processors (four to eight) in
a single FE simulation to reduce the time
required to perform the DOE without af-
fecting result consistency.2

Response surface construction. We
use a quadratic stepwise regression method
to construct the response surfaces for
subsequent optimization and robustness
analyses. Researchers have described the
SR as the best of the variable selection
procedures and recommended it highly
for modeling the response surfaces.3 It is
also accurate and robust for safety opti-
mization problems.4

Optimization and robustness as-
sessment. Usually, if a safety simula-
tion uses optimization at all, it is only

Define optimization problem:
objective, constraints, design vaiables

Latin hypercube sampling
(experimental design)

Construct response surface (RS):
(stepwise regression)

Numerical optimization based on RS

Confirmation run for optimal design

Accuracy/
convergence?

Robustness assessment

Add new point to
reconstruct RS

Stop

Yes

No

Figure 1. The safety optimization and 
robustness assessment process.



deterministic. Furthermore, most safety simulations con-
sider the impact of variability in design parameters on vehi-
cle response solely through the use of safety factors. In the
SOAR application, we perform deterministic optimization
using sequential quadratic programming with mixed vari-
ables. After obtaining a deterministic optimum, we make a
robustness assessment by modeling the design variables with
uncertainties. These uncertainties result from many sources,
such as gauge and material variation and test variability. Ow-
ing to these uncertainties, we must treat the design variables
as random variables. In the SOAR process, we perform ro-
bustness assessment by constructing a cumulative distribu-

tion function of the response variables, generated from
Monte Carlo simulation.

We can use the SR response surface as a surrogate model to
perform both the deterministic optimization and robustness as-
sessment. Because a small system of equations represents the SR
model, we can evaluate it quickly at very little computational ex-
pense compared to the full FE simulation. Thousands of sam-
ples might be needed to realize a good representation of the re-
sponse probability distribution using Monte Carlo simulation.

Application to a side-impact study
Figure 2 shows the side-impact system model used in our

study.5 The system model includes a full-vehicle FE structural
model, an FE side-impact dummy model, and an FE de-
formable side-impact barrier model. The system model con-
sists of approximately 90,000 shell elements and 96,000 nodes.
In the FE simulation of the side-impact event, the barrier has
an initial velocity of 31 mph and impacts the vehicle structure.
Figure 2 shows the barrier’s position at some instant during the
impact. A typical simulation lasts about 80 milliseconds.

C S E  I N  I N D U S T R Y

Figure 2. A side-impact finite-element model. 
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For an automotive manufacturer to
sell vehicles in any country or region,
the vehicle design must meet all safety
regulations mandated by the regional
authority. The two primary side-
impact protection regulations are
FMVSS-214, which the US National
Highway Traffic Safety Administra-
tion mandates, and ECE 95.01, which
the United Nations Economic Com-
mission for Europe mandates. Both the US and Europe
make side-impact crash test ratings available to the public.
In the US, the NHTSA does this through its Lateral Impact
New Car Assessment Program (LINCAP), and Europe has
its own New Car Assessment Program (EURO-NCAP).
The crash test procedures that LINCAP and EURO-NCAP
use are based on the respective regulated side-impact crash
tests for each region. We used the EURO-NCAP side-
impact test configuration for the problem in this article. 

The crash dummy’s performance is the main metric in
side-impact crash studies. In the EURO-NCAP side-impact
procedure, the primary performance criteria for the dummy
are the head performance criterion (HPC), abdomen load,
pubic symphysis force (the force at the joint of the two ileum
at the front of the dummy’s pelvis area), V*C (viscous crite-
rion), and the rib deflection (upper, middle, and lower).
These dummy responses must meet the acceptance criteria
as described in the EURO-NCAP side-impact procedure.
We used an FE dummy model to obtain the required dummy
performance numbers. In addition, the velocity of B-Pillar
at middle point and the velocity of front door at B-Pillar are
also important safety design considerations.

Optimization. As an example, let’s consider increasing
gauge in a side-impact analysis. In some cases, this change
might improve dummy performance. However, it also in-
creases vehicle weight, which is undesirable for fuel economy.
Therefore, we must seek a balance between weight reduction
and safety performance. The optimization problem in this
article aims to reduce the overall vehicle weight while main-
taining or improving the dummy safety performance as mea-
sured by the EURO-NCAP side-impact safety rating score
(see Figure 3). This score consists of four performance mea-
surements of the dummy—the HPC, abdomen load, rib de-
flection or V*C, and pubic symphysis force. The highest
score for each measure is four points. So, a vehicle can score
a maximum of 16 points for its performance in side impact.

In this example, side-impact optimization involves 11 de-

sign variables. The control variables are critical component
materials and thickness. All the thickness design variables are
continuous, which we can vary from 0.5 × t0 to 1.5 × t0, where
t0 is the baseline value. The material design variables are dis-
crete, meaning either mild steel or high-strength steel. The
noise factors are barrier height and impact position, which
are continuous and vary from –30 mm to 30 mm, according
to the physical test. We only use the noise factors in the ro-
bustness assessment.

Minimize Weight
Subject to Abdomen Load ≤ 1.0 KN 

V*C ≤ 0.32 m/s
Durd (upper rib deflection) ≤ 32 mm
Dmrd (middle rib deflection) ≤ 32 mm
Dlrd (lower rib deflection) ≤ 32 mm
Pubic symphysis force F ≤ 4.0 KN
Velocity of B-pillar at middle point: VB-Pillar ≤ 9.9 mm/ms
Velocity of front door at B-pillar Vfront door ≤ 15.70 mm/ms

Figure 3. The optimization problem for side impact. 
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We performed three iterations for the benchmark prob-
lem. In each iteration, we compared the optimum design re-
sults with the confirmation solution. If the confirmation so-
lution was not satisfied, we constructed new response surface
models by adding the confirmation results. We then contin-
ued the optimization process using the new response sur-
faces. Figure 4 shows the convergence of reduction in weight
as a function of iteration count. At convergence, the weight

decreased by approximately 5.5 kg. The
safety rating, based on crash dummy re-
sponses, improved by 6%. The entire
analysis required 37 FE simulations,
which included simulations for con-
structing the initial response surface as
well as confirmation runs. Each 80-ms
model simulation required 20 hours on
a single-processor SGI Origin 2000.
One optimization iteration required ap-
proximately 10 minutes on an engi-
neering workstation.

In general, the results converge to an
optimal solution within three iterations,
and predictions correlate well with the
confirmation results. In our example,
the errors in weight, velocities, forces,
and rib deflections were all within 5%. 

Robustness assessment. In this
phase, we treat the input parameters as
random variables. In this study, we as-
sumed that all variables have a Gaussian
normal distribution. We set each vari-
able’s mean value to be the same as for
the optimal design. We performed each
robustness assessment by constructing a
cumulative distribution function of the
response variable generated using the
Monte Carlo method. A random-num-
ber generator selects values for each ran-
dom variable with a frequency propor-
tional to the shape of the corresponding
probability distribution. Usually we need
1,000 to 10,000 samples for a good rep-
resentation of the response probability
distribution. We use the response sur-
face generated during optimization to
make this process computationally fea-
sible. In the side-impact analysis, we
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needed 1,000 independent samples to
obtain a satisfactory cumulative distrib-
ution function.

The robustness assessment’s result
provides a confidence interval around
the optimum design. Figure 5 shows
the deviation of weight from the deter-
ministic optimal design as the confi-
dence interval increases. Although the deterministic optimal
design meets all the design targets, robustness assessment
might violate one or more of the design constraints as the
confidence interval increases. In the side-impact example, the
upper-rib deflection constraint is violated with the 85% con-
fidence interval (see Figure 5). This result indicates that a
real-world vehicle side-impact test has more than a 15%
chance of violating this constraint.

F ull-scale vehicle crash simulation has become a standard
part of vehicle design. High-quality simulation models

and computer-based DOE and response surface methods
have let researchers at Ford Motor Company extend this sim-
ulation capability to the assessment of uncertainties resulting
from sources such as test and manufacturing variability. Even
better, we can realize this capability economically with cur-
rently available computer hardware. We are developing this
technology further to achieve reliability-based design opti-
mization. Reliability-based design optimization will deliver a
design that is optimal as well as less sensitive to parameter
variability and external noise factors. 
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