GENERAL FORMULATION OF FLUID MECHANICS (Eulerian formu-
lation)

LAMINAR FLOW OF NEWTONIAN FLUID: Eulerian description

Material derivative or substantial derivative:
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(1) Mass conservation:
Dp B dp B
Ft+pv-v—0 or E-I—V'(pv)—

(2) Conservation of linear momentum:

0 .
p(a—::-f-v-Vv) =pf —Vp+V.[7]

where p(x,t): density, v(x,t): velocity, p(x,t): pressure, T'(x,t): tempera-
ture.

Total stress 7 = 7 — pl.

Constitutive Eqn

where [7]: shear stress field,
[s]: rate-of-strain field, s;; = 0.5(0v;/0x; + Ov;/0x;).
Examples: Newtonian fluid:

[T] = 2p[s] + AV - v[I]

—for Stokes fluid A = —24/3.

Viscoelastic fluid:
[7] = 2u[s] + [7"]

where [7F]: elastic contribution, nonlinear function of [s] or Vv.



(3) Energy conservation (1st law of thermodynamics)

[or
pCp | =+ v VT | = kV?T + H - PV-v
conwvection conduction  heat generation  pressure work

where heat generation H = g5 +qp +qr + 95 + g

qs: due to applied heat sources or sinks,

gp = 2u[s] : [s]: due to viscous dissipation (fluid elements rubbing
against each other),

ggr: due to chemical reaction,

qj: due to electrical heating,

gp: thermal radiation.

(4) Species transport eqn. (e.g. for a reacting system, fluid=Ny+ Oy + Ho +
H>0 +...)

p <8_Ct v ch> = pa' V2t + source/sink + chemical reaction rate

where ¢": concentration of species i.

(5) Eqn of state: .
f(P,p’T,CZ) = 0

examples: for ideal single-component gas
Ry
P =pRT = p—T
P Par
where Ry: universal gas constant, M: molecular weight.
For gas mixture, 1/M =3, ¢ /M*, where M*: molecular weight of i-species.

(6) Boundary Conditions and Initial Conditions: v(s,t) or [7](s,t): s—
boundary curve/surface

Normally the boundary condition for p is not required, except a reference
value for it to be determined uniquely.

c*(s,t) or mass flux = —pa'n - V¢

T(s,t) or heat flux = —kn - VT



(7) Problem formulation or physical modeling involves making assump-
tions to simplify the flow eqns.

Examples: isothermal, incompressible

How to effectively use these coupled PDEs to understand fluid physics
and to aid engineering analysis?

Physical intuition and experimental observations

General theory of PDEs

Numerical solutions

TURBULENCE MODELING:
A state of flow that is highly random, unsteady, and three dimensional.

Too expensive to solv the local, time-dependent flow field (a range of scales
in space and time)

What if only solving the time-averaged flow field
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mean/average field

time average:

1 t+ At
n=— dt
n N /t n

n=n+1
where 7: averaged field (solved), 7j: fluctuation field (modeled).

Reynolds decomposition:

Take, for example, incompressible isothermal flow The exact eqns
V.-v=0

p(aa—:—f—v-Vv) = VP +uViy

or
p@{5;+v-VT]:kV%‘



x-component momentum eqn
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Need modeling, namely, relating
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Reynolds stress thermal turbulent flux

Examples
— (811 n 8’1‘;)
—put = — 4+ —
p Mt dy | oz

where p;: turbulent viscosity.

—’llT = O (g—:)

where a;: turbulent diffusivity.

Turbulence models included in FIDAP

Zero-equation model

e = pli, (18] - (82
where [,,,: mixing length, [3]: averaged rate-of-strain field.
Two-eqn or K — ¢ model

Turbulent kinetic energy k = %(ﬁ + 92 4+ 2.



viscous dissipation of turbulent kinetic energy e = 2v[$] : [§].
Solve modeled transport eqns for K, e

= peuk?fe
where empirical constant ¢, ~ 0.09

(more details can be found in FIDAP theory mannuals and ”turbulence”
textbook.)

For a layman, the mean fields in turbulent flow are subject to spatially
varying variable effective viscosity!



