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We study finite-inertia effects on the collision rate of bidisperse heavy particles in
a turbulent gas, using direct numerical simulations and kinematic descriptions. As
shown previously for a monodisperse system (Sundaram & Collins 1997; Wang,
Wexler & Zhou 2000), a statistical mechanical description of the average collision
kernel consists of two parts, namely a description of the relative velocity between two
colliding particles (the turbulent transport effect) and of the non-uniform particle dis-
tribution due to dynamic interaction of particles with coherent vortex structures (the
accumulation effect). We first show that this description remains valid and accurate
for a bidisperse system involving two groups of particles of inertial response time
τp1 and τp2, respectively. Numerical results for the turbulent transport effect and the
accumulation effect have been obtained as a function of τp1 and τp2. Interestingly, the
accumulation effect in a bidisperse system is bounded above by that of a monodis-
perse system. An explanation for this observation is given, in terms of the correlation
between concentration fields of the two size groups. Simulations show that particles
from two size groups were found in different regions of a vortex, thus reducing the
net accumulation effect in a bidisperse system. The turbulent transport effect, on
the other hand, is bounded below by the level in a monodisperse system, due to a
differential inertia effect. The above observations imply that the size polydispersity
enhances the turbulent transport effect but weakens the accumulation effect, relative
to a monodisperse system.

A simple eddy–particle interaction (EPI) model was developed and shown to give
a reasonable prediction of the collision kernel, except for a small parametric region
where both τp1 and τp2 are on the order of the flow Kolmogorov time τk and thus
the accumulation effect must be included. A more accurate model incorporating both
the turbulent transport effect and the accumulation effect has also been developed.
The model would provide an upper bound on the collision rates for a non-dilute
bidisperse system, since turbulence modulation and particle–particle interactions are
not considered in this model.

Finally, some consideration is given to the effect of nonlinear drag on the collision
kernel. The results show that the drag nonlinearity can increase the collision kernel
slightly (less than 10%) at large particle inertia.

1. Introduction
Turbulent coagulation, the process of collision-induced merging of particles, in a

suspension of solid particles or liquid droplets plays an important role in many natural
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and industrial processes. Examples include growth of liquid droplets in turbulent
clouds (East & Marshall 1954; Saffman & Turner 1956; Pinsky & Khain 1997; Shaw
et al. 1998) or in wet steam generators (Williams & Crane 1979), spray atomization
process (O’Rourke & Bracco 1980), dust separation in cyclones (Abrahamson 1975),
and TiO2 production (Xiong & Pratsinis 1991). In these applications, the particle
density is much larger than that of the carrier fluid and there exists a wide range
of particle sizes. When the level of turbulence, as measured by the average rate of
kinetic energy dissipation ε, is large and thus the time scale for small-scale turbulence
(the Kolmogorov time scale τk) is small, the particle inertial effects, as measured
by the ratio of particle response time τp to the Kolmogorov time of the turbulent
carrier flow τk , tend to be important. Therefore, inertial effects resulting from dynamic
interactions of particles with turbulent fluid motion at finite τp/τk must be considered
as important factors in the turbulent coagulation process.

The overall coagulation rate of finite-size particles in fluid turbulence is governed by
three consecutive and inter-related processes: (i) geometric collision due to turbulent
advection, gravitational settling, and Brownian diffusion; (ii) collision efficiency due
to local particle–particle aerodynamic interactions; and (iii) coagulation efficiency as
determined by surface sticking characteristics (such as van der Waals force, particle
wetness, and electrostatic charges). Here we consider only the geometric collision, for
which two inertia-induced mechanisms have been identified: (i) the relative velocities
between two colliding particles due to turbulent fluctuations of the carrier fluid
(Saffman & Turner 1956; Williams & Crane 1983); (ii) the tendency of inertial
particles to concentrate within certain regions of turbulent flow (e.g. Maxey 1987;
Squires & Eaton 1991; Wang & Maxey 1993). We shall term the first mechanism
the turbulent transport effect and the second the accumulation effect. It has been
demonstrated that both these inertia-induced effects can lead to one to two orders of
magnitude increase in the average collision kernel (Sundaram & Collins 1997; Zhou,
Wexler & Wang 1998; Wang, Wexler & Zhou 2000) and a much faster broadening
of the droplet size spectrum than previously believed (Pinsky & Khain 1997; Shaw
et al. 1998).

In our recent paper (Wang et al. 2000), we confirmed the statistical mechanical
description proposed by Sundaram & Collins (1997) and Wang et al. (1998b), for
a monodisperse system of finite-inertia particles. In Wang et al. (2000), we also
developed quantitative models for the turbulent transport effect and the accumulation
effect, based on direct simulation results of the collision process. We also showed that
both these effects increase with flow Reynolds number for finite-inertia particles. A
detailed review of the geometric collision literature and the two physical effects is
given in Wang et al. (2000).

In this study we extend the results of Wang et al. (2000) to a bidisperse system
of finite-inertia particles. We consider the geometric collision rate between one group
of particles of inertial response time τp1 and another group of particles of inertial
response time τp2. In a turbulent flow with velocity fluctuations of a wide range of
time scales, the two particle groups may selectively respond to eddies of completely
different scales. This differential inertia effect does not occur in a monodisperse
system but must be carefully considered in order to model collision rates between any
two different particle size groups. We shall show that certain relationships between a
bidisperse system and a monodisperse system can be used to construct an approximate
model of the bidisperse collision rates.

In the next section we present theoretical considerations relevant to the collision
kernel in a bidisperse system. We extend an eddy–particle interaction (EPI) model
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(Zhou et al. 1998) to a bidisperse system. A brief description of the numerical
methods is given in § 3. The results of numerical simulations are shown in § 4, where
we validate the formulation of average collision kernel as given in § 2 and compare
the EPI model with numerical results. In § 5 we develop empirical models to predict
the turbulent transport effect, the accumulation effect, and the collision kernel in a
bidisperse system. The effect of the flow Taylor-microscale Reynolds number on the
collision kernel is discussed in § 6, along with the effect of nonlinear drag. Finally,
main conclusions are drawn in § 7.

2. Theory
We consider a bidisperse suspension of rigid particles in a turbulent gas. The

particles are assumed to be small, with diameters dp1 and dp2 typically on the order of
or less than the Kolmogorov length scale η ≡ (ν3/ε)1/4, where ε is the average rate of
dissipation of kinetic energy and ν the fluid kinematic viscosity. The particle density
ρp is much larger than the fluid density ρ so that the particle inertial response time

τpi =
ρp

ρ

d2
pi

18ν
for i = 1, 2, (2.1)

may have a magnitude anywhere from the flow Kolmogorov time τk ≡ (ν/ε)1/2 to the
flow integral time scale Te.

As a first step towards the modelling of particle collision statistics, we assume
that particle volume fraction and mass loading are sufficiently low so that the gas
turbulence is not significantly affected by the presence of particles. This assumption
may be questionable even in dilute flows due to preferential concentration. Local
particle accumulation can introduce local hydrodynamic interactions which are likely
to reduce the level of accumulation; therefore, the collision rate obtained in this paper
should be viewed as an upper bound for the system considered. Another simplification
is that the gravitational (or body force) effect is not included. This assumption is made
to allow us to focus on the effect of particle inertia and interphase drag, as in other
related studies (Abrahamson 1975; Williams & Crane 1983; Sundaram & Collins
1997). Although the description of gravitational collision alone is well established,
our understanding of the couplings between the particle inertia and settling on
particle–particle collisions remains incomplete (Reuter, Villiers de & Yavin 1988;
Pinsky & Khain 1994; Wang & Maxey 1993; Khain & Pinsky 1995).

The geometric collision rate per unit volume, Ṅ12, between two size groups of
average number concentrations n1 and n2 can be written as

〈Ṅ12〉 = 〈Γ12〉n1n2, (2.2)

where 〈Γ12〉 is the average collision kernel. Here 〈 〉 denotes an ensemble average,
which is equivalent to a spatial average, denoted by (), for a stationary homogeneous
system. Specifically, the ensemble average is taken as a combined average over space,
time, and initial realizations (called a triple averaging procedure by Wang & Maxey
1993). For notational simplicity, hereafter we will drop 〈 〉 but the ensemble average
is always implied when Γ12 is mentioned.

The geometric collision kernel can depend on particle and flow parameters:

Γ12 = f(R, τp1, τp2, u
′, Te, ν, ε, . . .), (2.3)

where the arguments are the collision radius R ≡ (dp1 + dp2)/2, particle response time
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in each group, turbulent r.m.s. fluctuation velocity u′, integral time Te, fluid viscosity
ν, and the average dissipation rate ε, among other things. Here u′ and Te represent the
effect of large-scale turbulent transport on the collision kernel, and ν and ε describe
the effect of small-scale fluid motion. If dp1, dp2 6 η, the average collision kernel can be
viewed as a local concentration-squared weighted average of the local collision kernel
(Zhou et al. 1998), and the local collision kernel is related to the relative velocity
between two approaching particles and the collision radius (Saffman & Turner 1956).
Large-scale turbulent fluctuations affect Γ12 mainly through their contribution to the
relative velocity, and this effect becomes dominant if the particle inertial response
time is comparable to Te. Small-scale turbulent fluctuations can affect Γ12 mainly
through their contributions to non-uniform local particle concentration (Wang &
Maxey 1993; Sundaram & Collins 1997; Zhou et al. 1998). This accumulation effect
becomes important when the particle inertia response time is on the order of τk .

Rewriting (2.3) in a dimensionless form, the dimensionless collision kernel is a
function of at least four non-dimensional parameters:

Γ12

R3/τk
≈ f

(
τp1

τk
,
τp2

τk
,
R

η
, Rλ

)
, (2.4)

where the Taylor-microscale Reynolds number is defined as Rλ ≡ u′λ/ν, where λ is
the transverse Taylor microscale λ ≡ u′/〈(∂u1/∂x1)

2〉1/2 = (15νu′2/ε)1/2.
When dp1, dp2 < η, the local shear rate around a particle is nearly uniform and

equal to the local velocity gradient. Without considering local particle–particle hydro-
dynamic interactions, the turbulent transport effect should be insensitive to the size
parameter R/η. However, particles may accumulate indefinitely around a vortex
structure, leading to small-scale features in the particle concentration fields at scales
less than η. This may cause a strong dependence of the radial distribution function
(RDF) on the size parameter R/η, as demonstrated by Reade & Collins (2000).
It is reasonable to expect that this size dependence would saturate when the local
particle–particle hydrodynamic interactions are considered. In this study we simply
fix R/η = 1 and consider the dependence of Γ12 on the other three parameters.

2.1. The collision kernel formulation

As demonstrated previously for a monodisperse system (see Sundaram & Collins
1997 and Wang et al. 1998b, 2000 for details), the average collision kernel can be
written as

Γ12 = 2πR2〈|wr|〉g12(R). (2.5)

Here wr is the radial relative velocity between a particle from size group 1 and another
particle from size group 2. The average radial relative velocity, 〈|wr|〉, represents
the turbulent transport effect. Also, gij(R) denotes the RDF at contact between a
particle from group i and another particle from size group j; g12(R) measures the net
accumulation effect. In § 4, we shall demonstrate numerically that this formulation
is rather accurate for a bidisperse system, by comparing it with the collision kernel
obtained by direct counting of collision events.

In a monodisperse system, g11(R) is defined as the probability density of observing
a particle pair at contact in the actual suspension, normalized by the corresponding
value in a nominally uniform suspension. Therefore, g11(R) measures directly the level
of particle pair accumulation. However, in a bi-disperse system, g12(R) is determined
not only by the level of particle accumulation in each group, but also by the correlation
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between particle concentrations in the two groups. This issue will be further illustrated
in § 5.

2.2. The collision kernel for large particle inertia: an eddy–particle interaction model

When both the inertia parameters τp1 and τp2 are on the order of Te, the particle
concentration fields are nearly uniform. In this case, g12(R) is close to one, in other
words the accumulation effect is insignificant. The turbulent transport effect is gov-
erned by the interactions of particles with large-scale fluid velocity fluctuations. As a
qualitative predictive tool, we can extend the EPI model that we developed previously
(Zhou et al. 1998) to a bidisperse system.

Let v(1) and v(2) be the radial velocities of the two particles at collision. Assuming
the relative velocity wr ≡ v(2)− v(1) between two colliding particles follows a Gaussian
distribution with a standard deviation σw , then 〈|wr|〉 = (2/π)1/2σw . The collision
kernel can be written as

〈Γ12〉 = 2πR2〈|wr|〉 = 2(2π)1/2R2σw, (2.6)

where

σw = 〈w2
r 〉1/2 = [〈(v(2) − v(1))2〉]1/2

= [v′2p1 + v′2p2 − 2〈v(1)v(2)〉]1/2. (2.7)

Here v′p1 and v′p2 are the particle r.m.s. fluctuation velocities.
In the EPI model, we treat the particle motion as a succession of interactions with

turbulent eddies, where each eddy has constant flow properties. More specifically, we
consider a one-dimensional version of the particle equation of motion

dv(t)

dt
=
u− v
τpi

, (2.8)

where the fluid velocity u is treated as a Monte-Carlo process with a fixed eddy
lifetime T (Wang & Stock 1992). The fluid velocity is assumed to take a Gaussian
random value in each eddy with a standard deviation equal to the r.m.s. fluid
fluctuation velocity u′. The particle velocity variance (v′pi)2 is related to the fluid
velocity correlation Rf(τ) ≡ 〈u(t)u(t+ τ)〉 by (Wang & Stock 1993)

(v′pi)
2 ≡ 〈v2(t)〉 =

1

τpi

∫ ∞
0

Rf(τ) exp

(
− τ

τpi

)
dτ. (2.9)

For a Monte-Carlo process, Rf is a triangle function (Wang & Stock 1992)

Rf(τ) =

{
u′2(1− τ/T ) for |τ| < T

0 for |τ| > T . (2.10)

Substituting (2.10) into (2.9), we obtain a relationship between the particle and fluid
kinetic energies

(v′pα)2

u′2
= 1− θα[1− exp (−1/θα)], (2.11)

where θα ≡ τpα/T .
Next we need to estimate the velocity correlation between two colliding particles,
〈v(1)v(2)〉. If the particle size is very small, the two particles must be found in the same
eddy upon collision. We further assume that the two particles enter the eddy at the
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same time, say, t = 0. Then by integrating (2.8) the particle velocities can be written
as

v(α)(t) = ue

[
1− exp

(
− t

τpα

)]
+ v(α)(0) exp

(
− t

τpα

)
for 0 < t < T , α = 1, 2, (2.12)

where v(α)(0) denotes the particle velocity at t = 0, and ue is the eddy velocity. Before
entering the eddy (t < 0), the two particles interact independently with different eddies
so that 〈v(1)(0)v(2)(0)〉 = 〈v(1)(0)ue〉 = 〈v(2)(0)ue〉 = 0. If the probability distribution for
the two particles to collide in the time interval 0 < t < T is uniform, then the velocity
correlation is

〈v(1)v(2)〉 =
1

T

∫ T

0

〈v(1)(t)v(2)(t)〉 dt. (2.13)

Substituting (2.12) into (2.13), we obtain

〈v(1)v(2)〉
u
′2 = 1− θ1

[
1− exp

(
− 1

θ1

)]

−θ2

[
1− exp

(
− 1

θ2

)]
+ θ12

[
1− exp

(
− 1

θ12

)]
, (2.14)

where θα = τpα/T , θ12 = θ1θ2/(θ1 + θ2).
An expression for σw can be obtained by substituting (2.11) and (2.14) into (2.7).

Finally the collision kernel is

〈Γ12〉 = 2(2π)1/2 R2u′[Θ1 +Θ2 − 2Θ12]
1/2, (2.15)

where Θα = θα[1 − exp (−1/θα)], Θ12 = θ12[1 − exp (−1/θ12)]. The eddy lifetime T
is simply set to the large-eddy turnover time Te when the above model is compared
with numerical results in § 4. The correlation coefficient of the particle velocities is
given as

ρv12 ≡ 〈v
(1)v(2)〉
v′p1v′p2

=
1−Θ1 −Θ2 + 2Θ12

[(1−Θ1)(1−Θ2)]1/2
. (2.16)

It should be noted that the above analysis does not include the eddy size effect,
which can modify the EPI time as the particles may traverse the eddy in a time less
than T . Also, velocity shear within an eddy is not considered. Nevertheless, the model
captures the essential physics of relative motion between two particles and, as will be
shown in § 4, gives reasonable predictions when τpi is on the order of Te.

3. Numerical simulations
Direct numerical simulations provide a means to understand the essential physical

mechanisms of turbulent collision and a database to examine new and old analytical
models (e.g. Sundaram & Collins 1997; Wang et al. 1998a, 2000; Zhou et al. 1998).
There are four components to the development of numerical methods for turbulent
collision of inertial particles: (a) direct numerical simulation of gas turbulent flow, (b)
particle tracking, (c) collision rate detection, and (d) computation of relative velocity
and radial distribution function. For a monodisperse system, each of these has been
described in detail in Wang et al. (2000). Therefore we shall only provide essential
information about the flow field, and comment on issues pertinent to a bidisperse
system.
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Grid resolution 643 963

u′ 18.22 18.30
ε 3421.0 3554.7
ν 0.238 0.139
Rλ 45 58
η 0.0450 0.0294
τk 0.00830 0.00625
Te 0.097 0.094
Te/τk 11.7 15.0

Table 1. Flow characteristics.

3.1. Flow field

A homogeneous and isotropic turbulent flow was generated by full numerical simu-
lations using a pseudo-spectral method. The incompressible Navier–Stokes equations

∂u

∂t
= u×ω − ∇

(
P

ρ
+ 1

2
u2

)
+ ν∇2u+ f(x, t), (3.1)

were solved along with the continuity equation ∇ · u = 0 in a periodic box of side
2π. Here ω ≡ ∇×u is the vorticity, P is the pressure. The flow was generated from
rest by the random forcing term f(x, t) which is non-zero only at low wavenumbers,
|k| < 81/2.

In this paper, the flow was frozen after the statistically stationary stage was reached,
and particles were then introduced into the flow. The start of particle release will be
denoted as t = 0. This provides us with an identical flow microstructure for different
runs with various particle parameters, which limits statistical fluctuations and speeds
data collection.

Since all the important flow scales are resolved in a full numerical simulation, the
grid resolution determines the scale separation, and thus the Reynolds number of
the resulting flow. Two grid resolutions of 643 and 963 were used to study briefly the
effect of Taylor-microscale Reynolds number on the collision kernel (table 1).

Table 1 lists the flow parameters (from top to bottom): the component r.m.s. fluc-
tuating velocity u′, average dissipation rate ε, viscosity ν, Taylor-microscale Reynolds
number Rλ ≡ u′λ/ν, Kolmogorov length η, Kolmogorov time τk , large-eddy turnover
time Te ≡ u′2/ε, and the time scale ratio Te/τk . Other details of the simulated flows
can be found in Wang & Maxey (1993).

3.2. Particle motion

Under the assumption that the density of the particle ρp is much larger than the
density of the fluid ρ, and that a quasi-steady Stokes drag can be used, the equation
of motion for a heavy particle becomes

dV (t)

dt
=
u(Y (t), t)− V (t)

τpi
, (3.2)

where V (t) and Y (t) are the velocity and the centre position of a heavy particle,
respectively.

Typically 103–104 particles for each size group were introduced at t = 0 into the
computational domain at random initial positions with an initial velocity equal to the
local fluid velocity. After about 3×max (τp1, τp2), any effects of the initial conditions
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on the particle motion became lost. The simulation was continued for at least
13×max (τp1, τp2) or 5 large-eddy turnover times during which collision counts and
other statistical averages were taken. It should be noted that the particle concentration
field and the local-in-time collision kernels may not reach their asymptotic, statistically
stationary stage at t = 3 max (τp1, τp2) since the local accumulation process is affected
by large-scale fluid motion (Wang & Maxey 1993). On the other hand, in practical
applications one may be more interested in the particle collision statistics shortly
after the particle release rather than the asymptotic value. With this in mind and for
the purpose of obtaining a small numerical uncertainty, we take t = 3 max (τp1, τp2) as
the starting time for all statistical averages. A change of the starting time to t = 2Te
showed that the results change less than 20% and are unchanged qualitatively.

3.3. Collision rate Ṅ12

The collision detection algorithm used to compute Ṅ12 is similar to that of Wang et
al. (2000) for a monodisperse system. There could be different approaches to perform
a numerical simulation of turbulent collisions for a polydisperse system. One of these
is that particles are allowed to grow in time. When two particles are in contact with
each other, a new larger particle will be formed. The number of collisions between
any two different size groups can be counted, then the collision kernel can be directly
calculated. This would be the natural way for a coagulative system. However, it is an
impractical method to study the parametric dependence of the collision kernel. First,
many more particles are needed in such a polydisperse system, since the total number
of particles has to be divided by the number of size groups. Second, a stationary
particle size distribution is desired to obtain good statistics of the collision kernel,
but may be difficult to maintain. We, therefore, choose to separate the microphysical
modelling (estimation of collision kernel between any given two size groups) from the
macrophysical process (the evolution of particle size distribution). We introduce only
two particle size groups of inertial response times τp1 and τp2. A collision is counted
if a new geometric overlap is encountered. Only the collision events between two
different size groups are considered. The two particles upon a collision continue to
move independently (Scheme 1 in Wang et al. 1998a). This post-collision treatment
may sound unrealistic; however, it was shown to be the only scheme that is consistent
with the Saffman & Turner (1956) formulation. Use of this scheme will facilitate
the validation procedure for independent, separate quantifications of the turbulent
transport effect and the local accumulation effect (see § 3.4). Another advantage of
using this scheme is that we can calculate the radial distribution function at contact
g(R) accurately.

We only consider binary collisions as the particle loadings are sufficiently dilute
in our numerical simulations. The collision search was conducted using the efficient
cell-index method and the concept of linked lists (Allen & Tildesley 1987). The size
of the collision detection cell was made large enough so that two particles residing
in unconnected cells would not collide within a numerical time step (Sundaram &
Collins 1996; Wang et al. 1998a). Averages over both time and initial realizations
of particle locations were used to reduce the numerical uncertainties. The collision
kernel based on direct counting of collisions will be denoted by

ΓDNS
12 ≡ Ṅ12

n1 n2

. (3.3)

We had validated our bidisperse simulation code by comparing the result when
τp1 = τp2 with that of our previous monodisperse code.
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3.4. Relative velocities and g12(R)

The Lagrangian-pair relative velocity statistics (〈|wr|〉) measures the turbulent trans-
port effect, while the radial distribution function at contact g12(R) quantifies the
accumulation effect. Their computations were completely independent of the collision
kernel simulation. The computational procedure is as follows.

(a) Particle pair identification: at each time step, we detected all the pairs (with
one particle from each size group) with interparticle distance r given as R − δ/2 <
r < R + δ/2 with δ = 2% R. This detection was performed using the same efficient
cell-index method and the concept of linked lists. However, the size of the detection
grid, W , could now be made much smaller than was needed for the collision kernel
simulation. In fact, W = R + δ/2 is sufficient for the detection. Obviously only a
fraction of these pairs will participate in collision events during the next numerical
time step. The value of δ/R should be selected properly (see Wang et al. 2000).

(b) g12(R) and 〈|wr|〉 calculation: the simulation was run for the same period of time
as in the collision kernel computation and the initial 3 max (τp1, τp2) time interval was
not used for statistical averaging. All the pairs of separation R − δ/2 < r < R + δ/2,
along with individual particle velocities and the separation vectors, were recorded
during the simulation. These data were postprocessed to give an average value for
|wr| and g12(R) for that run. For example, g(R) was computed simply as

g12(R) =
Total number of pairs detected× Vbox

Vs ×Nt ×Np1Np2

, (3.4)

where Np1 and Np2 are total number of particles in the two size groups, Vs =
4π[(R + δ/2)3 − (R − δ/2)3]/3 is the shell volume, Vbox = (2π)3 is the volume of the
flow domain, and Nt is the number of time steps for which the pair detections were
undertaken.

(c) Improving the statistics: the simulation was repeated Nr times with independent
realizations of the initial particle locations, as in the collision kernel simulation. This
then allows a further averaging over the realizations (thus further reducing the
uncertainties) and, more importantly, an estimation of statistical uncertainties can be
made. Note that the records in a given realization may not be independent when dt
is small. But the averaged values over time from different realizations can be treated
as independent samples.

The computation of g12(R) and 〈|wr|〉 was validated against the monodisperse results
(Wang et al. 2000). For the purpose of presenting results in subsequent discussions,
we denote the collision kernels estimated with numerical kinematic properties of the
suspension as

Γest
12 = 2πR2〈|wr|〉g12(R). (3.5)

In summary, the collision kernel measures dynamical events which are related to
the change of inter-particle distance, while both relative velocities and g12(R) are
kinematic quantities which are defined at any given time. In numerical simulations,
since the time step size is finite, the dynamic and kinematic properties must be
computed separately.

4. Results and discussion
4.1. Numerical results for arbitrary inertia

Figure 1 shows the numerical collision kernels ΓDNS
12 , normalized by the collision

kernel for fluid elements (zero-inertia particles) Γ0 = (8π/15)1/2R3vk/η (Saffman &
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Figure 1. Numerical collision kernels, normalized by Γ0, as a function of τp2/Te at Rλ = 45, while
τp1/Te was fixed for each curve. The error bars denote ±σ (the standard deviation).
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Figure 2. Comparison of Γest
12 with ΓDNS

12 .

Turner 1956), as a function of τp2/Te at Rλ = 45, while τp1/Te was fixed for each
curve. The error bars denote twice the standard deviation, which were estimated based
on 12 runs with independent realizations of particle initial locations. Also shown in
this figure is the collision kernel for a monodisperse system. For small τp1/τk , Γ

DNS
12

increases with τp2 monotonically, mainly due to the increasing relative motion of
particles in the second size group from the fluid. For large τp1/Te, Γ

DNS
12 decreases

with τp2 monotonically, due to the increasingly sluggish response of particles in the
second size group to the turbulent fluid velocity fluctuations. Note that for both
these limits of τp1 the accumulation effect is not important. For intermediate τp1,
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ΓDNS
12 can increase with τp2 for small τp2, reach a maximum, and then decrease with

τp2. This complex dependence reflects the interplay of small- and large-scale fluid
motions and the selective response of particles to these dynamics. If the accumulation
effect is negligible (τp1, τp2 � τk or τp1, τp2 � τk), the bidisperse collision kernel is
larger than the monodisperse value due to the differential in the inertia effect on the
relative velocity between the two size groups. When the accumulation effect is strong
(τp1/τk, τp2/τk = O(1)), the bidisperse collision kernel is less than the monodisperse
value due to lack of correlation between the particle concentration fields of the two
size groups (see § 5.1).

In figure 2 we confirm the statistical formulation, (2.5), by plotting the ratio
Γest

12 /Γ
DNS
12 for different combinations of particle inertias. The ratio should be one

if the formulation (2.5) is exact. This is confirmed within numerical uncertainties.
Therefore, (2.5) can be used to predict the collision kernel in a bidisperse system,
extending the conclusion established previously for the monodisperse case (Wang et
al. 2000).

4.2. Separation of the accumulation effect and the turbulent transport effect

Confirmation of the formulation (2.5) allows us to separate the accumulation effect
from the turbulent transport effect. Figure 3 shows the radial distribution func-
tion at contact g12(R), namely the accumulation effect on the collision kernel. The
curve marked monodisperse denotes the value of g22(R) or RDF at contact for a
monodisperse system with particle response time τp2 (e.g. see Wang et al. 2000). Two
interesting observations can be made: (i) g12(R) attains a maximum when τp2 = τp1,
and (ii) g12(R) is always bounded above by the smaller value of the two relevant
monodisperse RDFs, namely g12(R) 6 min [g11(R), g22(R)]. An explanation for these
observations will be given in § 5.1.

The turbulent transport effect on the collision kernel is measured in figure 4. The
radial relative velocity 〈|wr|〉, normalized by the fluid r.m.s. velocity u′, is shown as a
function of τp2/Te, for different τp1. For convenience, we introduce the following no-
tation: 〈|wr|〉12 ≡ 〈|wr|〉(τp1, τp2), 〈|wr|〉11 ≡ 〈|wr|〉(τp1, τp1), 〈|wr|〉22 ≡ 〈|wr|〉(τp2, τp2). The
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curve labelled as monodisperse in figure 4 denotes the value of 〈|wr|〉22. By compar-
ing with the monodisperse data (dotted line), we find that the difference in particle
inertias enhances the radial relative velocity (the differential inertia effect), namely
〈|wr|〉12 > max [〈|wr|〉12 > max [〈|wr|〉11, 〈|wr|〉22]. Therefore, 〈|wr|〉 in a bidisperse sys-
tem is always larger than that in a monodisperse system. This is in qualitative
agreement with the analytical results of Kruis & Kusters (1997).
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The larger the inertia difference between the two size groups, the more the radial
relative velocity increases above the monodisperse value. This is demonstrated in
figure 5 which shows the additional increase in the relative velocity above the average
of the two relevant monodisperse values, δwr ≡ 〈|wr|〉12 − 1

2
(〈|wr|〉11 + 〈|wr|〉22). This

additional increase δwr due to the inertia difference is precisely what we mean by
the differential inertia effect. Note that δwr is symmetric with respect to (τp1, τp2),
i.e. the two response times are interchangeable. Under the assumption that this
additional increase is mainly a function of τp2/τp1 (the leading-order reduction of
two independent variables to one), a symmetry would be observed with respect to
log10(τp2/τp1). This symmetry is shown to be roughly valid in figure 5, although the
above leading-order reduction has no rigorous justification. Also shown in figure 5 is
the prediction of the EPI model for τp1 = Te.

4.3. Comparison of the EPI model with simulation results

Before developing a more accurate model, we shall compare the EPI model and
other existing collision kernel models with simulation results. All these models do not
include the accumulation effect here.

Figure 6 shows such comparisons at Rλ = 45. Each of figures 6(a)–6(d) assumes
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a fixed τp1/Te, at 0.0086, 0.2, 1.0, and 2.0 respectively. Besides the EPI model, the
theoretical predictions of Abrahamson (1975), Williams & Crane (1983), and Kruis
& Kusters (1997) are also plotted.

For small τp1/τk (figure 6a), particles in the first size group are nearly uniformly
distributed. Both the EPI model, (2.15), and the model of Kruis & Kusters (1997)
predict a collision kernel to within 15% of simulation results.

When τp1/τk is on the order of unity (figure 6b), particles in the first size group are
highly non-uniformly distributed. It is not surprising to see that none of the models
predicts well for τp2/Te < 1.0, due to the accumulation effect not being considered in
these models. Nevertheless, the models appear to work well for τp2/Te > 1.0, with a
relative difference of less than 10%.

When τp1 is on the order of the integral time scale Te (figures 6c and 6d), the
accumulation effect can again be neglected. Interestingly our simple EPI model gives
the best prediction (to within 10% of the simulation results).

The general observation is that the EPI model performs well if either τp1 or τp2 is
on the order of the integral time scale Te. In all the cases, the formulation of Kruis &
Kusters (1997) provides a better prediction of the collision kernel than the Williams &
Crane (1983) formulation, but they both tend to underpredict the collision kernel. The
model of Abrahamson (1975) overpredicts the collision kernel due to the assumption
of zero correlation between velocities of colliding particles.

Figure 7 shows the velocity correlation coefficient ρv12 as a function of τp2/Te. The
symbols represent the DNS data, and the lines represent the predictions by the EPI
model, (2.16). For most parametric regions, ρv12 decreases as τp1 or τp2 increases, as
a result of increasing departure of the particle motion from the local fluid flow. The
model agrees with DNS results to within 15% of relative difference when ρv12 > 0.4,
and shows that ρv12 drops slowly for large τp2/Te.
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5. Model development
We shall now develop a model to predict the turbulent transport effect and the ac-

cumulation effect for a bidisperse system, based on the model we developed previously
for a monodisperse system (Wang et al. 2000) and the numerical results presented
here for a bidisperse system.

5.1. The relationship between RDFs in bidisperse and monodisperse systems

First we shall postulate a relationship between the RDF g12(R) of a bidisperse system
and the RDFs g11(R) and g22(R) of a monodisperse system in order to simplify the
modelling of g12(R).

We start by hypothesizing that the probability of finding a pair (τp1, τp2) with a
separation R± δ locally is proportional to c1c2, where c1 and c2 are the local number
densities for the two size groups. This is a reasonable hypothesis if the particles in
both size groups are randomly distributed within any local volume over which the
concentrations are defined. Therefore the average RDFs can be related to the local
particle number concentrations as

g12(R) ≈ c1c2

c1 c2

, g11(R) ≈ c2
1

(c1)2
, g22(R) ≈ c2

2

(c2)2
, (5.1)

where the overline denotes spatial or ensemble averaging.
Consider a total of Np particles randomly distributed in a volume V . Assume that

this volume is divided uniformly into Nc cells and that the local number concentration
in each cell is simply defined as the number of particles realized in that cell divided
by the cell volume (V/Nc). The probability of finding k particles (or local number
density kNc/V ) in any cell is

p(c = kNc/V ) =

(
Np

k

)
pk(1− p)n−k (5.2)

with p = 1/Nc. It follows that

c =
Np

V
and c2 = (c)2 +

Np(Nc − 1)

V 2
. (5.3)

Therefore, for a random spatial distribution of particles, we have

c2

(c)2
= 1 +

Nc − 1

Np

. (5.4)

This would be consistent with the fact that g11(R) approaches one if Np � Nc.
For an actual turbulent suspension, both g11(R) and g22(R) may be larger than one

if there is some degree of preferential concentration for the two size groups. Defining
the correlation coefficient between two concentration fields as

ρn12 =
(c1 − c1)(c2 − c2)

[(c1 − c1)2 (c2 − c2)2]1/2
, (5.5)

we can show that

g12(R) = 1 + ρn12[(g11(R)− 1)(g22(R)− 1)]1/2. (5.6)

Intuitively, the correlation coefficient is in the range

0 6 ρn12 6 1, (5.7)
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Figure 8. The concentration correlation coefficient ρn12 as a function of τp2/τk .

since preferential concentration always drives particles into regions of low fluid
vorticity and high rate of strain. Equations (5.6) and (5.7) imply that

g12(R) 6 max [g11(R), g22(R)], (5.8)

or the RDF of a bidisperse system is bounded above by the values of the monodisperse
system. This inequality is less stringent than the observation in figure 3 that g12(R) 6
min [g11(R), g22(R)], due to a rapid decrease of the inter-correlation coefficient ρn12 as
τp1 and τp2 depart from each other (see below). Equation (5.6) also provides a useful
way to interpret and model the results of g12(R).

5.2. The concentration correlation coefficient

An estimate of concentration correlation coefficient ρn12 can be made using (5.6),
the results of g12(R), and the monodisperse RDF (Wang et al. 2000). The direct
computation of ρn12 may be useful but requires simulations with many more particles
so that the local particle concentration field can be accurately defined. A further
study will address this issue. In figure 8 we show the estimated ρn12 as a function
of τp2/τk . We focus on particle inertia response time on the order of τk , as this is
the parametric region where the accumulation effect is important. The concentration
correlation coefficient reaches the maximum value of one at τp1 = τp2, and then drops
quickly as τp2 departs from τp1. This suggests that particles with different inertias will
be found in different regions relative to the flow microstructures. This is confirmed by
a snapshot of the particle positions shown in figure 9, in which we plot the locations
of a second group of particles in a local region along with the locations of the first
group of particles at time t = 2Te after release. The black and grey circles represent
particles with the same response time (τp = τk) but independent initial locations.
The open circles represent particles with τp = 0.5τk but the same initial locations
as grey circles. All the particles are initially randomly distributed. It is evident that
particles of the same inertial response time tend to overlap in space even though they
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Figure 10. The concentration correlation coefficient ρn12 as a function of τp2/τp1. The symbols
represent DNS results. The solid line represents the curve fitting, (5.11).

are introduced at different locations initially. The second group of particles with a
different τp, although accumulating in similar regions as the black and grey particles,
do not overlap with them exactly, leading to a low correlation coefficient.

Now the task of modelling g12(R) reduces to the modelling of ρn12. To leading
order, ρn12 may be considered a function of τp2/τp1 only, as shown in figure 10(a).
Furthermore, since

ρn12(τp1, τp2) = ρn12(τp2, τp1),

it follows that

ρn12(τp2/τp1) ≈ ρn12(τp1/τp2).

The data for τp2/τp1 < 1 in figure 10(a) are replotted in figure 10(b) at the time scale
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ratio equal to τp1/τp2 according to the above approximation. The peak locations are
now fixed at τp2/τp1 = 1. The off-peak data points show some degree of collapse.

As a first approximation, we fit a single curve to the average value of the data
in figure 10(b). The curve fitting was done by first considering two sub-regions:
1 6 φ < 2.5, and φ > 2.5, where φ ≡ τp2/τp1. These two regions are fitted separately
by

y1(φ) = 2.6 exp (−φ) for 1 < φ < 2.5, (5.9)

y2(φ) = 0.205 exp (−0.0206φ) for φ > 2.5. (5.10)

A composite fit is then constructed in the following manner:

ρn12 = y1(φ) + y2(φ)z(φ), (5.11)

where z(φ) is a smooth transition function defined as

z(φ) = 1
2
[1 + tanh(φ− 3)].

The composite fit is compared with the simulation data in figure 10(b). Using the
above fitting for ρn12 and the model for g11(R) and g22(R) according to Wang et al.
(2000), the bidisperse RDF can be estimated through (5.6). The resulting model is
compared with the simulation data in figure 11. The model agrees with the DNS
results to within 10%.

5.3. The relative velocity

For the turbulent transport effect we modified the formulation of Kruis & Kusters
(1997), as we did for the monodisperse case (Wang et al. 2000). Kruis & Kusters
(1997) obtained a universal solution for the relative velocity of two particles due to
turbulent accelerations by modifying the derivations of Williams & Crane (1983) and
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Yuu (1984). For heavy particles (ρp/ρf � 1), their relationship becomes

w2
accel,i

u′2
=

γ

γ − 1

{
(θ1 + θ2)− 4θ1θ2

(θ1 + θ2)

[
1 + θ1 + θ2

(1 + θ1)(1 + θ2)

]1/2
}

×
[

1

(1 + θ1)(1 + θ2)
− 1

(1 + γθ1)(1 + γθ2)

]
, (5.12)
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where θα = 2.5τpα/Te and γ = 0.183u′2/(εν)1/2. Note that the definition of θα here is
different from what we used in (2.15).

We modify this equation to fit our numerical results for the radial relative velocity
in a similar way to what we did for monodisperse particles (Wang et al. 2000) and
propose that

w2
r,accel = Cw(α)w2

accel,i, (5.13)

where

Cw(α) = 1.0 + 0.6 exp [−(α− 1)1.5];

here α = max [θ2/θ1, θ1/θ2]. There are two differences between bidisperse and monodis-
perse formulations for wr,accel: first Cw(α) is a function of α in a bidisperse system, but
a constant in a monodisperse system; and second γ in (5.13) is also a function of α:

γ = α× 0.183
u′2

(εν)1/2
.

These modifications have no theoretical justification but result from a trial and
error fit to our data. After including the shear effect as in Wang et al. (2000), we
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obtain

〈|wr|〉 =

[
2

π
(〈w2

r,accel〉+ 〈w2
r,shear〉)

]1/2

, with
〈w2

r,shear〉
v2
k

=
1

15

(
R

η

)2

; (5.14)

the result is compared with simulation data in figures 12(a) and 12(b). The model
shows good agreement with numerical results for almost all combinations of τp1 and
τp2, with a relative difference within 5%.

5.4. The collision kernel

Finally, a combination of the above models leads to a model for the collision kernel
Γ12, according to (2.5). A comparison of the integrated model with the DNS collision
kernel is shown in figure 13(a–c). The model predicts the collision kernel well. The
maximum relative error between the model and DNS data is 10%. This level of model
accuracy is satisfactory for engineering applications. Also shown in these figures are
theoretical predictions of the EPI model and Kruis & Kusters’s (1997) formulation. It
is clearly seen in figure 13(b) that the integrated model shows a major improvement
over other models when both τp1 and τp2 are on the order of τk , while the EPI model
predicts the collision kernel about 2.5 times lower than DNS data, and the Kruis &
Kusters (1997) formulation 10 times lower.

Although we focus on particle inertia response time comparable to τk during the
model development for RDF, the final model of Γ12 may be used for arbitrary
particle inertia since the accumulation effect is not important for either very small
or large particle inertia. Figure 13(a) shows the comparison of the estimated Γ12 by
different models with DNS results for τp1 much less than τk , and figure 13(c) shows
the comparison for τp1 on the order of Te. An alternative is simply making use of the
EPI model for large particle inertias.
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6. Other considerations
6.1. The effect of flow Reynolds number on the collision kernel

So far we have discussed results at Rλ = 45 only. However, the model we developed
in the last section is capable of including the flow Reynolds number effect. We have
shown that g(R)− 1 scales with the Reynolds number Rλ linearly in a monodisperse
system (Wang et al. 2000), except for τp/τk < 0.5. We shall assume that, other than the
Reynolds number dependence of g11(R) and g22(R) discussed in Wang et al. (2000),
the same ρn12 model can be used for other flow Reynolds numbers. It follows from
(5.6) that g12(R) would have a similar Reynolds number scaling as g11(R) and g22(R)
if both τp1/τk and τp2/τk are larger than 0.5. This appears to be confirmed in figure
14, although the range of Rλ is rather narrow here.

The model for the turbulent transport effect is compared with the simulation results
at two different Rλ in figure 15. The model seems to predict well the modifying effect
due to the flow Reynolds number on the radial relative velocity, with less than 5%
relative difference from the simulation results.

Finally, the integrated model for the collision kernel is compared with the simulation
results at two Reynolds numbers in figure 16. The model can predict the DNS data
to within 20%.

6.2. Effect of nonlinear drag

In the preceding discussion the fluid drag force on the particle has been based on
a linear, Stokes drag law. More generally, a nonlinear relation for the drag force,
depending on the particle Reynolds number, should be used if the Reynolds number
is not small. In the section a brief discussion is given of the modifying effects of such
a nonlinear drag force relation on the average collision kernel.
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We shall adopt an empirical relationship for the drag coefficient CD given by Shiller
& Naumann (1933):

CD(Rep) =
24

Rep
[1 + 0.15Re0.687

p ] = f
24

Rep
. (6.1)

Then the equation of particle motion becomes

dV (t)

dt
=

f

τpi
[u(Y (t), t)− V (t)], with f = 1 + 0.15Re0.687

p . (6.2)

Here τpi is the Stokes response time defined in (2.1), the particle Reynolds number is
Rep ≡ dpi|u− V |/ν.

A set of simulations has been undertaken with τp1/Te = 1.0 while τp2/Te varied
from 0 to 3.0 at Rλ = 45. The results are shown in figure 17. The nonlinear drag
increases the collision kernel slightly (about 10%) for τp2/Te > 0.2, which is contrary
to speculation by Kruis & Kusters (1997) that the assumption of Stokes’ law yields
an overestimation of the relative particle velocity w. Our explanation of the results is
as follows: since the r.m.s. velocity of large-inertia particles is much smaller than that
of the fluid, the nonlinear drag, which is larger than the Stokes drag, will increase the
particle r.m.s. velocity rather than decrease it; it follows that relative particle velocity
is increased since at large inertia the square of the relative velocity is proportional to
the sum of the squares of the two particle fluctuating velocities.

We may further demonstrate this by modifying the EPI model. By taking into
account the nonlinear drag, (2.8) becomes

dv(t)

dt
=

f

τpi
(u− v). (6.3)
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This equation can be integrated exactly (Michaelides 1997) to yield the following
expression:

v(α)(t) = ue

{
1− exp

(
− t

τpα

)[
1 + 0.15Re0.687

f

(
1− exp

(
−0.687

t

τpα

))]−1.5
}

+v(α)(0) exp

(
− t

τpα

)[
1 + 0.15Re0.687

f

(
1− exp

(
−0.687

t

τpα

))]−1.5

, (6.4)

for 0 < t < T , α = 1, 2, where Ref is a Reynolds number based on the uniform fluid
velocity (Ref = dpue/ν). Following the same procedures as in § 2.2, we may obtain the
particle velocity correlation by substituting (6.4) into (2.13). Since we cannot integrate
(2.13) analytically, a numerical integration was used instead. The results based on
this modified theory are also shown in figure 17 as a dotted line. It agrees with the
DNS results very well for large particle inertia. This again shows that nonlinear drag
causes a slight increase in the collision kernel for the parametric range we studied
here.

7. Summary
The main objective of this work was to develop a model to predict the geometric

collision kernel in a bidisperse system, including both the turbulent transport effect
and the accumulation effect. Such a model has been developed based on a previous one
for a monodisperse system (Wang et al. 2000) and numerical experiments designed
to gather data for a bidisperse system. A complete set of numerical experiments
requires much more effort because of the number of parameters involved. We focused
in this work on various combinations of the particle inertia response times. A brief
discussion of flow Reynolds number and nonlinear drag effects was given. The
particle size effect has been left out because, unlike other effects, it depends on the
local particle–particle interaction model, including local hydrodynamic interactions
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and post-collision treatment. A discussion of the size effect in the absence of local
hydrodynamic interactions can be found in the work of Reade & Collins (2000).

The numerical simulations undertaken in this study show that the statistical for-
mulation, (2.5), first suggested by Sundaram & Collins (1997) and later improved by
Wang et al. (1998b, 2000) is accurate for a bidisperse system. The simulations help
us develop a model for the bidisperse accumulation effect. It was shown that the
bidisperse RDF, g12, can be expressed in terms of monodisperse RDFs and a cor-
relation coefficient ρn12 between the particle concentration fields. Such an expression
leads to the conclusion that the bidisperse RDF is bounded above by the values of
monodisperse RDFs, which is consistent with the numerical results. Curve fitting ρn12

as a function of τp2/τp1 completes the modelling of g12. Physically, g12 measures the
net accumulation effect as a result of both particle accumulation and spatial correla-
tion between two concentration fields. An interesting observation is that ρn12 changes
very quickly with inertial response times τpi when τpi is on the order of the flow
Kolmogorov time τk . This implies that particles with different inertias will be found
in different regions relative to flow microstructures. This is shown by visualization of
particle positions in direct numerical simulations. In general, the accumulation effect
is less important for a bidisperse system than in a monodisperse system. This implies
that there is a much higher possibility of particles with similar inertial response time
to collide with each other than those with unlike inertial response times, especially
when the particle inertia is on the order of τk .

The turbulent transport effect, measured by the radial relative velocity 〈|wr|〉, can
be modelled by modifying the Kruis & Kusters (1997) formulation. The results
show that the turbulent transport effect is enhanced by the difference in particle
inertia. 〈|wr|〉 in a bidisperse system is bounded below by that in a monodisperse
system.

An integrated working model for the collision kernel has been made available for
the first time. The model is shown to be satisfactory for engineering applications.
We believe that such a model is much needed in future modelling of particle size
distribution via population balance equations. For this purpose, we summarize the
model as the following. For bidisperse inertial particles under the assumptions dpi 6 η
and ρp � ρ, the collision kernel can be calculated as

Γ12

Γ0

=
〈|wr|〉12

〈|wr|〉shear g12(R),

where R = r1 + r2, Γ0 = (8π/15)1/2R3vk/η, 〈|wr|〉shear = (2/15π)1/2vk(R/η). The average
radial relative velocity 〈|wr|〉 is computed by

〈|wr|〉12

〈|wr|〉shear =

[
1 + 15

w2
r,accel

v2
k

( η
R

)2

]1/2

,

with

w2
r,accel

v2
k

= Cw(φ)

(
u′

vk

)2
γ

γ − 1

{
(θ1 + θ2)− 4θ1θ2

(θ1 + θ2)

[
1 + θ1 + θ2

(1 + θ1)(1 + θ2)

]1/2
}

×
[

1

(1 + θ1)(1 + θ2)
− 1

(1 + γθ1)(1 + γθ2)

]
,
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where θi = 2.5τpi/Te and

Cw(φ) = 1.0 + 0.6 exp [−(φ− 1)1.5],

γ = φ× 0.183
u′2

(εν)1/2
,

with φ ≡ max (θ2/θ1, θ1/θ2).
The bidisperse radial distribution function at contact g12(R) is given by

g12(R) = 1 + ρn12[g11(R)− 1]1/2[g22(R)− 1]1/2,

with

ρn12 = 2.6 exp (−ψ) + 0.205 exp (−0.0206ψ) 1
2
[1 + tanh(ψ − 3)],

where ψ ≡ max (τp2/τp1, τp1/τp2). The monodisperse radial distribution function at
contact gii(R) (no summation is implied) is modelled as

gii(R) = 1 + y0(α)[1− z2
0(α)] + Rλz

2
0(α){y1(α)[1− z1(α)] + y2(α)z1(α) + y3(α)z2(α)},

with

y0(α) = 18α2, y1(α) = 0.36α2.5 exp (−α2.5),

y2(α) = 0.24 exp (−0.5α), y3(α) = 0.013 exp (−0.07α),

z0(α) =
1

2

[
1 + tanh

α− 0.5

0.25

]
, z1(α) =

1

2

[
1 + tanh

α− 1.25

0.1

]
,

z2(α) =
1

2

[
1 + tanh

α− 6.5

2.5

]
,

where α ≡ τpi/τk . Note that the intermediate symbols used here may be different from
those appearing in previous sections to avoid confusion.

The above model can be applied directly, for example, to powder production and
cloud droplet growth involving small heavy particles in a turbulent gas. The model
would provide an upper bound on the collision rates for a non-dilute bidisperse system,
since turbulence modulation and particle–particle interactions are not considered in
this model. When the particle density is comparable to the fluid, such as in a slurry,
modifications to the above model are needed to include other forces on particles
(e.g. Kruis & Kusters 1997). If the particle size is larger than the flow Kolmogorov
scale, for example in fluidized bed reactors, other finite-size effects will have to be
considered (e.g. ?).

It should be noted that the model is based on the assumption of isotropic, homo-
geneous turbulence, which is an idealized condition that is rarely achieved in practice.
The different flow structures such as in wall-bounded turbulence or shear flows may
require separate treatment. Nevertheless the model may still be a reasonable one for
anisotropic flows as long as the flow Reynolds number is large and there is a rea-
sonable separation between the energy-dominated scales and the vorticity-dominated
scales of motion. The modelling of the turbulent transport effect in isotropic flows
can be done by the eddy–particle interaction model using multiple fluid velocity and
length scales.

We have also extended the EPI model (Zhou et al. 1998) to a bidisperse system.
It has been shown that it can be an accurate alternative when the particle inertia
response time is large or very small compared to τk . The EPI model can be easily
modified to include the nonlinear drag effect.
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