Fundamental Concepts in Continuum Mechanics (As applied to mutli-dimensional solids and fluids)

A. Lagrangian vs Eulerian descriptions

Consider a "particle" (or tiny material element) within a 3D body. Let \vec{X} be the position of this particle at t = 0. The position of this particle at a later time t is \vec{x}

$$\vec{x} = \vec{x} (\vec{X}, t)$$
 given that $\vec{x} (\vec{X}, t = 0) = \vec{X}$

Consider a physical variable q, say temperature, that is associated with this particle.

 $\boldsymbol{a} = \boldsymbol{a}(\vec{X},t)$ temperature at t of a given material particle initially located at \vec{X}

This is material description or Lagrangian description.

We may also choose to observe the changes at fixed spatial location \vec{x}

$$\boldsymbol{q} = \boldsymbol{q}(\vec{x}, t)$$

This is spatial or Eulerian description.

NOTE: A given spatial location \vec{x} is occupied by different particles at different times.

B. Deformation and displacement

Displacement of a particle $\vec{u}(\vec{X},t) \equiv \vec{x}(\vec{X},t) - \vec{X}$

The Lagrangian strain tensor $\boldsymbol{e}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial X_j} + \frac{\partial u_j}{\partial X_i} \right)$, symmetric $\begin{bmatrix} \mathbf{e} \end{bmatrix} = \begin{bmatrix} \frac{\partial u_1}{\partial X_1} & \frac{1}{2} \left(\frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1} \right) & \frac{1}{2} \left(\frac{\partial u_1}{\partial X_3} + \frac{\partial u_3}{\partial X_1} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1} \right) & \frac{\partial u_2}{\partial X_2} & \frac{1}{2} \left(\frac{\partial u_2}{\partial X_3} + \frac{\partial u_3}{\partial X_2} \right) \\ \frac{1}{2} \left(\frac{\partial u_1}{\partial X_3} + \frac{\partial u_3}{\partial X_1} \right) & \frac{1}{2} \left(\frac{\partial u_2}{\partial X_3} + \frac{\partial u_3}{\partial X_2} \right) & \frac{\partial u_3}{\partial X_3} \end{bmatrix}$

Notation: $\vec{u} = (u_1, u_2, u_3) = u_i = (u, v, w)$, spatial location: $(x_1, x_2, x_3) = (x, y, z)$

Geometrical interpretation of $\boldsymbol{e}_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial X_j} + \frac{\partial u_j}{\partial X_i} \right)$

 $\mathbf{e}_{22} = \frac{\partial u_2}{\partial X_2} = \frac{\text{Change of length for a material element aligned in the } x_2 \text{ direction}}{\text{Original length of the same material element}}$

Also known as "normal strain" or "unit elongation" in the x_2 direction.

 $2\mathbf{e}_{12} = \frac{\partial u_1}{\partial X_2} + \frac{\partial u_2}{\partial X_1} =$ decrease in angle between two elements initially aligned in the x_1 and x_2 direction

Known as "shear strain"

The trace of \boldsymbol{e}_{ii}

$$= \boldsymbol{e}_{11} + \boldsymbol{e}_{22} + \boldsymbol{e}_{33} = \frac{\partial u_1}{\partial X_1} + \frac{\partial u_2}{\partial X_2} + \frac{\partial u_3}{\partial X_3} = \frac{\boldsymbol{d}(dV)}{dV} = \frac{\text{change of material volume}}{\text{original material volume}}$$

Known as "dilatation".

C. Stresses and equilibrium

Consider a 3D body occupying a volume V and having a surface S

The stresses acting on an elemental volume (force per unit area)

The principle of moment of momentum \rightarrow symmetry of stress tenor

The moment of all the forces acting on the elemental volume = moment of inertia × angular acceleration

$$t_{zx} = t_{xz}$$
$$t_{yx} = t_{xy}$$
$$t_{yz} = t_{zy}$$

The statics or equilibrium equations

 \sum all forces acting on an element volume = $\Delta m \times$ acceleration

$$\sum F_x = 0: \qquad \qquad \frac{\partial t_{xx}}{\partial x} + \frac{\partial t_{xy}}{\partial y} + \frac{\partial t_{xz}}{\partial z} + f_x = 0$$

$$\sum F_y = 0: \qquad \qquad \frac{\partial t_{xy}}{\partial x} + \frac{\partial t_{yy}}{\partial y} + \frac{\partial t_{yz}}{\partial z} + f_y = 0$$

$$\sum F_z = 0: \qquad \qquad \frac{\partial t_{xz}}{\partial x} + \frac{\partial t_{yz}}{\partial y} + \frac{\partial t_{zz}}{\partial z} + f_z = 0$$

Boundary conditions:

$$\vec{u} = 0$$
 on S_u

$$\begin{aligned} \mathbf{t}_{xx}n_{x} + \mathbf{t}_{xy}n_{y} + \mathbf{t}_{xz}n_{z} = T_{x} \\ \mathbf{t}_{xy}n_{x} + \mathbf{t}_{yy}n_{y} + \mathbf{t}_{yz}n_{z} = T_{y} \\ \mathbf{t}_{xz}n_{x} + \mathbf{t}_{yz}n_{y} + \mathbf{t}_{zz}n_{z} = T_{z} \end{aligned} \right\} \quad \text{on} \quad S_{T} \qquad \text{surface normal} \quad \vec{n} = \begin{pmatrix} n_{x} \\ n_{y} \\ n_{z} \end{pmatrix}$$

Similar for localized load or point load S_p , except over small area.

D. Stress-strain relations for linear elastic solid: The generalized Hooke's Law

For isotropic materials, only two materials properties are needed:

$$e_{xx} = \frac{\partial u}{\partial x} = \frac{t_{xx}}{E} - n \frac{t_{yy}}{E} - n \frac{t_{zz}}{E}$$

$$e_{yy} = \frac{\partial v}{\partial y} = -n \frac{t_{xx}}{E} + \frac{t_{yy}}{E} - n \frac{t_{zz}}{E}$$

$$e_{zz} = \frac{\partial w}{\partial z} = -n \frac{t_{xx}}{E} - n \frac{t_{yy}}{E} + \frac{t_{zz}}{E}$$

$$e_{xy} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) = \frac{t_{xy}(1+n)}{E}$$

$$e_{yz} = \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) = \frac{t_{yz}(1+n)}{E}$$

$$e_{xz} = \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) = \frac{t_{xz}(1+n)}{E}$$

Inverse relations

$$\mathbf{t}_{xx} = \frac{E}{(1+\mathbf{n})(1-2\mathbf{n})} \left[(1-\mathbf{n})\frac{\partial u}{\partial x} + \mathbf{n} \frac{\partial v}{\partial y} + \mathbf{n} \frac{\partial w}{\partial z} \right]$$
$$\mathbf{t}_{yy} = \frac{E}{(1+\mathbf{n})(1-2\mathbf{n})} \left[\mathbf{n} \frac{\partial u}{\partial x} + (1-\mathbf{n})\frac{\partial v}{\partial y} + \mathbf{n} \frac{\partial w}{\partial z} \right]$$
$$\mathbf{t}_{zz} = \frac{E}{(1+\mathbf{n})(1-2\mathbf{n})} \left[\mathbf{n} \frac{\partial u}{\partial x} + \mathbf{n} \frac{\partial v}{\partial y} + (1-\mathbf{n})\frac{\partial w}{\partial z} \right]$$
$$\mathbf{t}_{xy} = \frac{E}{2(1+\mathbf{n})} \left[\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right]$$
$$\mathbf{t}_{yz} = \frac{E}{2(1+\mathbf{n})} \left[\frac{\partial w}{\partial y} + \frac{\partial v}{\partial z} \right]$$
$$\mathbf{t}_{xz} = \frac{E}{2(1+\mathbf{n})} \left[\frac{\partial u}{\partial z} + \frac{\partial w}{\partial z} \right]$$

Von Mises stress $\boldsymbol{s}_{VM} \equiv \sqrt{I_1^2 - 3I_2}$

where
$$I_1 = t_{ii} = t_{xx} + t_{yy} + t_{zz}$$
, $I_2 = \frac{1}{2}I_1^2 - t_{ij}t_{ji}$

often used as a criterion in determining the onset of failure in materials

E. Special cases:

One dimensional models:

(a) If
$$u = u(x)$$
, $\mathbf{t}_{xx} = \frac{E}{(1+\mathbf{n})(1-2\mathbf{n})} \left[(1-\mathbf{n})\frac{du}{dx} \right] \approx E \frac{du}{dx}$.
(b) If $v = v(x)$ and $u = w = 0$, then $\mathbf{t}_{xy} = \frac{E}{2(1+\mathbf{n})} \frac{dv}{dx}$.

Two dimensional models:

(a) Plane stress model: Only in-plane stresses are nonzero. $\mathbf{t}_{zz} = 0$, $\mathbf{t}_{xz} = 0$, $\mathbf{t}_{yz} = 0$ Good for thin planar body subjected to in-plane loading. Example: A thin ring press fitted on a shaft.

(b) Plane-strain model: Only in-plane strains are nonzero. $\boldsymbol{e}_{zz} = 0$, $\boldsymbol{e}_{xz} = 0$, $\boldsymbol{e}_{yz} = 0$ But $\boldsymbol{t}_{zz} \neq 0$

Good for a long body of uniform cross section subjected to uniform transverse loading along its length.