FINITE-ELEMENT FORMULATION OF AN UNSTEADY 1D FLOW PROBLEM
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The problem:
Fluid motion in between two plates due to sudden movement of top plate at ¢ = 0.

Assumptions:
Uniform density, pressure, Newtonian fluid, isothermal

Governing Eqn: The Navier-Stokes Eqns can be reduced to only one equation for u(y, t)
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Transformation of u(y,t) to 6(y,t) simplifies the BC’s.
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For large t or t > ph?/u (diffusion time)
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or in non-dimensional form:



Finite-element solution with 3 equal elements ! = h/3. Solution in terms of :
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where (I1) = 0 due to BC’s. (note that BC’s for ¢ are the same as 0)
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But 41 = 94 = 0, so only the 2nd and 3rd eqns in M = + kQ = 0 are needed.
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here ) is eigenvalue, is eigenvector.
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— )\1 = —5a, )\2 = -2
eigenvector for A; is

eigenvector for As1 is

The general solution is

t=20: —%U0:c1+02

—%Uo =—c1+cC
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C1 = U()/ﬁ, Cy = —U()/2. Namely
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Exact solution u/Uy
y/h | oy =001 | 5, =01 | 3, =10
1/3 | 2.4603e-6 0.1332 0.3333
2/3 | 1.8422e-2 0.4559 0.6666
Finite element with 3 linear elements
y/h | oy =0.01 | 5, =01 | &, =10
1/3 | 3.6240e-6 0.2572 0.3333
2/3 0.1285 0.5775 0.6667

Note that in the above, the time integration was done exactly for the finite element formulation. In a

software package like FIDAP, this is done by numerical approximation.

TIME INTEGRATION SCHEMES




Finite element formulation of unsteady/dynamic problems will result in Partial DE — a set of coupled
Ordinary differential eqns.

du
A— + Ku =
7 + Ku=f

where A and K are matrices

Unp,

is solution vector.
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fn
is forcing vector, with IC for f, one needs to integrate in time.

Consider a one-degree-of-freedom ODE

du
dt

Let the exact soln be u(t), which we usually do not know.

Numerical approximation for uli_s, ~ u(ty) — u*

Finite difference formulation:

Assume 1, u!, ..., u* are known numerically, how to obtain uf+1?
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If a # 0, implicit scheme;

a = 0, explicit scheme.
How to determine a,b,c ?
Taylor expansion

d d’>u At?
uF e u(tE ) = u(tk + At) = uF + d—? At+ WgT + AL

uk+1—uk_du d?u At d?’_uA_t2

=Syttt INVN
At dt+dt22+dt36+ (t)



—uF At At?

At?
aF L bFF 4 cFFl = o(FF + F' At + F"T + A(AE)) + bFF 4 ¢(FF —F' At 4+ F"

Then the leading order 1 =a+b+c,
O(At): 3 =a-c,
O(At?): ¢ =%+ £ and so on.

The 1st-order scheme:
Only the leading order is balanced.
Ex.a=¢=0,b=1
“kz;“k = F*: forward Euler scheme
Ex.a=1,b=¢c=0
ut —ul _ pk+1; hackward Euler scheme (implicit)

The 2nd-order scheme: coefficients up to O(At) are balanced.
Ex. a=0, b=3/2, c=-1/2
“kz;“k = %Fk — %Fk_lz 2nd-order Adams-Bashforth scheme.
Ex. a=1/2, b=1/2, ¢=0

W = %Fk“ + %Fk: 2nd-order Crank-Nicholson scheme or Trapezoidal scheme.

Using the above procedure, one can develop high-order scheme.

FIDAP only implemented
Forward Euler, 1st/explicit
Backward Euler, 1st/implicit
Trapezoidal scheme, 2nd/implicit

ACCURACY/ TRUNCATION ERROR
. k+1_,k
Consider forward Euler scheme: “Tt“ = Fk = f(u, tF)
uF T = ok Atf(uF, )

But

u* ) = u(t) + D) A1+ O(2)
w(t*Th) = w(th) + Atf(u(tF), tF) + O(AL?)
Then

u(tF 1) — uF T = w(th) — oF + AL[f (u(tF), 1) — F (P, )] + O (A7)

Define truncation error:

e® = u(tF) — uF = exzact — numericalapproz.
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Assume f(u,t) is a well-behaved function (0f/0u is finite)
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Where |€°| is assumed zero initially.
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Since efT — 1 is fixed, does not change with At
] = 0(A1)
This is why Euler scheme is known as 1st order method.
Convergence is obtained as At — 0.
Stability:

A stable numerical scheme is one for which errors from any source (round-off, truncation, mistakes) do not
grow in the sequence of numerical procedures as the calculation proceeds from one time step to the next.

Ex. Consider the differential eqn
ou ou
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where ¢ is some characteristic velocity.

Let uj represent numerical approximation to u(z;,t"). Use forward Euler scheme in time

n+l _ . n no_.n
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We have
ut = — cAt (ul 1)
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Question: Is this numerical scheme stable?

Let numerical soln to the difference eqn be N,



exact soln to the difference eqn be D,
round-off error be €

N=D+e¢
Then ¢ satisfies the same eqn as u.
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where a = cAt/Ax
Now assume that the error is of the form (stability analysis, Fourier analysis in space)

6? — eatezkmj

ea(t -I—At)ezkmj — " etk _ E(ezkAm —e zkAx)eat 6zkm]

Growth factor o
WAt =1 - 522' -sin(kAz) =1 — iasin(kAx)

|1 —iasin(kAz)| < 1 to be stable,
\/ 1 + a?sin?(kAz) < 1 impossible for any a.

The scheme is unconditionally unstable.

Consider a modification to the scheme

1 cAt
1
u?+ = E(u?_l +ujiq) — ﬂ(u?_,_l —uj_q)

Then the growth factor is | cos(kAz) — iasin(kAz)| < 1
\/cos2(kA:v) + a?sin?(kAz) < 1
\/71+C°S(22kAm) + 2 (1 — cos(2kAz) < 1

\/# + # cos(2kAz) < 1
Satisfied if a < 1.

The new scheme is conditionally stable.
a=cAt/Az <1
known as CFL condition, Courant-Friedrichs-Lewy Condition.

How about using implicit (backward) Euler scheme?
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Always true. Therefore the backward Euler scheme is unconditionally stable.

Considerations for the choice of At: compromise the following factors
numerical truncation error (small At)
numerical stability (small At)
round-off error (large At)
total run time (perfer large At)



