FINITE ELEMENT MODELING OF 1D PROBLEM
(Note the basic procedure is the same for 2- and 3-dimensional problems)

Lecture Objectives:

—Demonstrate 1D FE modeling using the stress analysis in solid bar as example
—Explain the steps in 1D FE modeling

—Application to the steel plate problem

ONE-DIMENSIONAL MODEL

u = u(z) displacement — € = €;,(z) = g—g strain

— T = Tgz(x) the only non-zero stress component (implicitly the Poisson ratio v = 0 or effects of transverse
strain are neglected)

stress-strain relation 7 = Fe
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External loads:
f = f(z) body force
T = T(x) etc. surface traction — force per unit length in 1D
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STEPS IN FINITE-ELEMENT MODELING

Step 1. element division: in 1D each element has a uniform cross section, uniform traction, uniform body



force density. A, T, f may differ from element to element. It is convenient to define a node at each
location where a point load is applied. Elements can have different lengths. Let ¢1, g2, g3, g4, g5 be the

q1
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displacements at node points. Then Q = | ¢3 | is the global displacement vector. Each node has one
q4
g5
degree of freedom.
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Step 2. Analysis within each local element
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Establishing displacement field within an element using information at the nodes.

u(§) = N1(€)q1 + Na(§) g2

Ni(€) and Ny(€) are shape functions: first derivatives must be finite within each element, u must be

continuous across the element boundary.



Example:

Linear interpolation

Ni(§) = o & Ni(-1)=1, Ni(1) =0
Ng(f) = 12L£ = NQ(—l) =0, Ng(l) =1

(satisfy both requirements)

N
Oru=<N;>-(cJ1,Q2)=N-q

q element displacement vector

Note also the relationship between global coordinate and local coordinate
z = Niz1 + Nozo

u and z are interpolated using same shape functions (isoparametric formulation).

Strain field in the element
_du _dudf du dzx _ g-q
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where B = | 1 | Therefore,
T=FEB-q

Step 3. Apply approximation method, e.q. Galerkin approach
Governing eqn.

drA

T AT+ Y P(e - i) =0

Introduce a test displacement field ¢ = ¢(x)

L.drA
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integration by parts
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internal virtual work external virtual work

Summation over elements
Z/eEe(qf))Adac — Z/(/) . fAdz — Z/ngTda: - ¢ipi =0

e-strain due to actual loads
€(¢)-strain due to virtual displacement field
Discretization of ¢(z): (1, V2, ..., ¥5)T



If same interpolation scheme is used
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element stiffness matrix

where [, = 19 — T;.
Similarly
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where A, is the cross section area, [, = x9 — z1 is the element length.

/qSTda: - w.T"
e

= () e ( })

= Ee ¢Tkeq - Ze ¢Tfe - Ee ,szTe - Zz ¢2pz =0
— UT(KQ-F)=0

— a linear system:

KQ=F
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global or structural stiffness matrix
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Note: the dimension of K is N x N, N is the total degree of freedom; K is symmetric and banded matrix
(the bandwidth depends on the numbering scheme for the nodes).

BC’s can be used to reduce the DOF of the system.

Step 4. solve the matrix system by (direct) Gaussian elimination or iterative method (conjugate gradient
method).

GALERKIN FINITE-ELEMENT METHOD APPLIED TO THE STEEL PLATE PROB-
LEM

Governing differential eqn
o(z)A(z) = o(z + dx)A(z + dx) + pgA(x)dz + external load in = > (z + dx)
Divide through by dx and let dz — 0

d
%(Aa) + pgA + ZP,(S(&U —z;)=0
i

note z; location of external loads

/ 5(z — z)dz — { 1,}f Q covers z; (4)

0,if Q does not covers z;

or
d du
—(A(x)E— A P —12) =
7A@ E )dz + pgA(z) + Pé(z —12) =0 (5)
BC’s
u(z=0) = 0
du
—(z=24) =
dx(x ) 0

Assume: ¢(z) is approximate soln, ¢(z) is weighting fen.

24
#(a) o (AB jq)dw+ bpgA(z)ds + d(z = 12)p = 0

é(x) ﬂ 24 0 / AE@@dx + ; - ¢pgA(z)dx + ¢(z = 12)P =0

Note that the exact BC’s are used here for the first term. The first item is zero since ¢(z = 0) = 0 and
%'w:m} =0.
[P apTadd

i e+ ¢pgA( Jdz + ¢(z = 12)P =0 (6)



This is the starting point for integration over elements.

Use two elements - Average cross-section areas:
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Exactly the same as what was obtained in our previous lecture and also as what was obtained
in computer session 2 using ANSYS with 1D Link elements.

How about using the Principle of Minimum Potential Energy?

II(g(z)) = 1/0 eAdr — Pq, — /pgq )Adz
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Setting 0I1(g(z))/0g1 = 0 and 0Il(g(z))/dq2 = 0 will lead to the exact same equations:
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Use two elements - Variable cross-section areas: A(x) =6 —x/8

4 dqdg 12 T, q1—qo b1 — ¢o 24 T, G2 —q1 P2 — ¢1
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This part is actually the same as what was obtained from the “average-area” treatment.
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This is exactly the same as what was obtained in computer session 2 using ANSYS with 2D
solid elements (zero Poisson ratio).
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The above solution procedure, is more logical than the previous approach using element-averaged proper-
ties. Although the solution is more accurate at x = 24, it is less accurate at z = 12.

Note that, regardless of which method being used to handle variable properties, the solution will converage
to the exact solution as the number of elements increases.



