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Fundamental Concepts in Continuum Mechanics 
       (As applied to mutli-dimensional solids and fluids) 
 
A. Lagrangian vs Eulerian descriptions 
 
Consider a "particle" (or tiny material element) within a 3D body. Let X

r
 be the position 

of this particle at 0=t . The position of this particle at a later time t  is x
r

 
 
        ( )tXxx ,

rrr
=        given that  ( ) XtXx

rrr
== 0,  

 
Consider a physical variable θ ,  say temperature, that is associated with this particle. 
 

 ),( tX
r

θθ =  temperature at t  of a given material particle initially located at X
r

 
 

This is material description or Lagrangian description. 
 

We may also choose to observe the changes at fixed spatial location x
r

 
 

),( tx
r

θθ =   
 
This is spatial or Eulerian description. 
 
NOTE: A given spatial location x

r
 is occupied by different particles at different times. 

 
B. Deformation and displacement 
 
Displacement of a particle XtXxtXu

rrrrr
−≡ ),(),(  

 

The Lagrangian strain tensor    
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Notation: ),,,(),,( 321 wvuuuuuu i ===

r
      spatial location:  ),,(),,( 321 zyxxxx =  
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Geometrical interpretation of 










∂
∂

+
∂
∂

=
i

j

j

i
ij X

u
X
u

2
1

ε  

 

element material same  theoflength  Original
direction  in the alignedelement  material afor length  of Change 2

2

2
22

x
X
u

=
∂
∂

=ε  

 
Also known as “normal strain” or “unit elongation” in the 2x  direction. 
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Known as “shear strain” 
 

 
 
The trace of ijε  
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Known as “dilatation”. 
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C. Stresses and equilibrium 
 
Consider a 3D body occupying a volume V and having a surface S 
 

 
 

distributed force per unit volume (weight) 
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The stresses acting on an elemental volume (force per unit area) 
 

 
The principle of moment of momentum  →  symmetry of stress tenor 
 

The moment of all the forces acting on the elemental volume  
                                        = moment of inertia ×  angular acceleration      
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The statics or equilibrium equations 
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Boundary conditions:  
 

uSu on        0=
r
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Similar for localized load or point load PS , except over small area. 
 
D. Stress-strain relations for linear elastic solid: The generalized Hooke’s Law 
 
For isotropic materials, only two materials properties are needed:  
                                Young’s modulus (or modulus of elasticity) E 
                                 Poisson’s ratio  ν  
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Inverse relations 
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Von Mises stress 2
2
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where zzyyxxiiI ττττ ++==1 ,  jiijII ττ−= 2
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often used as a criterion in determining the onset of failure in materials 
 
 

 
E. Special cases: 
 
One dimensional models:   
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Two dimensional models: 
 
(a) Plane stress model:  Only in-plane stresses are nonzero.     0   ,0    ,0 === yzxzzz τττ  
 

Good for thin planar body subjected to in-plane loading.  
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Example: A thin ring press fitted on a shaft. 
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(b) Plane-strain model: Only in-plane strains are nonzero. 0   ,0    ,0 === yzxzzz εεε  

But  0≠zzτ  
 

Good for a long body of uniform cross section subjected to uniform transverse 
loading along its length. 


