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1.1

Introduction

Welcome to the ANSYS Theory Reference . This manual presents theoretical
descriptions of all ANSYS elements, as well as of many procedures and commands. It
is included in the basic documentation set because every ANSYS user should
understand how the program uses the input data to calculate the output. In addition,
this manual is indispensable for its explanations of how to interpret certain element and
command results. In addition, the ANSYS Theory Reference describes the relationship
between input data and output results produced by the program, and is essential for a
thorough understanding of how the program functions.

1.1.1

Purpose of the ANSYS Theory Reference

The purpose of the ANSYS Theory Reference is to inform you of the
theoretical basis of the ANSYS program. By understanding the underlying
theory, you can use the ANSYS program more intelligently and with
greater confidence, making better use of its capabilities while being aware
of its limitations. Of course, you are not expected to study the whole of
this volume; you need only to refer to sections of it as required for specific
elements and procedures.

This manual does not, and cannot, present all theory relating to finite
element analysis. If you need the theory behind the basic finite element
method, you should obtain one of the many references available on the
topic. If you need theory or information that goes beyond that presented
here, you should (as applicable) consult the indicated reference, run a
simple test problem to try the feature of interest, or contact your ANSYS
Support Distributor for more information.

The theory behind the basic analysis disciplines is presented in Chapters
2 through 11. Chapter 2 covers structural theory, with Chapters 3 and 4
adding geometric and structural material nonlinearities. Chapter 5
discusses electromagnetics, Chapter 6 deals with heat flow, Chapter 7
handles fluid flow and Chapter 8 deals with acoustics. Chapters 9 and 10
are reserved for future topics. Coupled effects are treated in Chapter 11.

Element theory is examined in Chapters 12, 13, and 14. Shape functions
are presented in Chapter 12, information about element tools (integration
point locations, matrix information, and other topics) is discussed in
Chapter 13, and theoretical details of each ANSYS element are presented
in Chapter 14.
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Chapter 1 Introduction

Chapter 15 examines a number of analysis tools (acceleration effect,
damping, element reordering, and many other features). Chapter 16 is
reserved for a future topic. Chapter 17 discusses the theory behind the
different analysis types used in the ANSYS program.

Numerical processors used in preproprocessing and postprocessing are
covered in Chapter 18. Chapter 19 goes into a number of features from
the general postprocessor (POST1) and the time—history postprocessor
(POST26). Chapter 20 deals with design optimization.

An index of keywords and commands has been compiled to give you
handy access to the topic or command of interest.
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Chapter 1 Introduction

The notation defined below is a partial list of the notation used throughout
the manual. There are also some tables of definitions given in Section
11.0 — Coupled Effects, and Section 4.1 — Rate—Independent Plasticity

following sections:

Due to the wide variety of topics covered in this manual, some exceptions

will exist.

A. General Terms

Term Meaning
[B] strain—displacement matrix
[C] damping matrix
[CY] specific heat matrix
[D] elasticity matrix
E Young’s modulus
{F} force vector
(1] identity matrix
{1} current vector, associated with electrical potential DOFs
{J} current vector, associated with magnetic potential DOFs
K] stiffness matrix
[KY] conductivity matrix
[M] mass matrix
[O] null matrix
P, {P} pressure (vector)
{Q} heat flow vector
[S] stress stiffness matrix
{T} temperature vector
t time, thickness
[TR] local to global conversion matrix
u, v, w, {u} displacement, displacement vector
{V} electric potential vector
ouU virtual internal work
oV virtual external work
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Term Meaning
{w} fluid flow vector
X, Y, Z element coordinate
X, Y, Z nodal coordinates (usually global Cartesian)
o coefficient of thermal expansion
€ strain
v Poisson’s ratio
o stress

B. Superscripts and Subscripts

Below is a partial list of superscripts and subscripts used on [K], [M], [C],
[S], {u}, {T}, and/or {F}. See also Section 11.0. The absence of a
subscript on the above terms implies the total matrix in final form, ready

for solution.
Term Meaning
ac nodal effects caused by an acceleration field
c convection surface
cr creep
e based on element in global coordinates
el elastic
g internal heat generation
[ equilibrium iteration number
¢ based on element in element coordinates
m master
n substep number (time step)
nd effects applied directly to node
pl plasticity
pr pressure
s slave
sw swelling
t, th thermal
A (flex over term) reduced matrices and vectors
(dot over term) time derivative
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1.1.3 Applicable ANSYS Products

This manual applies to the following ANSYS products (described fully in
the preface to the ANSYS Basic Analysis Procedures Guide):

ANSYS/Multiphysics

ANSYS/Mechanical

ANSYS/Structural

ANSYS/Mechanical with the electromagnetics add—on (“Emag”)
ANSYS/Mechanical with the FLOTRAN CFD add—on (“FLOTRAN”")
ANSYS/LinearPlus (“Linear” or “LinearPlus”)

ANSYS/Thermal (“Thermal”)

ANSYS/Emag 3-D (“Emag” or “Emag 3-D”)

ANSYS/Emag 2-D (“Emag” or “Emag 2-D”")

ANSYS/FLOTRAN (“FLOTRAN”)

ANSYS/PrepPost (“PrepPost”)

ANSYS/ED (“ED”)

Some command arguments and element KEYOPT settings have defaults
in the derived products that are different from those in the full ANSYS
product. These cases are clearly documented under the “Product
Restrictions” section of the affected commands and elements. If you plan
to use your derived product input file in the ANSYS/Multiphysics product,
you should explicitly input these settings in the derived product, rather
than letting them default; otherwise, behavior in the full ANSYS product
will be different.
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2.1 Structural Fundamentals

211 Stress—Strain Relationships

This section discusses material relationships for linear materials. Nonlinear materials
are discussed in Chapter 4. The stress is related to the strains by:

{o} = [D] {&°!} (2.1-1)
where: {o} = stressvector=|0x 0y 0; Oyy Oyz Oxz ] T (also output
quantity S)
[D] = elasticity or elastic stiffness matrix (defined in equations

(2.1-19) through (2.1-24) or inverse defined in equations
(2.1-4) and (2.1-5) or, for a few anistropic elements, defined
with input from the TBDATA commands with TB,ANEL.)

{e®} = {e} —{e!"} = elastic strain vector (output quantity EPEL)
{e} = totalstrainvector=| e &y &, &y €yz &xz ||
{e"} = thermal strain vector (defined in equation (2.1-3)) (output

quantity EPTH)

The output quantity EPEL is the strain that causes stress ({e} — {&!}).

Note: A related quantity used in POST1 labelled “component total strain” (output quantity EPTO) is
described in Section 4.0.

The stress vector is shown in Figure 2.1—1. The sign convention for direct stresses and
strains used throughout the ANSYS program is that tension is positive and compression
is negative. For shears, positive is when the two applicable positive axes rotate toward
each other. Shear strains are engineering shear strains, not tensor shear strains.
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Figure 2.1-1 Stress Vector Definition

Equation (2.1—1) may also be inverted to:

{e} = (e} + [DI! {0} (2.1-2)
For the 3—-D case, the thermal strain vector is:

T
(e" =ATL ax @y o, 0 0 0] (2.1-3)

where: ay = thermal coefficient of expansion in the x direction (input as
ALPX on MP command)

AT = T-TRer
T = current temperature at the point in question

Trep = reference (strain—free) temperature (input on TREF
command)

The flexibility or compliance matrix, [D]~1, in “column normalized” format, is:
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1 /Ex _ny/Ey _sz/Ez 0 0 0
~Vyx/BEx 1By —Vy/E, 0 0 0
_VZX/EX _sz/Ey I/Ez 0 0 0
D] ! = (2.1-4)
0 0 0 1/Gyy 0 0
0 0 0 0 1/Gy, 0
|0 0 0 0 0 1/Gxs |

or in “row—normalized” format, is:

1/Ex _ny/Ex —Vx2/Ex 0 0 0
_VZX/EZ _sz/Ez I/Ez 0 0 0
D]} = (2.1-5)
0 0 0 1/Gyy 0 0
0 0 0 0 1/Gy, 0
|0 0 0 0 0 1/Gxe |
where typical terms are:
Ex = Young’s modulus in the x direction (input as EX on MP
command)
vxy = Mminor Poisson’s ratio (input as NUXY on MP command)
Vxy = major Poisson’s ratio (input as PRXY on MP command)
Gyy = shear modulus in the xy plane (input as GXY on MP
command)

The [D]~! matrix must be positive definite (see Section 13.5). Also, the [D]~! matrix is
presumed to be symmetric, so that for orthotropic materials:

Vyx _ Vxy 3
B -E (2.1-6)
Vix _ Vxz _

B (2.1-7)
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2-4

é_zyy - VE_y (2.1-8)
or

EL; _ % (2.1-9)

VE_ - TE_ (2.1-10)

VE_ZZY _ % (2.1-11)

Because of the above six relationships, vyy, Vzy, Vzx, Vyx, Vzy, @nd v, are dependent
quantities and are therefore not input quantities.

The use of Poisson’s ratios (input as either PRXY, PRYZ, and PRXZ, or NUXY, NUYZ,
and NUXZ) for orthotropic materials sometimes causes confusion, so that care should
be taken in their use. Note that the right hand sides of equations (2.1—4) and (2.1-5)
must be exactly identical to each other. Therefore, looking at the terms in the first row
and second column, it may be seen that:

<l

Vxy Xy _
BB (2.1-12

Assuming that E, is larger than Ey, Vi, (PRXY) is larger than vy, (NUXY). Hence, vyy is
commonly referred to as the “major Poisson’s ratio”, because it is larger than vy, (=Vyx)
which is commonly referred to as the “minor” Poisson’s ratio. When describing
Poisson’s ratios, row—normalized format, v—notation, “major” form, and PR—notation are
all synonymous, while column—normalized format, v—notation, “minor” form, and
NU-notation are also all synonymous. For simplicity, only vyy, vyz, Vxz, (@nd not vyy,
Vyz, and Vy,) will be used in the rest of this section. For isotropic materials (Ex = Ey = E,
and vyy = Vyz = Vyz), it makes no difference which type of input is used. For orthotropic
materials, the user needs to inquire of the source of the material property data as to

which type of input is appropriate. In practice, orthotropic material data are most often
supplied in the PR notation form.

Expanding equation (2.1-2) with equations (2.1-3), (2.1-4), and (2.1-6) thru (2.1-8)
and writing out the six equations explicitly,

— Ox Vxy Oy _ Vxz2 0z _
SX - ax AT + EX Ey EZ (2.1 13)
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ey = ay AT _V"éyo" % - VYEG (2.1-14)
— _ Vxz Ox _ Vyz Gy % —
g, = 0, AT E E + E (2.1-15)
o
Exy = G);yy (2.1-16)
o
€y, = nyzz (2.1-17)
ex, = oL (2.1-18)
X7
where typical terms are:
ex = direct strain in the x direction
gxy = shear straininthe x-y plane
oy = direct stress in the x direction
Oyy = shear stress on the x-y plane

Alternatively, equation (2.1—1) may be expanded by first inverting equation (2.1-4) and
then combining that result with equations (2.1-3) and (2.1-6) thru (2.1-8) to give six
explicit equations:

E 2 E E E
Oy = X (1 _ (vyz) é) (ex — ax AT) + =X (vxy + VysVy, é)
(2.1-19)
Ex
(ey — ay AT) + = (Vxz + VyViy ) (82 — @, AT)
E E
oy = ETX (vxy + ViiVyz é) (ex — ax AT) + Ty(l - (sz)2 E—’Z‘)
(2.1-20)

E E
(ey — ay AT) + Ty (vyz + VxVxy ﬁ) (e, — 0, AT)
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2-6

E E E
o, = TX (Vxz + VyVxy ) (Ex — 0x AT) + Ty (vyz + VxVxy ﬁ)

(2.1-21)
E, 2 By
(ey — ay AT) + - (1 - (vxy) E—) (€, — a, AT)
y
Oxy = Gyy €xy (2.1-22)
0y, = Gy, €y, (2.1-23)
Oxz = Gxz €xz (2.1-24)
where:
h=1- (VX )2& - (V 2)2& - (sz)zﬁ -2 Vxy Vyz VXZ&
Y Ey Y EZ Ez y oy EZ

If the shear moduli Gyy, Gy, and Gy, are not input for isotropic materials, they are
computed as:

Ex

Gxy =Gy, = Gy, = m

(2.1-25)

For orthotropic materials, the user needs to inquire of the source of the material
property data as to the correct values of the shear moduli, as there are no defaults
provided by the program.

The [D] matrix must be positive definite. The program checks each material property as
used by each active element type to ensure that [D] is indeed positive definite. Positive
definite matrices are defined in Section 13.5. In the case of temperature dependent
material properties, the evaluation is done at the uniform temperature (BFUNIF
command) for the first load step. The material is always positive definite if the material
is isotropic or if vyy, vy, and vy, are all zero. An example of a material that is not
positive definite is one that has E, less than or equal to Ex(vxy)2.

2.1.2 Orthotropic Material Transformation for
Axisymmetric Models

The transformation of material property data from the R—6—Z cylindrical system to the
x—y—z system used for the input requires special care. The conversion of the Young’s
moduli is fairly direct, whereas the correct method of conversion of the Poisson’s ratios
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is not obvious. Consider first how the Young’s moduli transform from the global
cylindrical system to the global Cartesian as used by the axisymmetric elements for a
disc:

(and hoop value = E;)

As needed by
As known axisymmetric
in reality elements

Figure 2.1-2 Material Coordinate Systems

Thus, Er — E4, Eg — E;, and Ez — E,. Starting with the global Cartesian system, the
input for x—y—z using input labels NUXY, NUYZ, and NUXZ on the MP command gives
the following column—normalized compliance matrix for the non—shear terms:

[ 1B, /By —vy/E, |
[Dx—y—z] -1 _ —vyx/Ex 1/E, ~Vy,/E; (2.1-26)
| ValBx Valy I/, |

Assuming that the R—6—Z Poisson’s ratio data is also column—normalized, the
compliance matrix is the same as equation (2.1-26). Rearranging so that the R—6—Z
axes match the x—y—z axes (i.e., x + R,y =+ Z, z —+ 0):

1/Er —vrz/Ez  —Vre/Ep

[DR—G—Z] = —Vzr/ER 1/Ez —vzo/Eg (2.1-27)

—~Ver/ER  —Voz/Ez 1/Eq |

Comparing equation (2.1-26) and (2.1-27) term—by—term gives:
Ex = Eg (2.1-28)
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2-8

E, = E, (2.1-29)
E, = E, (2.1-30)
Vxy = VRz (2.1-31)
Vyz = Vg9 = E—; Voz (2.1-32)
Vxz = Vg (2.1-33)

where the left-hand side of the above equations represents input (using input labels
NUXY, NUYZ, and NUXZ) and the right—-hand side represents the given data in
column—normalized format.

If the R—6—Z Poisson’s ratio data are in row—normalized form, the compliance matrix in
the rearranged form is:

1/Er Vrz/Br  Vro/Er
-1 . _
[DR—G—Z] =| V&/Ez 1/Ez ~,6/E7 (2.1-34)
_—VGR/ Eq  Voz/Eg 1/Eq a

Comparing equation (2.1-26) and (2.1-34) gives:

Ex = Eg (2.1-35)

E, = E, (2.1-36)

E, = E, (2.1-37)

Ve = E_E v, (2.1-38)
E

Vy, = E_z Ve = Voz (2.1-39)

_ Eg (2.1-40)

VXZ ER VR@
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where, again, the left-hand side of the above equations represents input (using input
labels NUXY, NUYZ, and NUXZ) and the right—hand side represents the given data in
row—normalized format.

The inputs shown in equations (2.1-28) through (2.1-33) and equations (2.1-35)
through (2.1—40) could also be given using input labels PRXY, PRYZ, and PRXZ with
the appropriate additional transformations.

2.1.3 Temperature—Dependent Coefficient of Thermal
Expansion

Considering a typical component, the thermal strain from equation (2.1-3) is:
eh = q (T - Tref) (2.1-41)

This assumes that a is itself not a function of temperature. If a is a function of
temperature, equation (2.1—41) becomes:

T
eh = .[(%mgT)dT (2.1-42)

Tref

where: ainst(T) = instantaneous coefficient of thermal expansion

The program, however, uses a mean or weighted—average value of «, similar in form to
equation (2.1-41):

e = D (T - T, (2.1-43)
T
j Oy dT
where: a(T) = Trfrf——Tref

mean value of coefficient of thermal expansion (input as
ALPX, ALPY, or ALPZ on the MP command)

Data is commonly supplied as a mean value, and this data is correctly used by the
program, as long as Tt is not only the definition temperature about which the data is
supplied but also the reference temperature at which zero strains exist. If this condition
is not true, an adjustment must be made. Consider:
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T
el = T (T - T, = f Oy AT (2.1-44)
TO
T
el = T(T) (T - T,y = f Oy AT (2.1-45)
T

ref

Equations (2.1-44) and (2.1-45) represent the thermal strain at a temperature T for two
different starting points, T, and T,et. Now let T, be the temperature about which the
data has been generated (definition temperature), and T, be the temperature at which
all strains are zero (reference temperature). Thus, @°(T) is the supplied data, and @'(T)
is what is needed as program input.

The right—-hand side of equation (2.1—44) may be expanded as:

T Tref T
I Oy dT = f Oy AT + f Oy dT (2.1-46)
To T, Toof
also,
Tret
Oy AT = do(Tref) (Tt — To) (2.1-47)
To
or
Tret
Oy AT = T(To) (T, — To) (2.1-48)
To

Combining equations (2.1—44) through (2.1-47),

T.—T
a@(T) = a°(T) + =L 2

T T (@(T) - T(T,p) (2.1-49)
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Thus, equation (2.1-49) must be accounted for when making an adjustment for the
definition temperature being different from the strain—free temperature. This adjustment
is automatically made using the MPAMOD command.

Note that if T,sf = Tg, equation (2.1-49) is trivial.

Also, note that if T=T,gs, equation (2.1-49) is undefined. The values of T as used here
are the temperatures defined on the MPTEMP command. Thus, when using the
MPAMOD command, it is recommended to avoid defining a T value to be the same as
T=T,es (t0 a tolerance of one degree). If a T value is the same as T4, and

— The T value is at either end of the input range, then the new a value is
simply the same as the new a value of the nearest adjacent point.

— The T value is not at either end of the input range, then the new a value is
the average of the two adjacent new a values.
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2.2 Derivation of Structural Matrices

The principle of virtual work states that a virtual (very small) change of the internal
strain energy must be offset by an identical change in external work due to the applied
loads, or:

SU = 8V (2.2-1)

strain energy (internal work) = Uy + Us
external work = V4 + Vo + V3
virtual operator

where:

o < C
o

The virtual strain energy is:
ou, = J {8e}T {0} d(vol) (2.2-2)
vol
strain vector

stress vector
volume of element

where: {e}

{0}

vol

Continuing the derivation assuming linear materials and geometry, equations (2.1-1)
and (2.2—2) are combined to give:

8U, = j (18€}T [D] {e}- {8e}T [D] {&™}) d(vol) (2.2-3)
vol
The strains may be related to the nodal displacements by:

{e} = [Bl{u} (2.2-4)
where: [B]

strain—displacement matrix, based on the element shape
functions

{u} nodal displacement vector

It will be assumed that all effects are in the global Cartesian system. Combining
equation (2.2—4) with equation (2.2-3), and noting that {u} does not vary over the
volume:
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SU, = {du}T J B]'[D] [B] d(vol) {u}
! (2.2-5)
~{du)T f B]'[D] {e®} d(vol)
vol

Another form of virtual strain energy is when a surface moves against a distributed
resistance, as in a foundation stiffness. This may be written as:

dU, = J {dwy}T {o} d(areay) (2.2-6)
area;
where: {wn} = motion normal to the surface

{o} stress carried by the surface
areas area of the distributed resistance

Both {w,} and {o} will usually have only one non—-zero component. The point-wise
normal displacement is related to the nodal displacements by:

{wa} = [Nal fu) (2.2-7)
where: [Nn] = matrix of shape functions for normal motions at the surface
The stress, {0}, is

{0} = k {wal (2.2-8)
where: k = the foundation stiffness in units of force per length per unit

area

Combining equations (2.2-6) thru (2.2—8), and assuming that k is constant over the
area,

dU, = {du}Tk J [N,]T [N,] d(areap) {u} (2.2-9)

area,

Next, the external virtual work will be considered. The inertial effects will be studied
first:

- _ T {F*} (2.2-10)
oV, j | {Ow} vol d(vol)

Vo
where: {w} = vector of displacements of a general point
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{F*} = acceleration (D’Alembert) force vector

According to Newton’s second law:

{F*}y _ 92 _
ol = 22 {w} (2.2-11)
where: o = density (input as DENS on MP command)
t = time

The displacements within the element are related to the nodal displacements by:

{w} = [N] {u} (2.2-12)

where [N] = matrix of shape functions. Combining equations (2.2—-10), (2.2-11), and
(2.2—12) and assuming that o is constant over the volume,

oV, = —{ou}T Qf [N]T[N] d(vol) g—tzz {u} (2.2-13)

vol

The pressure force vector formulation starts with:

oV, = f {dwn}T {P}d(areap) (2.2-14)
areap

where: {P} the applied pressure vector (normally contains only one

non—zero component)
area, = area over which pressure acts

Combining equations (2.2—12) and (2.2-14),

BV, = 1ou)" | NP dareay (2.2-15)
areay,

Unless otherwise noted, pressures are applied to the outside surface of each element
and are normal to curved surfaces, if applicable.

Nodal forces applied to the element can be accounted for by:

V5 = {du}T {F2 (2.2-16)

where: {ng] = nodal forces applied to the element

ANSYS Theory Reference . 001242 . Eleventh Edition . SAS IP, Inc.®©



2.2 Derivation of Structural Matrices

All material properties for stress analysis elements are evaluated at the average
temperature of each element. Finally, equations (2.2-1), (2.2-5), (2.2-9), (2.2-13),
(2.2-15) and (2.2-16) may be combined to give:

{du)T f 1B]'[DI[B] d(vol) {u} — {du}T f B]"[D]{e™} d(vol)
vol vol

+ { 6u}TkJ [No]T[N,] d(areay) {u} (2.2-17)

area;

= —{Bu}ij

vol

INJ'[N] d(vol) g—; fu} + (du)T J Na (P} d(areay) + {du)}T {Fd)

area,,

Noting that the {8u}T vector is a set of arbitrary virtual displacements common in all of
the above terms, the condition required to satisfy equation (2.2—17) reduces to:

(1Kl + [KE]) tu) - {F¥} = o] @) + (P2 + F) (2.2-18)
where: Ke] = j [B]T[D][B] d(vol) = element stiffness matrix
vol
1 _ T _ element foundation
[Ke] = K I [Na] [N} dfarea] stiffness matrix
area;
(PR} = J B]'[D]{e"} d(vol) = element thermal load vector
vol
M = p j [N]T[N] d(vol) = element mass matrix
vol
{uy = g—tzz {u} = acceleration vector (such as gravity effects)
(P} = J N '[P d(area,) = element pressure vector
area,

Equation (2.2—-18) represents the equilibrium equation on a one element basis.

The above matrices and load vectors were developed as “consistent.” Other
formulations are possible. For example, if only diagonal terms for the mass matrix are
requested (LUMPM,ON), the matrix is called “lumped” (see Section 13.2). For most
lumped mass matrices, the rotational degrees of freedom (DOFs) are removed. If the
rotational DOFs are requested to be removed (KEYOPT commands with certain
elements), the matrix or load vector is called “reduced.” Thus, use of the reduced
pressure load vector does not generate moments as part of the pressure load vector.
Use of the consistent pressure load vector can cause erroneous internal moments in a
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structure. An example of this would be a thin circular cylinder under internal pressure
modelled with irregular shaped shell elements. As suggested by Figure 2.2—1, the
consistent pressure loading generates an erroneous moment for two adjacent elements

of dissimilar size.

\ | \ )

Vi = N\

o

net erroneous
moment

Figure 2.2-1 Effects of Consistent Pressure Loading

The “CENTROID, MASS, AND MASS MOMENT OF INERTIA” output does not use any
mass matrices. Rather, it simply lumps the mass of each element at the center of that
element. The element “centroid” is not the mass center but rather the origin of the
element coordinate system:

Xe = (No}T {Xa) (2.2-19)
Yo = {NoJT {Ya) (2.2-20)
Ze = (No}T {Zy) (2.2-21)
where: Xe. = output quantity XC, etc.
{No} = vector of shape functions, evaluated at the origin of the

element coordinate system

{Xn} vector of nodal locations.

As an example, consider a curved PLANE82 element in Figure 2.2-2.

centroid

Figure 2.2-2 Centroid Location
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2.3 Structural Strain and Stress
Evaluations

The element integration point strains and stresses are computed by combining
equations (2.1-1) and (2.2—-4) to get:

{e'} = [B] {u} — (&™) (2.3-1)
{0} = [D] {&%) (2.3-2)
where: {e®} = strains that cause stresses (output quantity EPEL)
[B] = strain—displacement matrix evaluated at integration point
{u} = nodal displacement vector
{e = thermal strain vector
{o} = stress vector (output quantity S)
[D] = elasticity matrix

Nodal and centroidal stresses are available from the integration point stresses as
described in Section 13.6.

2.3.1 Combined Strains
The principal strains are calculated from the strain components by the cubic equation:
€x — €o %Sxy %sz
Tew &y -f oz, | =0 (2.3-3)
%8;@ %Syz €, — €
where: €o = principal strain (3 values)

The three principal strains are labeled ¢4, €5, and €3 (output quantities 1, 2, and 3 with
strain items such as EPEL). The principal strains are ordered so that € is the most
positive and g3 is the most negative.

The strain intensity €| (output quantity INT) is the largest of the absolute values of €1 —
€0, €0 — €3, OFr €3 — €4. Thatis:
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The von Mises or equivalent strain gg (output quantity EQV) is computed as:

Be = ( : [(sl P P T 81)2]) (2.3-5)

S

where: v/ effective Poisson’s ratio
% input as EFFNU on AVPRIN command (POST1 only)

0.0 for all other cases

2.3.2 Combined Stresses

The principal stresses (01, 02, 03) are calculated from the stress components by the
cubic equation:

Ox— Op Oxy Oxz
Oxy Oy — O Oy, =0 (2.3-6)
Oxz Oyz 0;,— Op
where: 0o, = principal stress (3 values)

The three principal stresses are labeled o4, 05, and o3 (output quantities S1, S2, and
S3). The principal stresses are ordered so that o4 is the most positive and o3 is the
most negative.

The stress intensity o) (output quantity SINT) is the largest of the absolute values of o1 —
0o, 0o — 03, Or 03 — 01. Thatis:
oy = MAX (0, — 0,. [0, — 03, |05 — 0} (2.3-7)

The von Mises or equivalent stress o (output quantity SEQV) is computed as:
1 2 2 27\2
oe=| 5 [(01 — 0y) + (0, — 03) + (05 — 0y (2.3-8)

When v'= v (input as PRXY or NUXY on MP command), the equivalent stress is related
to the equivalent strain through
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2.3 Structural Strain and Stress Evaluations

Oc = E € (2.3-9)
where: E = Young’s modulus (input as EX on MP command)
2.3.3 Surface Stresses

Surface stress output may be requested on “free” faces of 2-D and 3-D elements.
“Free” means not connected to other elements as well as not having any imposed
displacements or nodal forces normal to the surface. The following steps are executed
at each surface Gauss point to evaluate the surface stresses. The integration points
used are the same as for an applied pressure to that surface.

1. Compute the in—plane strains of the surface at an integration point using:

{e') = B} - {(s‘”)} (2.3-10)

Hence, &y, &y and e, are known. The prime (') represents the surface
coordinate system, with z being normal to the surface.

2. A each point, set:

6, = —P (2.3-11)
Oy, = 0 (2.3-12)
Oy, = 0 (2.3-13)

where P is the applied pressure. Equations (2.3—12) and (2.3—13) are valid, as
the surface for which stresses are computed is presumed to be a free surface.

3. At each point, use the six material property equations represented by:

{o'} = [D'] {€'} (2.3—14)

to compute the remaining strain and stress components (&, €x;, €y, O, Oy, and
Oxy)-

4. Repeat and average the results across all integration points.

2.3.4 Shell Element Output

For elastic shell elements, the forces and moments per unit length (using shell
nomenclature) are computed as:
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t (Gx,top + 40'x,mid + 0'x,bot)

Tx = 3 (2.3-15)
T, = t (Gy,wp + 406y,mid + 0y,bot) (2.3-16)
Ty = t (0xy,top + 402y,mid + ny,bot) 2317)
M, = t2 (Gx,toplz_ 0x,bot) (2.3-18)
My B t2 (Oy,toplz— Gy,bot) 2.3-19)
Mxy 3 2 (ny,topl 2— ny,bm) (2.3-20)
N, = t (Oxz,top + 4ogz,mid + Oxz,bot) (23-21)
N, = t (Gyz,top + 40, mia T 0yz,bot) (2.3-22)

where: Ty, Ty, Tyy
My, My, My

Ny, Ny

t

Oy, etc.
Oxy etc.

6
in—plane forces per unit length (output quantities TX, TY, and
TXY)

bending moments per unit length (output quantities MX, MY,
and MXY)

transverse shear forces per unit length (output quantities NX
and NY)

thickness at midpoint of element, computed normal to center
plane

direct stress (output quantity SX, etc.)
shear stress (output quantity SXY, etc.)

It should be noted that the shell nomenclature and the nodal moment conventions are in
apparent conflict with each other. For example, a cantilever beam located along the x
axis and consisting of shell elements in the x—y plane that deforms in the z direction
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2.3 Structural Strain and Stress Evaluations

under a pure bending load with coupled nodes at the free end, has the following
relationship:

Mb = Fyy (2.3-23)

width of beam

input as VALUE on F command with Lab = MY (not MX)
applied at the free end

where: b
Fmy

The shape functions of the shell element result in constant transverse strains and
stresses through the thickness. Some shell elements adjust these values so that they
will peak at the midsurface with 3/2 of the constant value and be zero at both surfaces,
as noted in the element discussions in Chapter 14.

The thru—thickness stress (o;) is set equal to the negative of the applied pressure at the
surfaces of the shell elements, and linearly interpolated in between.
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3.0 Introduction to Geometric Nonlinearities

3.0 Introduction to Geometric
Nonlinearities

This chapter discusses the different geometrically nonlinear options within the ANSYS
program including large strain, large deflection, stress stiffening, and spin softening.
Only elements with displacements degrees of freedom (DOFs) are applicable. Not
included in this section are the multi—status elements (such as LINK10, CONTAC12,
COMBIN40, and CONTACS52, discussed in Chapter 14) and the eigenvalue buckling
capability (discussed in Section 17.5).

Geometric nonlinearities refer to the nonlinearities in the structure or component due to
the changing geometry as it deflects. That is, the stiffness [K] is a function of the
displacements {u}. The stiffness changes because the shape changes and/or the
material rotates. The program can account for four types of geometric nonlinearities:

1. Large strain assumes that the strains are no longer infinitesmal (they are finite).
Shape changes (e.g. area, thickness, etc.) are also accounted for. Deflections and
rotations may be arbitrarily large.

2. Large rotation assumes that the rotations are large but the mechanical strains (those
that cause stresses) are evaluated using linearized expressions. The structure is
assumed not to change shape except for rigid body motions. The elements of this
class refer to the original configuration.

3. Stress stiffening assumes that both strains and rotations are small. A 1st order
approximation to the rotations is used to capture some nonlinear rotation effects.

4. Spin softening also assumes that both strains and rotations are small. This option
accounts for the radial motion of a body’s structural mass as it is subjected to an
angular velocity. Hence it is a type of large deflection but small rotation
approximation.

All elements support the spin softening capability, while only some of the elements
support the other options. Table 3.0—1 lists the elements that have large strain, large
deflection and/or stress stiffening capability.
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Table 3.0-1 Elements Having Nonlinear Geometric Capability

Stress
Label Name NLGEOM=1 | Stitfening

LINK1 2-D Spar (or Truss) LR /
PLANE2 2-D 6-Node Triangular Structural Solid LS J
BEAM3 2-D Elastic Beam LR J
BEAM4 3-D Elastic Beam LR J
SOLID5 3-D Coupled-Field Solid - /
COMBIN7 Revolute Joint LR /
LINK8 3-D Spar (or Truss) LR J
LINK10 Tension—-Only (Chain) LR J
LINK11 Linear Actuator LR J
PLANE13 2-D Coupled-Field Solid J
COMBIN14 Spring—Damper LR /
PIPE16 Elastic Straight Pipe LR J
PIPE17 Elastic Pipe Tee LR J
PIPE18 Elastic Curved Pipe (Elbow) LR -
PIPE20 Plastic Straight Pipe LR J
MASS21 Structural Mass LR

BEAM23 2-D Plastic Beam LR J
BEAM24 3-D Thin-Walled Plastic Beam LR /
PLANE25 4—Node Axisymmetric-Harmonic Structural Solid - /
CONTAC26 2-D Point-to—Ground Contact SC -
SHELL28 Shear/Twist Panel - J
COMBIN37 Control -
FLUID38 Dynamic Fluid Coupling -
COMBIN39 Nonlinear Spring LR /
COMBIN40 Combination -
SHELL41 Membrane Shell LR J
PLANE42 2-D Structural Solid LS J
SHELL43 Plastic Shell LS /
BEAM44 3-D Elastic Tapered Unsymmetric Beam LR /
SOLID45 3-D Structural Solid LS /
SOLID46 3-D Layered Structural Shell LR /
CONTAC48 2-D Point-to—Surface Contact SC -
CONTACA49 3-D Point-to—Surface Contact SC -
MATRIX50 Substructure Matrix LR -
SHELL51 Axisymmetric Structural Shell LR J
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Stress
Label Name NLGEOM=1 | Stiffening
BEAM54 2-D Elastic Tapered Unsymmetric Beam LR /
HYPER56 2-D Mixed U-P Hyperelastic Solid LS AN
HYPER58 3-D Mixed U-P Hyperelastic Solid LS AN
PIPE59 Immersed Pipe or Cable LR J
PIPE60O Plastic Curved Pipe (Elbow) LR -
SHELL61 Axisymmetric-Harmonic Structural Shell - /
SOLID62 3-D Coupled Magnetic—Structural Solid LS /
SHELL63 Elastic Shell LR J
SOLID64 3-D Anisotropic Structural Solid LR /
SOLID6&5 3-D Reinforced Concrete Solid LS /
SOLID72 3-D Tet with Rotations - J
SOLID73 3-D Solid with Rotations - J
HYPER74 2-D 8-Node Mixed U-P Hyperelastic Solid LS AN
PLANES82 2-D 8-Node Structural Solid LS J
PLANES3 8-Node Axisymmetric-Harmonic Structural Solid - /
HYPER84 2-D Hyperelastic Solid LS AN
HYPERS86 3-D Hyperelastic Solid LS AN
VISCO88 2-D 8-Node Viscoelastic Solid LS /
VISCO89 3-D 20-Node Viscoelastic Solid LS /
SHELL91 16-Layer Structural Shell LS /
SOLID92 3-D 10-Node Tetrahedral Structural Solid LS /
SHELL93 8-Node Structural Solid LS /
SOLID95 20-Node Structural Solid LS /
SOLID98 Tetrahedral Coupled—Field Solid - /
SHELL99 100-Layer Structural Shell LR /
VISCO106 2-D Large Strain Solid LS AN
VISCO107 3-D Large Strain Solid LS AN
VISCO108 2-D 8-Node Large Strain Solid LS AN
SHELL143 Plastic Shell LR J
SHELL150 Structural Shell p—element - -
SURF151 2-D Thermal Surface SC -
SURF152 3-D Thermal Surface SC -
SURF153 2-D Structural Surface SC J
SURF154 2-D Structural Surface SC J
HYPER158 3-D Hyperelastic Tetrahedral Solid LS AN
TARGE169 2-D Target SC -
TARGE170 3-D Target SC -
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Stress
Label Name NLGEOM=1 | Stiffening
CONTA171 2-D 2-Node Surface—to—Surface SC -
CONTA172 2-D 3-Node Surface—to—Surface SC -
CONTA173 3-D General, 4-Node Contact SC -
CONTA174 3-D General, 8-Node Contact SC -
LINK180 3-D Finite Strain Spar (or Truss) LS AB
SHELL181 4—Node Structural Shell LS AB
PLANE182 Continuum 2-D Structural Solid, 4-Node LS AB
PLANE183 2-D 8-Node Structural Solid LS AB
SOLID185 3-D Structural Solid LS AB
SOLID186 20-Node Structural Solid LS AB
SOLID187 3-D 10-Node Tetrahedral Structural Solid LS AB
BEAM188 3-D Linear Beam LS AB
BEAM189 3-D Quadratic Beam LS AB
Codes associated with NLGEOM=1:
LS =  large strain element
LR = Element that can do a rigid body roation. The NLGEOM=1 provides only
a rigid body rotation. Strains, if any, are linear.
SC = surface or contact element. The element follows the underlying element.
Codes associated with stress stiffening:
J/ = hasoption of computing stress stiffness matrix
AN = if NLGEOM=1, stress stiffening is automatically included. However,
the element is not capable of linear buckling using ANTYPE,BUCKLE.
AB =  if NLGEOM = 1, stress stiffening is automatically included, and the element

is also capable of linear buckling using ANTYPE,BUCKLE.

ANSYS Theory Reference . 001242 . Eleventh Edition . SAS IP, Inc.®©




3.1 Large Strain

3.1 Large Strain

When the strains in a material exceed more than a few percent, the changing geometry
due to this deformation can no longer be neglected. Analyses which include this effect

are called large strain, or finite strain, analyses. A large strain analysis is performed in

a static (ANTYPE,STATIC) or transient (ANTYPE, TRANS) analysis with NLGEOM,ON

when the appropriate element type(s) is used, see Table 3.0-1.

The remainder of this section addresses the large strain formulation for elastic—plastic
elements. These elements use a hypoelastic formulation so that they are restricted to
small elastic strains (but allow for arbitrarily large plastic strains). Section 4.5
addresses the large strain formulation for hyperelastic elements, which allow arbitrarily
large elastic strains.

3.1.1 Theory

The theory of large strain computations can be addressed by defining a few basic
physical quantities (motion and deformation) and the corresponding mathematical
relationship. The applied loads acting on a body make it move from one position to
another. This motion can be defined by studying a position vector in the “deformed”
and “undeformed” configuration. Say the position vectors in the “deformed” and
“undeformed” state are represented by {x} and {X} respectively, then the motion
(displacement) vector {u} is computed by (see Figure 3.1-1):

{u} = {x} = {X} (3.1-1)

{u}

{X}

X Undeformed Deformed

Figure 3.1-1 Position Vectors and Motion of a Deforming Body

The deformation gradient is defined as:

ANSYS Theory Reference . 001242 . Eleventh Edition . SAS IP, Inc.®©



Chapter 3 Structures with Geometric Nonlinearities

_ d{x} —
[F] = 31X (3.1-2)

which can be written in terms of the displacement of the point via equation (3.1-1) as:

_ d{u} B
[F] = 1] + 75 (3.1-3)
where: [I] = identity matrix

The information contained in the deformation gradient [F] includes the volume change,
the rotation and the shape change of the deforming body. The volume change at a
point is

dv _ 1-4
4y, = det [F] (3.1-4)
where: Vo = original volume
V = current volume
det[] = determinant of the matrix

The deformation gradient can be separated into a rotation and a shape change using
the right polar decomposition theorem:

[F] = [R] [U] (3.1-5)
where: [R] = rotation matrix ([R]T[R] = [I])
[U] = right stretch (shape change) matrix

Once the stretch matrix is known, a logarithmic or Hencky strain measure is defined as:

[e] = ¢n [U] (3.1-6)

([e] is in tensor (matrix) form here, as opposed to the usual vector form {e}). Since [U]
is a 2nd order tensor (matrix), equation (3.1-6) is determined through the spectral
decomposition of [U]:

3
[e] = > tn (A fe;) fe;}T (3.1-7)
i=1

where: A eigenvalues of [U] (principal stretches)
{ei} = eigenvectors of [U] (principal directions)

The polar decomposition theorem (equation (3.1-5)) extracts a rotation [R] that
represents the average rotation of the material at a point. Material lines initially
orthogonal will not, in general, be orthogonal after deformation (because of shearing),
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see Figure 3.1-2. The polar decomposition of this deformation, however, will indicate
that they will remain orthogonal (lines x—y’ in Figure 3.1-2). For this reason,
non—isotropic behavior (e.g. orthotropic elasticity or kinematic hardening plasticity)
should be used with care with large strains, especially if large shearing deformation
occurs.

y )‘ y
L Z’
X \’.X ’
X
Undeformed Deformed

Figure 3.1-2 Polar Decomposition of a Shearing Deformation

Implementation

Computationally, the evaluation of equation (3.1-6) is performed by one of two methods
using the incremental approximation (since, in an elastic—plastic analysis, we are using
an incremental solution procedure):

[¢] = J dle] = ) [Aed] (3.1-8)

with

[Aey] = €n [AU,] (3.1-9)
where [AU,] is the increment of the stretch matrix computed from the incremental
deformation gradient:

[AF,] = [AR,] [AU,] (3.1-10)

where [AF,] is:

[AF,] = [Fy] [F,_,17! (3.1-11)

[Fn] is the deformation gradient at the current time step and [F,—¢] is at the previous
time step. Two methods are employed for evaluating equation (3.1-9).

Method 1 (Weber, et al.(127)) uses the idea of equation (3.1-7):
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3
[Ae] = > n () {e;} {e}T (3.1-12)

i=1

where A; and {ej} are the eigenvalue and eigenvector for the ith principal stretch
increment of the incremental stretch matrix [AUp], equation (3.1-10). This is the
method employed by the large strain solids VISCO106, VISCO107 and VISCO108.

Method 2 (Hughes(156)) uses the approximate 2nd order accurate calculation:

[Aes] = [R ,]T[AE]IR, ] (3.1-13)

where [R4/2] is the rotation matrix computed from the polar decomposition of the
deformation gradient evaluated at the midpoint configuration:

[F 5] = [R; ,][U )] (3.1-14)

where [F1/0] is (using equation (3.1-3)):

_ o g )
[Fyal = 1+ =2 (3.1-15)

and the midpoint displacement is:

(uyol =% ({ua) + {u,_y}) (3.1-16)

{un} is the current displacement and {u,_1} is the displacement at the previous time
step. [Aep] is the “rotation—neutralized” strain increment over the time step. The strain
increment [A€,] is also computed from the midpoint configuration:

(A&n} = [By ,]{Aup} (3.1-17)

{Aup} is the displacement increment over the time step and [B4/o] is the
strain—displacement relationship evaluated at the midpoint geometry:

(Xy0) =3 (1Xa) + {X,_y)) (3.1-18)
This method is an excellent approximation to the logarthmic strain if the strain steps are

less than ~10%. This method is used by the standard 2—-D and 3-D solid and shell
elements.
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The computed strain increment [Aep] (or equivalently {Agpn}) can then be added to the
previous strain {e,_¢} to obtain the current total Hencky strain:

{en} = {g, 1} + {Agy} (3.1-19)

This strain can then be used in the stress updating procedures, see Sections 4.1 and
4.2 for discussions of the rate—independent and rate—dependent procedures
respectively.

3.1.2 Definition of Thermal Strains

According to Callen(243), the coefficient of thermal expansion is defined as the
fractional increase in the length per unit increase in the temperature. Mathematically,

_1d¢ _
o =7 4T (3.1-20)
where: a = coefficient of thermal expansion
¢ = current length
T = temperature

Rearranging equation (3.1-20) gives:

de

I~ qar (3.1-21)

On the other hand, the logarithmic strain is defined as:

el = ¢n (ei) (3.1-22)

¢

where: €
€

logrithmic strain
initial length

Differential of equation (3.1-22) yields:

def = % (3.1-23)

Comparison of equations (3.1-21) and (3.1-23) gives:

de = adT (3.1-24)

Integration of equation (3.1-24) yields:
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el — €l = a (T -T, (3.1-25)

where: el
To

initial (reference) strain at temperature T,

reference temperature

In the absence of initial strain (e = 0), then equation (3.1-25) reduces to:

el = o (T -Ty (3.1-26)
The thermal strain corresponds to the logrithmic strain. As an example problem,
consider a line element of a material with a constant coefficient of thermal expansion a.

If the length of the line is ¢, at temperature T, then the length after the temperature
increases to T is:

€ =€, exp e’ = €, exp [a (T — Ty)] (3.1-27)

Now if one interpreted the thermal strain as the engineering (or nominal) strain, then the
final length would be different.

€€ = o (T - T, (3.1-28)
where: e® = engineering strain
The final length is then:

=401+ €)= €,[1 + a (T -Ty)] (3.1-29)

However, the difference should be very small as long as:

alT-Tyl << 1 (3.1-30)
because

exp [a (T-=Ty] =1 + o (T =T, (3.1-31)
3.1.3 Element Formulation

The element matrices and load vectors are derived using an updated Lagrangian
formulation. This produces equations of the form:

[Ki] Au; = {F*PP}—{F) (3.1-32)

where the tangent matrix [K;] has the form:
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[Ki] = [K] + [S}] (3.1-33)
[Ki] is the usual stiffness matrix:

K] = J [B;1[D;1(B;] d(vol) (3.1-34)

[Bi] is the strain—displacement matrix in terms of the current geometry {X,,} and [Dj] is
the current stress—strain matrix.

[S;]is the stress stiffness (or geometric stiffness) contribution, written symbolically as:

[S,] = I [G,]"[%,][G,] d(vol) (3.1-35)

where [Gj] is a matrix of shape function derivatives and [tj] is a matrix of the current
Cauchy (true) stresses {oj} in the global Cartesian system. The Newton—Raphson
restoring force is:

[Fr] = j [B;1%{o,} d(vol) (3.1-36)

All of the plane stress and shell elements account for the thickness changes due to the
out—of—plane strain ¢, (Hughes and Carnoy(157)). Shells, however, do not update their
reference plane (as might be required in a large strain out—of—plane bending
deformation); the thickness change is assumed to be constant through the thickness.

3.14 Applicable Input

NLGEOM,ON activates large strain computations in those elements which support it.
SSTIF,ON activates the stress—stiffening contribution to the tangent matrix.

3.1.5 Applicable Output

For elements which have large strain capability, stresses (output quantity S) are true
(Cauchy) stresses in the rotated element coordinate system (the element coordinate
system follows the material as it rotates). Strains (output quantities EPEL, EPPL, etc.)
are the logarithmic or Hencky strains, also in the rotated element coordinate system.

An exception is for the hyperelastic elements. For these elements, stress and strain
components maintain their original orientations and some of these elements use other
strain measures.
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3.2 Large Rotation

If the rotations are large but the mechanical strains (those that cause stresses) are
small, then a large rotation procedure can be used. A large rotation analysis is
performed in a static (ANTYPE,STATIC) or transient (ANTYPE, TRANS) analysis with
NLGEOM,ON when the appropriate element type is used, see Table 3.0-1. Note that
all large strain elements also support this capability, since both options account for the
large rotations and for small strains, the logarithmic strain measure and the engineering
strain measure coincide.

3.2.1 Theory

Section 3.1 presented the theory for general motion of a material point. Large rotation
theory follows a similar development, except that the logarithmic strain measure
(equation (3.1-6)) is replaced by the Biot, or small (engineering) strain measure:

el = [U - (3.2-1)
where: [Ul = stretch matrix
[I] = 3 x3identity matrix
3.2.2 Implementation

A corotational (or convected coordinate) approach is used in solving large rotation/small
strain problems (Rankin and Brogan(66)). The nonlinearities are contained in the
strain—displacement relationship which for this algorithm takes on the special form:

[Bn] = [Bv] [Tn] (32—2)

usual small strain—displacement relationship in the original
(virgin) element coordinate system

orthogonal transformation relating the original element
coordinates to the convected (or rotated) element coordinates

where: [By]

—
2.
|

The convected element coordinate frame differs from the original element coordinate
frame by the amount of rigid body rotation. Hence [T,] is computed by separating the
rigid body rotation from the total deformation {u,} using the polar decomposition
theorem, equation (3.1-5). From equation (3.2-2), the element tangent stiffness matrix
has the form:
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[Ke] = J [Tal" [By]T [D] [By] [Ty4] d(vol) (3.2-3)
vol

and the element restoring force is:

[Fo) = f [Ta]" [BJI" D] {ef!] d(vol) (3.2-4)
vol

where the elastic strain is computed from:

s} = Bufus] (3.2-5)

{uﬂ} is the element deformation which causes straining as described in a subsequent
subsection.

The large rotation process can be summarized as a three step process for each
element:

1. Determine the updated transformation matrix [Ty] for the element.

2. Extract the deformational displacement {uﬂ} from the total element displacement
{un} for computing the stresses as well as the restoring force {Fg'}.

3. After the rotational increments in {Au} are computed, update the node rotations
appropriately. All three steps require the concept of a rotational pseudovector in
order to be efficiently implemented.

3.2.3 Pseudovector Representation

Finite rotations, unlike displacements, are not linear vectors and cannot be treated as
such. Thus the rotational components of multiple rotations cannot simply be added to
form the final rotation. For that reason the rotation vector is referred to as a

pseudovector. The following decribes the formation of the rotational pseudovector and
the associated transformation matrix needed to characterize the large rotation motion.

Argyris(67) defines the rotational pseudovector as:

T
6] = {8,0,05) = 61e) (3.2-6)

where:  8,, 6,, 6; = rotational components
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D
Il

magnitude of rotation

1
(0,2 + 0,2 + 0,2)?

unit vector along axis of rotation

{e}

It is convenient to normalize the pseudovector, such that:

{w} = o {e} (3.2-7)

where {m} is also a pseudovector with magnitude w and components w;, w,, and wj;.
Adopting the normalization of Rankin and Brogan(66),

o = 2 sing (3.2-8)

establishes the relationship between 6 and w. Combining (3.2-7) and (3.2-8),

@ = 2 sing fe} (3.2-9)

Following Rankin and Brogan(66), the transformation matrix associated with rotation
{w} (or [6)) is given by:

T o=+ - (w2 (@ + Lier (3.2-10)

where [I] is the 3 x 3 identity matrix and [] is the skew—symmetric matrix
representation of {w}, namely,

0 — W3 ®,
[Q] = ! 0 — 0
— W Wy 0

Thus, once a pseudovector is formed and normalized, the transformation connected to
the finite rotation is determined from equation (3.2—10). Conversely, knowing the

components of [T], [Q] and {@} can be determined from:

Q] = == (m - m") (3.2-11)

JI + v

where v is the trace of [T]:

Yy =T, + T, + T3 (3.2-12)
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Turning attention to pseudovector updating, the goal is to determine the present rotation
vector {6, ;] from the previous {6,} and (A8}, in which {A6] represents the rotational

increment from {0,} to [en +1}. Argyris(67) derives a method of pseudovector updating

that uses the mathematics of quarternions. A quarternion is defined as the sum of a
scalar and a vector and is written as:

<q> = a+ {b} (3.2-13)
where the brackets (<>) denote a quarternion. The scalar and vector parts of <g> are a
and {b}, respectively.

Two useful quarternion operations are multiplication and norm calculations. The norm
of <g> is expressed by:

lgl = a> + b2 + b2 + b? (3.2-14)

where by, by, and bz are the components of {b}. If |g| = 1, then |q| is termed a unit
quarternion. Consider two quarternions given by:

<q> = a+ {b} (3.2-15)
<qy> = ¢+ {d} (3.2-16)

Multiplication is defined as:

<qy > = <(><q >
(3.2-17)
= ac— {b} {d} + c{b} + a{d} - {b} x {d}
It follows that scalar and vector components of <go1> can be written as:
S(qy) = ac — {b}T{d} (3.2-18)
{V(qy)} = cfb} + afd} - {b} x {d} (3.2-19)

In Argyris(67), the rotational pseudovector is presented in the form of a quarternion, in
order to circumvent any limitation on the amount of rotation:

<q> = cos% + sin% {e} (3.2-20)
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It is clear that <g> above is a unit quarternion. By equation (3.2-9), the above can be
rewritten as:

<q> = cos? + Lo (3.2-21)

The pseudovector updating considers sequential rotations {0,} and {A6} in the form:

<> = cos 2+ 1oy (3.2-22)
_ A L
<Aq> = cos =B + 5 [Aw} (3.2-23)

where {wp} is the normalized {6,} and {Aw,} is the normalized {AB,}, see equation
(3.2-9).

Updating to form <qn, 1> uses the multiplication template of equation (3.2—17). Thus,

<(Qpp; > = <Ag><(qn>
_ 0 AD 1 3.2-24
= cos % cos 5= — (0,17 [Aw) ( )
1 AB 1 Bn 1
+ 5 cos 5% {w,} + 5 Cos 5 Ao} - i {w,)} x Aw}

Since both <g,> and <Ag> are unit quarternions, their product is also a unit
quarternion. The pseudovector for the updated quarternion is (from equation (3.2-21)):

0
<quy > = cos 2L+ Lo ) (3.2-25)

or using the definition of equation (3.2.8):

G] 0
<dyyp > = cos L+ sin —SE fe, ) (3.2-26)

Equating scalar and vector parts between equations (3.2—24) and (3.2-25) leads to:

S(q,, ) = cos 6n2+1 = cos I cos A _ Lo T (a0} G227)
(Vs )} =3ty 1) =1 cosBO (o) +1 cos% (Ao)-1 (0, x (A0} (3.2-28)
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tis clear that 0, ; can be extracted from equation (3.2-27), while the components of
{wn41} are available from equation (3.2—28).

It is important to mention that 0 is restricted to the range + m. This restriction is due to
the nonuniqueness of the sine term of equation (3.2—-26) in the vicinity of 6 = x (i.e.,

sin (m + ¢)/2 = sin (mx — ¢)/2). Thus, when |0| exceeds =, the pseudovector is
shifted as follows:

0if 10l = m
0" =

2r — 0if 16l > & (3.2-29)

The updated quarternion of equation (3.2—24) or (3.2—-25) is adjusted accordingly (6
replaced with 8’). This shift of the magnitude of the pseudovector allows unlimited
rotation (> 180°).

3.24 Element Transformation

The updated transformation matrix [T,] relates the current element coordinate system to
the global Cartesian coordinate system as shown in Figure 3.2—1.

X
N /S

Current Configuration

[To]

™ [Rn] — Xy

A\ N~

Ty
[‘]

Original Configuration

> X

Figure 3.2-1 Element Transformation Definitions

[T,] can be computed directly or the rotation of the element coordinate system [R,] can
be computed and related to [T] by

[Tn] = [Tv][Rn] (32—30)
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where

[Ty] is the original transformation matrix. The determination of [T,] is unique to

the type of element involved, whether it is a solid element, shell element, beam
element, or spar element.

A

3.2.5

Solid Elements. The rotation matrix [Ry] for these elements is extracted from the
displacement field using the deformation gradient coupled with the polar
decomposition theorem (see Malvern(87)).

Shell Elements. The updated normal direction (element z direction) is computed
directly from the updated coordinates. The computation of the element normal is
given in Chapter 14 for each particular shell element. The extraction procedure
outlined for solid elements is used coupled with the information on the normal
direction to compute the rotation matrix [Rp].

Beam Elements. The nodal rotation increments from {Au} are averaged to
determine the average rotation of the element and equation (3.2-28) is used to
update the average element rotation. Equation (3.2—10) then yields the rotation
matrix [Rp] from the updated average element rotation. In special cases where
the average rotation of the element computed in the above way differs
significantly from the average rotation of the element computed from nodal
translations, the quality of the results will be degraded.

Link Elements. The updated transformation [T,] is computed directly from the
updated coordinates.

Generalized Mass Element (MASS21). The nodal rotation increment from {Au} is
used in equation (3.2-28) to update the average element rotation. Equation
(3.2—10) then yields the rotation matrix [Rp] from the updated element rotation.

Deformational Displacements

The displacement field can be decomposed into a rigid body translation, a rigid body
rotation, and a component which causes strains:

where:

{u} = {u'} + {ud} (3.2-31)

{u"}
{ud}

rigid body motion

deformational displacements which cause strains

{ud} contains both translational as well as rotational DOF.
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The translational component of the deformational displacement can be extracted from
the displacement field by

{U?} = [Ry] (Ixy) + (u)) - {xy) (3.2-32)
where: {u?} = translational component of the deformational displacement
[Rn] = current element rotation matrix
{xy} = original element coordinates in the global coordinate system
{u} = element displacement vector in global coordinates

{ud} is in the global coordinate system.

For elements with rotational DOFs, the rotational components of the deformational
displacement must be computed. The rotational components are extracted by
essentially “subtracting” the nodal rotations {u} from the element rotation given by {u'}.
In terms of the pseudovectors this operation is performed as follows for each node:

1. Compute a transformation matrix from the nodal pseudovector {8"} using
equation (3.2—10) yielding [Tp].

2. Compute the relative rotation [T9] between [Ry] and [T,]:

[TY = [Ry| [Tal” (3.2-33)

This relative rotation contains the rotational deformations of that node as shown
in Figure 3.2-2.

3. Extract the nodal rotational deformations {ud} from [T9] using equation (3.2—11).

Because of the definition of the pseudovector (equation (3.2-9)), the deformational
rotations extracted in step 3 are limited to less than 30°, since 2sin(6/2) no longer
approximates 0 itself above 30°. This limitation only applies to the rotational distortion
(i.e. bending) within a single element.
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Figure 3.2-2 Definition of Deformational Rotations

3.2.6 Updating Rotations

Once the transformation [T] and deformational displacements {ud} are determined, the
element matrices (equation (3.2-3)) and restoring force (equation (3.2—4)) can be
determined. The solution of the system of equations yields a displacement increment
{Au}. The nodal rotations at the element level are updated using equation (3.2—24) with
the rotational components of {Au}. The global rotations (in the output and on the results
file) are not updated with the pseudovector approach, but are simply added to the
previous rotation in {un_4}.

3.2.7 Applicable Input

NLGEOM,ON activates the large rotation computations in those elements which
support it. SSTIF,ON activates the stress—stiffening contribution to the tangent stiffness
matrix (which may be required for structures weak in bending resistance).

3.2.8 Applicable Output

Stresses (output quantity S) are engineering stresses in the rotated element coordinate
system (the element coordinate system follows the material as it rotates). Strains
(output quantity EPEL, EPPL, etc.) are engineering strains, also in the rotated element
coordinate system. This applies to element types that do not have large strain
capability. For element types that have large strain capability, see Section 3.1.
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3.2.9 Consistent Tangent Stiffness Matrix and Finite
Rotation

It has been found in many situations that the use of consistent tangent stiffness in a
nonlinear analysis can speed up the rate of convergence greatly. It normally results in a
quadratic rate of convergence. A consistent tangent stiffness matrix is derived from the
discretized finite element equilibrium equations without the introduction of various
approximations. The terminology of finite rotation in the context of geometrical
nonlinearity implies that rotations can be arbitrarily large and can be updated accurately.
A consistent tangent stiffness accounting for finite rotations derived by Nour—Omid and
Rankin(175) for beam/shell elements is used. The technology of consistent tangent
matrix and finite rotation makes the buckling and postbuckling analysis a relatively easy
task. KEYOPT(2) = 1 implemented in BEAM4 and SHELL63 uses this technology. The
theory of finite rotation representation and update has been described in Section 3.2
(Pseudovector Representation) using a pseudovector representation. The following will
outline the derivations of a consistent tangent stiffness matrix used for the corotational
approach.

The nonlinear static finite element equations solved can be characterized by at the
element level by:

N
> (1T "FE) - (FY) = 0 (3.2-34)

e=1

where: N number of total elements

g

element internal force vector in the element coordinate
system, generally see equation (3.2-35)

[To]T = transform matrix transferring the local internal force vector into
the global coordinate system
{F3} = applied load vector at the element level in the global
coordinate system
i) = f [B,]"{cc} d(vol) (3.2-35)

Hereafter, we shall focus on the derivation of the consistent tangent matrix at the
element level without introducing an approximation. The consistent tangent matrix is
obtained by differentiating equation (3.2—34) with respect to displacement variables

{ug}:
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T R ) B Y
[Ke]consistent = [Tal d{ue} + 0{ue} (R
T
— " j B.]" ‘313:; d(vol) + [T, " j % (6.} d(vol) (3.2-36)
I 1l

T .
R

III

It can be seen that Part | is the main tangent matrix (equation (3.2-3)) and Part Il is the
stress stiffening matrix (equation (3.1-35), (3.3—14) or (3.3—17)). Part lll is another
part of the stress stiffening matrix (see Nour—Omid and Rankin(175)) traditionally
neglected in the past. However, many numerical experiments have shown that Part Il|

of [KeT] is essential to the faster rate of convergence. KEYOPT(2) = 1 implemented in
BEAM4 and SHELLG63 allows the use of [KE] as shown in equation (3.2—36). In some
cases, Part Ill of [KeT] is unsymmetric; when this occurs, a procedure of symmetrizing

[KeT] is invoked.

As Part Il of the consistent tangent matrix utilizes the internal force vector {F?‘] to form

the matrix, it is required that the internal vector {FE“} not be so large as to dominate the

main tangent matrix (Part ). This can normally be guaranteed if the realistic material
and geometry are used, that is, the element is not used as a rigid link and the actual
thicknesses are input.

It is also noted that the consistent tangent matrix (3.2—36) is very suitable for use with
the arc—length solution method.
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3.3 Stress Stiffening

3.3.1 Overview and Usage

Stress stiffening (also called geometric stiffening, incremental stiffening, initial stress
stiffening, or differential stiffening by other authors) is the stiffening (or weakening) of a
structure due to its stress state. This stiffening effect normally needs to be considered
for thin structures with bending stiffness very small compared to axial stiffness, such as
cables, thin beams, and shells and couples the in—plane and transverse
discplacements. This effect also augments the regular nonlinear stiffness matrix
produced by large strain or large deflection effects (NLGEOM,ON). The effect of stress
stiffening is accounted for by generating and then using an additional stiffness matrix,
hereinafter called the “stress stiffness matrix”. The stress stiffness matrix is added to
the regular stiffness matrix in order to give the total stiffness using the SSTIF,ON
command. Stress stiffening may be used for static (ANTYPE,STATIC) or transient
(ANTYPE, TRANS) analyses. Working with the stress stiffness matrix is the pressure
load stiffness, discussed in Section 3.3.4.

The stress stiffness matrix is computed based on the stress state of the previous
equilibrium iteration. Thus, to generate a valid stress—stiffened problem, at least two
iterations are normally required, with the first iteration being used to determine the
stress state that will be used to generate the stress stiffness matrix of the second
iteration. If this additional stiffness affects the stresses, more iterations need to be done
to obtain a converged solution.

In some linear analyses, the static (or initial) stress state may be large enough that the
additional stiffness effects must be included for accuracy. Modal (ANTYPE,MODAL),
reduced harmonic (ANTYPE,HARMIC with Method = REDUC on the HROPT
command), reduced transient (ANTYPE,TRANS with Method = REDUC on the
TRNOPT command) and substructure (ANTYPE,SUBSTR) analyses are linear
analyses for which the prestressing effects can be included using the PSTRES,ON
command. Note that in these cases the stress stiffness matrix is constant, so that the
stresses computed in the analysis (e.g. the transient or harmonic stresses) are
assumed small compared to the prestress stress.

If membrane stresses should become compressive rather than tensile, then terms in the
stress stiffness matrix may “cancel” the positive terms in the regular stiffness matrix and
therefore yield a nonpositive—definite total stiffness matrix, which indicates the onset of
buckling. If this happens, it is indicated with the message: “Large negative pivot value
___,atnode____ may be because buckling load has been exceeded”. It must be noted
that a stress stiffened model with insufficient boundary conditions to prevent rigid body
motion may yield the same message.
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The linear buckling load can be calculated directly by adding an unknown multiplier of
the stress stiffness matrix to the regular stiffness matrix and performing an eigenvalue
buckling problem (ANTYPE,BUCKLE) to calculate the value of the unknown multiplier.
This is discussed in more detail in Section 17.5.

3.3.2 Theory

The strain—displacement equations for the general motion of a differential length fiber
are derived below. Two different results have been obtained and these are both
discussed below. Consider the motion of a differential fiber, originally at dS, and then at
ds after deformation.

{
{u + du}
" S .
\\\/T" -~~~ ds
{u}

Figure 3.3-1 General Motion of a Fiber

One end moves {u}, and the other end moves {u + du}, as shown in Figure 3.3—1. The
motion of one end with the rigid body translation removed is {u + du} — {u} = {du}. {du}
may be expanded as

du
{du} = {dv} (3.3-1)
dw

where u is the displacement parallel to the original orientation of the fiber. This is
shown in Figure 3.3—-2. Note that X, Y, and Z represent global Cartesian axes, and x, y,
and z represent axes based on the original orientation of the fiber. By the Pythagorean
theorem,

ds = /(dS + du)? + (dv)2 + (dw)? (3.3-2)
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The stretch, A, is given by dividing ds by the original length dS:

2 2 2
e 0>
dv
dU\N dw

[ "

Z {du}

X

Figure 3.3-2 Motion of a Fiber with Rigid Body Motion Removed
As dS is along the local x axis,
2 2
_ du dv
A - /(1 ca) (@)

Next, A is expanded and converted to partial notation:

(%_;V)z (3.3-4)

2 2 2
_ Ju Ju av Iw _
A = \/1 + 2 x T (ax) + (ax) + (ax) (3.3-5)
The binominal theorem states that:
,/1+A=1+%—A?2+‘?—63... (3.3-6)

when A2 < 1. One should be aware that using a limited number of terms of this series
may restrict its applicability to small rotations and small strains. If the first two terms of
the series in equation (3.3—6) are used to expand equation (3.3-5),
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2
A=1+@+l((a—“) +

ax 2 | \ox (g_;/)z + (%)2) (3.3-7)

The resultant strain (same as extension since strains are assumed to be small) is then

o= A-1 =yl ((a_u)z P ) (g_;v)z) 3.3-8)

ax 2 ax
If, more accurately, the first three terms of equation (3.3—6) are used and displacement
derivatives of the third order and above are dropped, equation (3.3—6) reduces to:

e () 3 639

The resultant strain is:

ex = A-1 =8 41 ((%)2 + (%—‘z)z) (3.3-10)

For most 2-D and 3-D elements, equation (3.3—8) is more convenient to use as no
account of the loaded direction has to be considered. The error associated with this is
small as the strains were assumed to be small. For 1-D structures, and some 2-D
elements, equation (3.3—10) is used for its greater accuracy and causes no difficulty in
its implementation.

3.3.3 Implementation

The stress—stiffness matrices are derived based on equation (3.1-35), but using the
nonlinear strain—displacement relationships given in equation (3.3-8) or (3.3—10)
(Cook(5)).

For a spar such as LINKS8 the stress—stiffness matrix is given as:

o o0 0 0 0 0
o 1 0 0 -1 0
CFlO 0o 1 0o 0 -l
sg=E _
=t o o o o o (3.3-11)
o -1 0 0 1 0
o 0o -1 0 0 1|
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The stress stiffness matrix for a 2-D beam (BEAMS) is given in equation (3.3—12),
which is the same as reported by Przemieniecki(28). All beam and straight pipe
elements use the same type of matrix. The 3—D beam and straight elements do not
account for twist buckling. Forces used by straight pipe elements are based on not only
the effect of axial stress with pipe wall, but also internal and external pressures on the
‘end—caps’ of each element. This force is sometimes referred to as effective tension.

0
0 g Symmetric
1 2712
0 —L =L
s = E 1= 15 (3.3-12)
0 0 0 0
_6 _1 6
0 5 10L 0 5
1 _1ly2 _1 212
0 10L 3OL 0 10L 15L
where: F = force in member
L = Iength of member

The stress stiffness matrix for 2-D and 3—-D solid elements is generated by the use of
numerical integration. A 3-D solid element (SOLID45) is used here as an example:

[Sol  [0]  [O]
[Sg] = | [0] [Sol [0] (33—1 3)
[01 [0  [Sol

where the matrices shown in equation (3.3—13) have been reordered so that first all
x—direction DOF are given, then y, and then z. [S.] is an 8 by 8 matrix given by:

[Sol = f [Sel"[Sm] [Se] d(vol) (3.3-14)
vol

The matrices used by this equation are:

Ox Oxy Oxz
[Sm|] =|0xy 0Oy Oy (3.3—-15)
Oxz Oyz 0y

where oy, Oxy etfc. are stress based on the displacements of the previous iteration, and,
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ON,  aN, N,
9x  9x 7 X
S = | D™ Ny dNg (3.3-16)
ay ay ay
ON,  ON, N,
B w5z |

where N; represents the ith shape function. This is the stress stiffness matrix for small
strain analyses (NLGEOM,OFF or NLGEOM,ON with large deflection elements). For
large strain elements in a large strain analysis (NLGEOM,ON), the stress stiffening
contribution is computed using the actual strain—displacement relationship (equation
(3.1-6)).

One further case requires some explanation: axisymmetric structures with
non—axisymmetric deformations. As any stiffening effects may only be axisymmetric,
only MODE = 0 cases are used for the prestress case. Then, any subsequent load
steps with any value of MODE (including 0 itself) uses that same stress state, until
another, more recent, MODE = 0 case is available. Also, torsional stresses are not
incorporated into any stress stiffening effects.

Specializing this to SHELL61 (Axisymmetric-Harmonic Structural Shell), only two
stresses are used for prestressing: o, oy, the meridional and hoop stresses,
respectively. The element stress stiffness matrix is:

S| = f [sg]T[sm] [Se] d(vol) (3.3-17)

O 0 0 0

0 Y 0 0
[Sm] = i

0 0 o 0

0 0 0 Oy
[Sg] = [As]N]

where [A¢] is defined below and [N] is defined by the element shape functions. [Ag] is
an operator matrix and its terms are:

ANSYS Theory Reference . 001242 . Eleventh Edition . SAS IP, Inc.®©



3.3 Stress Stiffening

P 0 Js
—_ O Sin
[ ] 0 C( 0s R ) 0
A =
S 0 c C(ﬁe Rge (3.3-18)

_ 9

| " Ro0 0 0
where: c - %o.o if MODE = 0

1.0if MODE >0

The three columns of the [Ag] matrix refer to u, v, and w motions, respectively. As
suggested by the definition for [Syy], the first two rows of [Ag] relate to o5 and the second
two rows relate to o,. The first row of [Ag] is for motion normal to the shell varying in the
s direction and the second row is for hoop motions varying in the s direction. Similarly,
the third row is for normal motions varying in the hoop direction. Thus equation
(3.3—10), rather than equation (3.3-8), is the type of nonlinear strain—displacement
expression that has been used to develop equation (3.3—18).

3.34 Pressure Load Stiffness

The effect of change of direction and/or area of an applied pressure is responsible for
the pressure load stiffness matrix ([SP') (Bonet and Wood(236), Section 6.5.2). ltis
used either for a large deflection analysis (NLGEOM,ON), regardless of the setting of
the SSTIF command, for an eigenvalue buckling analysis, or for a dynamic analysis
using the PSTRES,ON command.

The need of [SPM is most dramatically seen when modelling the collapse of a ring due to
external pressure using eigenvalue buckling. The expected answer is:

P, = % (3.3-19)
where: P = critical buckling load
E = Young’s modulus
| = moment of inertia
R = radius of the ring
C = 30

This value of C = 3.0 is achieved when using [SP"], but when it is missing, C = 4.0, a
33% error.

[SPM is available only for SURF154, SHELL181, BEAM188, and BEAM189.
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3.3.5 Applicable Input

Table 3.0—1 indicates the elements which compute a stress stiffness matrix.

In a nonlinear analysis (ANTYPE,STATIC or ANTYPE,TRANS), SSTIF,ON activates the
stress stiffness contribution to the stiffness matrix. With NLGEOM,OFF, the rotations
are presumed to be small and the additional stiffness induced by the stress state is
included. With NLGEOM,ON, the stress stiffness augments the tangent matrix,
affecting the rate of convergence but not the final converged solution.

In a prestressed linear analysis, PSTRES,ON activates the stress stiffness contribution
in the prestressed analysis and directs the preceding analysis to save the stress state.

3.3.6 Applicable Output

In a small deflection/small strain analysis (NLGEOM,OFF), the 2—D and 3-D elements
compute their strains using equation (3.3—8). The strains (output quantities EPEL,

2
EPPL, etc.) therefore include the higher—order terms (e.g. % (g—g) ) in the strain

computation. Also, nodal and reaction loads (output quantities F and M) will reflect the
stress stiffness contribution, so that moment and force equilibrium include the higher
order (small rotation) effects.
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3.4 Spin Softening

The vibration of a spinning body will cause relative circumferential motions, which will
change the direction of the centrifugal load which, in turn, will tend to destabilize the
structure. As a small deflection analysis cannot directly account for changes in
geometry, the effect can be accounted for by an adjustment of the stiffness matrix,
called spin softening. Spin softening is activated with the input quantity KSPIN on the
OMEGA command, and is intended for use only with modal (ANTYPE,MODAL),
harmonic response (ANTYPE,HARMIC), reduced transient (ANTYPE, TRANS, with
TRNOPT,REDUC) or substructure (ANTYPE,SUBSTR) analyses. When doing a static
(ANTYPE,STATIC) or a full transient (ANTYPE,TRANS with TRNOPT,FULL) analysis,
this effect is more accurately accounted for by large deflections (NLGEOM,ON).

Consider a simple spring—mass system, with the spring oriented radially with respect to
the axis of rotation, as shown in Figure 3.4—1. Equilibrium of the spring and centrifugal
forces on the mass using small deflection logic requires:

Ku = wMr (3.4-1)
where: u = radial displacement of the mass from the rest position
r = radial rest position of the mass with respect to the axis of
rotation
ws = angular velocity of rotation
w
s K

b

Figure 3.4-1 Spinning Spring—Mass System

However, to account for large deflection effects, equation (3.4—1) must be expanded to:

Ku = oM@ + w (3.4-2)

Rearranging terms,
(K — mgM) u = @Mr (3.4-3)
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Defining:

K = K - oM (3.4-4)

and

F = oMr (3.4-5)

equation (3.4-3) becomes simply,

Ku = F (3.4-6)

K is the stiffness needed in a small deflection solution to account for large deflection
effects. F is the same as that derived from small deflection logic. Thus, the large
deflection effects are included in a small deflection solution. This decrease in the
effective stiffness matrix is called spin (or centrifugal) softening. See also
Carnegie(104) for additional development.

Extension of equation (3.4—4) into three dimensions gives:

Ko = Ka — (0 + 0F) Mx (3.4-7)

Ky = Ky — (0f + 0F) My, (3.4-8)

K, = Ky — (0f + 0f) My, (3.4-9)

where: Ky, Kyy,K,, = thex,y, and z components of stiffness as computed by the
element
KwKyy, K,z = thex, y, and z components of stiffness adjusted for spin
softening
My, Myy, M, = the X, y, and z components of mass
Wy, 0,,0, = angular velocities of rotation about the x, y, and z axes

There are no modifications to the cross terms:

Ky = Ky (3.4-10)
K,, = Ky (34-11)
sz = Ky (3.4-12)
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From equations (3.4—7) thru (3.4-9), it may be seen that there are spin softening effects
only in the plane of rotation, not normal to the plane of rotation. Using the example of a
modal analysis, equation (3.4—4) can be combined with equation (17.3—4) to give:

K] - o*M][ =0 (3.4-13)
or

(K] = of M) —w?M]| =0 (3.4-14)
where: o = the natural circular frequencies of the rotating body.

If stress stiffening is added to equation (3.4—-14), the resulting equation is:
[(K] + [S] — o M]) —o?M]| = 0 (3.4-15)
Stress stiffening is normally applied whenever spin softening is activated, even though

they are independent theoretically. The modal analysis of a thin fan blade is shown in
Figure 3.4-2.
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100

A = No Stress Stiffening, No Spin Softening
B = Stress Stiffening, No Spin Softening
90- C = No Stress Stiffening, Spin Softening

D = Stress Stiffening, Spin Softening
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Figure 3.4-2 Effects of Spin Softening and Stress Stiffening on Fan Blade
Natural Frequencies
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4.0 Introduction to Material Nonlinearities

4.0 Introduction to Material
Nonlinearities

This chapter discusses the structural material nonlinearities of plasticity, creep,
nonlinear elasticity, hyperelasticity, viscoelasticity, concrete and swelling. Not included
in this section are the slider, frictional, or other nonlinear elements (such as COMBIN7,
COMBIN40, CONTAC12, CONTACA48, etc. discussed in Chapter 14) that can represent
other nonlinear material behavior.

Material nonlinearities are due to the nonlinear relationship between stress and strain,
that is, the stress is a nonlinear function of the strain. The relationship is also path
dependent (except for the case of nonlinear elasticity and hyperelasticity), so that the
stress depends on the strain history as well as the strain itself.

The program can account for eight types of material nonlinearities:

—

. Rate—independent plasticity is characterized by the irreversible instantaneous
straining that occurs in a material.

2. Rate—dependent plasticity allows the plastic—strains to develop over a time
interval. This is also termed viscoplasticity.

3. Creepis also an irreversible straining that occurs in a material and is
rate—dependent so that the strains develop over time. The time frame for creep
is usually much larger than that for rate—dependent plasticity.

4. Nonlinear elasticity allows a nonlinear stress—strain relationship to be specified.
All straining is reversible.

5. Hyperelasticity is defined by a strain energy density potential that characterizes
elastomeric and foam—type materials. All straining is reversible.

6. Viscoelasticity is a rate—dependent material characterization that includes a
viscous contribution to the elastic straining.

7. Concrete materials include cracking and crushing capability.

8. Swelling allows materials to enlarge in the presence of neutron flux.

Only the concrete element (SOLID65) supports the concrete model and only the
viscoelastic elements (VISCO88, VISCO89) support the viscoelastic material model.
The elements which support the other options are listed in Table 4.0-1. Note that also
listed in this table are how many stress and strain components are involved. One
component uses x (e.g. SX, EPELX, etc.), four components use X, Y, Z, XY and six
components use X, Y, Z, XY, YZ, XZ.
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Chapter 4 Structures with Material Nonlinearities

The plastic pipe elements (PIPE20 and PIPE60) have four components, so that the

nonlinear torsional and pressure effects may be considered.
available, only the nonlinear stretching and bending effects could be considered. This
is relevant, for instance, to the 3—-D thin—walled beam (BEAM24) which has only one
component. Thus linear torsional effects are included, but nonlinear torsional effects

If only one component is

are not.
Table 4.0-1 Elements Having Nonlinear Material Capability
NNy 2
Name “5-' £ §* % :g
;2| 22|58 izl 2| 2
S|l TE[ITE| &« [E28| 5 | 2
S5l 2252 8 (52| 2|3
ZO | da|lx el © Z o s n
LINK1 2-D Spar (or Truss) 1 X X X X
PLANE2 2-D 6-Node Triangular Structural Solid 4 X X X X
LINKS 3-D Spar (or Truss) 1 X X X X
PIPE20 Plastic Straight Pipe 4 X X X X
BEAM?23 2-D Plastic Beam 1 X X X X
BEAM?24 3-D Thin—Walled Beam 1 X X X X
PLANE42 2-D Structural Solid 4 X X X X
SHELL43 Plastic Shell 6 X X X X
SOLID45 3-D Structural Solid 6 X X X X
SHELLS51 Axisymmetric Structural Shell 4 X X X X
HYPER56 2-D 4-Node Mixed U-P Hyperelastic Solid 4,61 X
HYPERSS 3-D 8-Node Mixed U-P Hyperelastic Solid 6 X
PIPE60O Plastic Curved Pipe (Elbow) 4 X X X X
SOLID62 3-D Coupled Magnetic—Structural Solid 6 X X X X
SOLID65 3-D Reinforced Concrete Solid 1,6% X X X
HYPER74 2-D 8-Node Mixed U-P Hyperelastic Solid 4,61 X
PLANES2 2-D 8-Node Structural Solid 4 X X X X
HYPERS4 2-D 8-Node Hyperelastic Solid 4,61 X
HYPERS&6 3-D 8-Node Hyperelastic Solid 6 X
SHELL91 16-Layer Structural Shell 6 X X
SOLID92 3-D 10-Node Tetrahedral Structural Solid 6 X X X X
SHELL93 8—Node Structural Shell 6 X X
SOLID95 20-Node Structural Solid 6 X X X X
VISCO106 2-D Large Strain Solid 4.61 X X
VISCO107 | 3-D Large Strain Solid 6 X X
VISCO108 2-D 8-Node Large Strain Solid 4.61 X X
HYPER158 | 3-D 10-Node Tetrahedral Mixed U-P X
Hyperelastic Solid
LINK180 3-D Finite Strain Spar (or Truss) X X
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2 = .
é) 2] -%) 'qg g‘
o g o 5 =
Hame NS sz 2| w
so| 55|83 g3 © g
S22l T2 2] & |=2 ) =
EE|l2zZ|l2Z| 8 |52 &%
zOo|2d|lzd|l O [z@Z| £ | &
SHELL181 | 4-Node Structural Shell X X X
PLANEI182 | 2-D Structural Solid X X
PLANEI183 | 2-D 8-Node Structural Solid X X
SOLID185 3-D Structural Solid X X
SOLID186 | 20-Node Structural Solid X X
SOLID187 3-D 10-Node Tetrahedral Structural Solid X X
BEAM188 3-D Finite Strain Linear Beam X X
BEAMI189 3-D Finite Strain Quadratic Beam X X
* The rebar in SOLID65 uses one component, the bulk solid uses six components.
Four components if plane strain, six if axisymmetric (includes torsion)
4.0.1 Strain Definitions
For the case of nonlinear materials, the definition of elastic strain given with equation
(2.1-1) has the form of:
{el} = {e} — {€™} — (P!} — {7} — {V) (4.0-1)
where: el = elastic strain vector (output quantity EPEL)
e = total strain vector
e = thermal strain vector (output quantity EPTH)
ePl = plastic strain vector (output quantity EPPL)
e’ = creep strain vector (output quantity EPCR)
eV = swelling strain vector (output quantity EPSW)
In this case, {€} is the strain measured by a strain gauge. (Equation (4.0-1) is only
intended to show the relationships between the terms. See subsequent sections for
more detail).
In POST1, total strain is reported as:
e = e} + (e} + {e) (4.0-2)

where: et = component total strain (output quantity EPTO)

Comparing the last two equations,
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[ = {e} — {eP} — {3V} (4.0-3)

The difference between these two “total” strains stems from the different usages: {e}

can be used to compare strain gauge results and €' can be used to plot nonlinear
stress—strain curves.
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4.1 Rate-Independent Plasticity

4.1 Rate—Independent Plasticity

Rate—independent plasticity is characterized by the irreversible straining that occurs in a
material once a certain level of stress is reached. The plastic strains are assumed to
develop instantaneously, that is, independent of time. The ANSYS program provides
seven options to characterize different types of material behaviors. These options are:

TB Lab Material Behavior Option

BISO Bilinear Isotropic Hardening

MISO Multilinear Isotropic Hardening

NLISO Nonlinear Isotropic Hardening

BKIN Classical Bilinear Kinematic Hardening

MKIN/KINH | Multilinear Kinematic Hardening

CHAB Nonlinear Kinematic Hardening

ANISO Anisotropic

DP Drucker—Prager

USER User Specified Behavior (see Chapter 6 of the
ANSYS Advanced Analysis Techniques Guide)

Except for TB,USER, each of these is explained in greater detail later in this chapter.
Figure 4.1—1 represents the stress—strain behavior of each of the options. The TB label
(Lab field of the TB command) is used throughout this section to identify which type of
plasticity is being discussed. The actual values are input on the TBDATA or TBPT
commands. Table 4.0—1 indicates which elements support the rate—independent
options.

411 Theory

Plasticity theory provides a mathematical relationship that characterizes the
elasto—plastic response of materials. There are three ingredients in the
rate—independent plasticity theory: the yield criterion, flow rule and the hardening rule.
These will be discussed in detail subsequently. Table 4.1-1 summarizes the notation
used in the remainder of this chapter.
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4-6

4.1.2 Yield Criterion

The yield criterion determines the stress level at which yielding is initiated. For
multi—-component stresses, this is represented as a function of the individual
components, f({o}), which can be interpreted as an equivalent stress og:

o. = f ({o})
where: {o} = stress vector
Table 4.1-1 Notation
ANSYS

Variable | Output Label Definition
{eel} EPEL elastic strains
{ePl} EPPL plastic strains
{eN trial strain

2P EPEQ* equivalent plastic strain
{o} S stresses
Og equivalent stress
oy material yield parameter
Om HPRES mean or hydrostatic stress
A SEPL equivalent stress

of! parameter

A plastic multiplier
{a} yield surface translation
% plastic work
C translation multiplier
D] stress—strain matrix
Et tangent modulus
F yield criterion
N SRAT stress ratio
Q plastic potential
{S} deviatoric stress

(4.1-1)

*In the large strain solids VISCO106, VISCO107, and VISCO108, EPEQ is labeled as PSV.

When the equivalent stress is equal to a material yield parameter oy,
f ({o}) = oy
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4.1 Rate-Independent Plasticity

the material will develop plastic strains. If og is less than oy, the material is elastic and
the stresses will develop according to the elastic stress—strain relations. Note that the
equivalent stress can never exceed the material yield since in this case plastic strains
would develop instantaneously, thereby reducing the stress to the material yield.
Equation (4.1-2) can be plotted in stress space as shown in Figure 4.1-2 for some of
the plasticity options. The surfaces in Figure 4.1-2 are known as the yield surfaces and
any stress state inside the surface is elastic, that is, they do not cause plastic strains.

ANSYS Theory Reference . 001242 . Eleventh Edition . SAS IP, Inc.®©

4-7



Chapter 4 Structures with Material Nonlinearities
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Figure 4.1-2 Yield Surfaces for BKIN, ANISO and DP Options

41.3 Flow Rule

The flow rule determines the direction of plastic straining and is given as:
1l _ 4/9Q _
faer] = x{% (4.1-3)
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4-10

where: L = plastic multiplier (which determines the amount of plastic
straining)
Q = function of stress termed the plastic potential (which

determines the direction of plastic straining)

If Q is the yield function (as is normally assumed), the flow rule is termed associative
and the plastic strains occur in a direction normal to the yield surface.

414 Hardening Rule

The hardening rule describes the changing of the yield surface with progressive
yielding, so that the conditions (i.e. stress states) for subsequent yielding can be
established. Two hardening rules are available: work (o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>