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On the collision rate of small particles in isotropic turbulence. II. Finite
inertia case

Yong Zhou, Anthony S. Wexler, and Lian-Ping Wanga)
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Delaware 19716-3140

~Received 25 March 1997; accepted 21 January 1998!

Numerical experiments have been performed to study the geometric collision rate of heavy particles
with finite inertia. The turbulent flow was generated by direct numerical integration of the full
Navier-Stokes equations. The collision kernel peaked at a particle response time between the
Kolmogorov and the large-eddy turnover times, implying that both the large-scale and small-scale
fluid motions contribute, although in very different manners, to the collision rate. Both numerical
results for frozen turbulent fields and a stochastic theory show that the collision kernel approaches
the kinetic theory of Abrahamson@Chem. Eng. Sci.30, 1371 ~1975!# only at very largetp /Te ,
wheretp is the particle response time andTe is the flow integral time scale. Our results agree with
those of Sundaram and Collins@J. Fluid Mech.335, 75 ~1997!# for an evolving flow. A rapid
increase of the collision kernel with the particle response time was observed for smalltp /tk , where
tk is the flow Kolmogorov time scale. A small inertia oftp /tk50.5 can lead to an order of
magnitude increase in the collision kernel relative to the zero-inertia particles. A scaling law for the
collision kernel at smalltp /tk was proposed and confirmed numerically by varying the particle size,
inertial response time, and flow Reynolds number. A leading-order theory for smalltp /tk was
developed, showing that the enhanced collision is mainly a result of the nonuniform particle
concentration that results from the interaction of heavy particles with local flow microstructures.
© 1998 American Institute of Physics.@S1070-6631~98!01305-1#
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I. INTRODUCTION

Small solid particles and droplets are often dispers
transported, and mixed by turbulent flow in many natural a
industrial processes. Turbulence can enhance the coagul
rate among particles in a concentrated suspension in at
three ways. If the particles are sufficiently small in size a
their inertia relative to the fluid motion negligible, the loc
shear in turbulence determines completely the collision p
cess~the shear mechanism!.1 For heavy particles in vigorou
turbulence, particle inertia becomes significant and collisi
then arise from the differing inertial response of polydispe
particles to local fluid motion~the accelerative mechanism!.2

The turbulent shear may also increase the collision effic
cies of small particles by an order of magnitude throu
alteration of local relative motion between particles.3

In this paper, we consider only the geometric collisio
of small, monodisperse particles in turbulence. We shall
sume that the particles are small, with diameterdp typically
on the order of or less than the Kolmogorov length scaleh
[(n3/ ē )1/4, wheren and ē are fluid kinematic viscosity and
the average rate of energy dissipation per unit mass res
tively. In such cases, the local shear rate around a partic
assumed to be uniform and equal to the local velocity gra
ent, any deviation from this assumption~namely, the size
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effect! is negligible as long as only the geometric collisio
rate is of concern.4 The particle densityrp is much larger
than the fluid densityr so that the particle inertial respons
time

tp5
rp

r

dp
2

18n
, ~1!

may be comparable to the flow Kolmogorov time scaletk

5(n/ ē )1/2. For example, in cumulus clouds5 the average dis-
sipation rate can be on the order of 200 cm2/s3, 40mm drop-
lets would have a time scale ratiotp /tk'0.2 and a size
dp /h'0.06. In many engineering applications, the dissip
tion rate is usually much larger than in clouds, so thattp may
even be comparable to the large-eddy time scale and
particle inertia becomes a key factor in the collision proce
The terminertia effectshall be used to represent all aspe
of the particle motion in response to the changes of the lo
fluid motion in a finite timetp due to particle inertia.

There is another reason to believe that the inertial effe
even for smalltp , can enhance the collision rate to a lev
much larger than that described previously. It has be
shown recently that the intense vortex tube structures, wh
characterize the dissipation-range dynamics in fully dev
oped turbulence, lead to a nonuniform particle concentra
field. This so-called inertial bias or preferential concentrat
in turbulence was first illustrated by Maxey6 and then dem-
onstrated by Squires and Eaton,7 Wang and Maxey8 through
direct numerical simulations. The inertial bias was found

n-
.

6 © 1998 American Institute of Physics
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follow a Kolmogorov scaling, namely, being most effecti
in producing a nonuniform concentration whentp /tk;1.
Unlike the case of negligible particle inertia where the lo
strain rate plays the dominant role, the inertial bias is cau
by both the local vorticity and strain rate variations.

Consider a monodisperse system consisting ofNp par-
ticles in a volumeV, the collision rate per unit volume,Ṅ c ,
is given by

Ṅ c5G
n0

2

2
, ~2!

provided thatNp@1, wheren0[Np /V is the average par
ticle number concentration in the volume andG is the colli-
sion kernel. Saffman and Turner9 first considered simulta
neously the effects of the shear mechanism, the acceler
mechanism, and the gravitational mechanism on the collis
kernelG under the assumptions thatdp!h, tp!tk , and the
particle concentration field was uniform. Their results sh
that the accelerative mechanism gives a nonzero contribu
to the collision kernel only if two colliding particles hav
different inertias. This work was followed by a number
studies, all done in the context of stochastical theory of t
bulence, where the effect of local flow structures on the p
ticle concentration was not explicitly considered. These
clude Panchev10 for the case oftp spanning overtk ,
Williams and Crane11 for intermediate-inertia particles with
tk,tp,Te , and Abrahamson12 for very large particles with
tp.Te , whereTe is the time scale of energy-containing e
dies. Yuu,13 Kruis and Kusters14 considered the combine
effect of local shear and unequal inertial response times
the collision rate for arbitrarytp . The key in the stochastica
theory is to identify the proper range of scales of motion
the fluid turbulence which contribute most actively to t
relative velocity between two colliding particles. In the
efforts, closure assumption of one type or another was u
ally assumed in order to derive an expression for the ave
particle relative velocity. Also the particle concentration fie
was assumed to be uniform.

Our main objective here is to study the effect of t
inertial bias on the collision rate, using numerical simu
tions and asymptotic analysis. In part 1 of this work,4 we
have clarified the formulation of Saffman and Turner9 for the
zero-inertia case. We intend to extend this formulation
finite-inertia particles with a nonuniform concentration fie
Consistent with recent studies,15,16 we find that the collision
kernel increases rapidly withtp for tp /tk,1. This will be
shown to result mainly from the nonuniform particle conce
tration field due to the inertial bias. A scaling law for th
collision kernel will be proposed and examined numerica
by varying particle size, inertial response time, and fl
Reynolds number. Of significance is the observation tha
small particle inertia oftp /tk;0.5 can lead to an order o
magnitude increase in the collision kernel. Most of the n
merical experiments in this work were performed for froz
flow fields. We note that more results for the evolving flo
case were reported by Sundaram and Collins.15 It is noted
that there is no quantitative difference incollision kernel
between frozen and evolving flows under the two limiti
Downloaded 01 Jul 2005 to 128.117.47.188. Redistribution subject to AIP
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cases, namely, very small particle inertial response time
very large inertia response time. Both the simulation res
and analyses in the present paper focused on these lim
cases, and, therefore, are expected to be representative o
evolving flow case as well.

The paper is organized as follows. The next section p
vides the details of the flow simulation and particle trackin
The numerical collision kernels for arbitrarytp are presented
first in Sec. III. In Sec. IV we describe a scaling law an
compare it with numerical results. A leading order analy
for small tp /tk is developed in Sec. V and compared to t
simulation results. While most simulations utilized a froz
turbulence field, the results in an evolving turbulence
briefly discussed in Sec. VI. Finally main conclusions a
drawn in Sec. VII.

II. NUMERICAL SIMULATION

A. Flow field

A homogeneous and isotropic turbulent flow was gen
ated by full numerical simulations using a pseudo-spec
method. The incompressible Navier-Stokes equations

]u

]t
5u3v2¹S P

r
1

1

2
u2D1n¹2u1f~x,t !, ~3!

were solved along with the continuity equation¹•u50 in a
periodic box of side 2p. Herev[¹3u is the vorticity,P is
the pressure. The time evolution was computed by apply
a second-order Adams-Bashforth scheme to the nonlin
terms and a second-order Crank-Nicholson scheme for
viscous terms. The pressure was eliminated through the
tinuity equation.

The flow was generated from rest by the random forc
term f(x,t) which is nonzero only at low wave number
uku,A8. Nonlinear interactions propagate energy from lo
to high wave numbers and eventually viscous dissipation
comes active, leading to a quasi-steady balance of the for
energy and the viscous dissipation.

For most discussions in this paper, the flow was froz
after the statistically stationary stage was reached, and
ticles were then introduced into the flow. The start of parti
release will be denoted ast50. This provides us an identica
flow microstructure for different runs with various partic
parameters. The case of evolving flow will be considered
Sec. VI.

Since all the important flow scales are resolved in a f
numerical simulation, the grid resolution determines t
scale separation, and thus the Reynolds number of the re
ing flow. Various grid resolutions from 323 to 1283 were
used to provide a range of Taylor microscale Reynolds nu
ber ~Table I!.

Table I lists the flow parameters~from top to bottom!:
the component rms fluctuating velocityu8, average dissipa-
tion rateē , viscosityn, Taylor microscale Reynolds numbe
Rl[u8l/n ~wherel is the transverse Taylor microscalel
[u8/A^(]u1 /]x1)2&), Kolmogorov lengthh, time scaletk ,
large-eddy turnover timeTe[u82/ ē , the time scale ratio
Te /tk , collision radiusR ~which is equal to the particle di
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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ameter for a monodisperse system!, total number of particles
Np , and particle volume fractionf. Other details of the
simulated flows can be found in Wang and Maxey.8

B. Particle motion

We consider the motion of heavy spherical particles i
nonuniform turbulent flow. The particle is assumed to
small in comparison with the Kolmogorov microscale of t
turbulence and the loading dilute enough that the presenc
the particles does not modify the base turbulence. Under
assumption that the density of the particlerp is much larger
than the density of the fluidr, and that a quasi-steady Stok
drag can be used, the equation of motion for a heavy par
becomes

dV~ t !

dt
5

u~Y~ t !,t !2V~ t !

tp
, ~4!

whereV(t) andY(t) are the velocity and the center positio
of a heavy particle, respectively. The body force is neglec
since we focus solely on inertia-induced collisions. The co
bined effects of inertia and gravitational settling will be co
sidered separately.

The location and velocity of each particle were advanc
while the flow field was either frozen or continued to evol
in time. A fourth-order Adams-Bashforth method was us
to integrate the particle equation of motion. The fluid velo
ity at the location of a particle was interpolated from t
values at neighboring grids using a 6-point Lagrange in
polation. Typically 103;104 particles were introduced att
50 into the computational domain at random initial po
tions with an initial velocity equal to the local fluid velocity
After about 3tp , any effects of the initial conditions on th
particle motion became lost. The simulation was continu
for at least 13tp or 4 to 5 large-eddy turnover times durin
which collision counts and other statistical averages w
taken. It should be noted that the particle concentration fi
and the local-in-time collision kernels~defined in Sec. II C
below! may not reach their asymptotic, statistically statio
ary stage att53tp since the local accumulation process
affected by large-scale fluid motion.8 On the other hand, in
practical applications one may be more interested in the
ticle collision statistics shortly after the particle release rat
than the asymptotic value. With this in mind and for t

TABLE I. Flow characteristics and parameters for the particle system.

Grid resolution 323 643 963 1283

u8 17.02 18.22 18.30 18.64

ē 3568.8 3421.0 3554.7 3374.4

n 0.6000 0.2381 0.1387 0.09450
Rl 24 45 59 75
h 0.0882 0.0450 0.0294 0.0224
tk 0.0130 0.00830 0.00625 0.00529
Te 0.081 0.097 0.094 0.103
Te /tk 6.23 11.7 15.0 19.5
R/h 1.78 1.0/0.5 1.0/0.5 1.0/0.5
Np 1024/2048 2048/3072 2640/4096 3072/512
f(3104) 84/168 4.00/0.74 1.40/0.27 0.73/0.15
Downloaded 01 Jul 2005 to 128.117.47.188. Redistribution subject to AIP
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purpose of obtaining a small numerical uncertainty, we ta
t53tp as the starting time for all statistical averages.
change of the starting time tot52Te showed that the result
change less than 20% and are unchanged qualitatively.

C. Collision detection

The collision detection algorithm was described in Par
of this work4 and will not be repeated here. It was shown th
three different collision counting schemes could be appl
and each gave slightly different numerical collision kern
for zero-inertia particles. These schemes differ in the cho
of particle system used for collision counting. They are su
marized here:

Scheme 1. Particles were allowed to overlap in the sy
tem at the beginning of a time step and were not remo
from the system after collision. This scheme was shown
Part 1 to be the only scheme that is consistent with the S
man and Turner9 formulation.

Scheme 2. At the beginning of each time step, the ove
lapping particles were marked and excluded from collis
detection. Therefore, the actual number of particles used
collision detection was less than the total number of partic
used and varied in time.

Scheme 3. Particles were removed immediately from th
system when they collide. As a result, the total number
particles decreased with time and particles remaining in
system were nonoverlapping at the beginning of each t
step. This scheme closely represents reality if both the co
sion efficiency and coagulation efficiency are close to o
since two particles upon collision will form a particle o
larger size and as such will disappear from the current s
group.

For each of the three schemes, one can define a loca
time collision kernel for any time stepdt as

G i~ t ~n!!5
2VNc~ t ~n!→t ~n11!!

dt@Npi~ t ~n!!#2 , ~5!

where i 51, 2, and 3 denotes the individual scheme
Nc(t

(n)→t (n11))'Ṅ cV dt is the total collision count in the
time step t (n),t<t (n11), Npi(t

(n)) is the total number of
particles participating in collision detection and is given f
each scheme as

Npi~ t ~n!!5H Np5const, fori 51;

Np22N0~ t ~n!!, for i 52;

Np~ t ~n!!, for i 53;
~6!

whereN0(t (n)) is the number of overlapping pairs att (n) in
scheme 2,Np(t (n)) is the number of particles left in the sys
tem in scheme 3. It is assumed that particle volume fract
is very small so that binary collisions dominate. These loc
in-time collision kernels were quitenoisy if Np is not very
large. They can be improved by averaging over differe
realizations of turbulence field and initial particle location
A further average over time gives the final collision kern
^G i&.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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III. NUMERICAL RESULTS FOR ARBITRARY INERTIA

Figure 1 shows the numerical collision kernels, norm
ized byR3/tk , as a function oftp /tk in a frozen turbulence
at Rl524. The error bars denote the 95% numerical co
dence intervals, which were estimated based on 21 runs
independent realizations of particle initial locations. We o
serve that qualitatively the three collision counting schem
yield similar results. The collision kernels increase very ra
idly for small tp /tk , reach a peak attp /tk'4 or tp /Te

'0.6, and then drop slowly with increasingtp /tk . The
same qualitative behavior was found by Sundaram
Collins,15 although they assumed a perfectly elastic collis
of nonoverlapping particles~their post-collision treatment is
close to, but not exactly the same as, our scheme 2!. The
peak reflects both the effects of small and large scale
fluid motion. The inertial bias produces a nonuniform p
ticle concentration. This small-scale effect8 can enhance the
collision kernel significantly~see Sec. V! and is scaled on the
Kolmogorov time scale. On the other hand, astp increases,
particle velocities fail to correlate at collision and the larg
scale fluid motion becomes more relevant in determining
relative velocity between two particles. This causes an
crease in the relative velocity between two particles an
concomitant increase in the collision kernel. This latter eff
is likely to scale with the integral time scale of the flow. Th
question of how the location of this peak changes with
flow Reynolds number remains to be examined with simu
tions at higher flow Reynolds numbers.

Schemes 1 and 2 result in almost the same collision
nel values, as expected for this low volume fraction syste4

For zero-inertia particles (tp50), scheme 1 gives the sam
value as the Saffman and Turner9 result. A close examination
seems to suggest that scheme 1 gives a slightly larger ke
for tp /tk,7 while scheme 2 gives a larger kernel f
tp /tk.7, but the difference is not significant statisticall
Scheme 3, on the other hand, yields a collision kernel 10%
15% less than the other two schemes, due to a prefere
removal as discussed in Part 1.4

FIG. 1. Numerical collision kernels, normalized byR3/tk , as a function of
the particle response time over the Kolmogorov time scale. For this se
simulations, parameters were set to:dt50.001,R50.8Dx, grid resolution is
323. Np51024 for schemes 1 and 2, whileNp was increased to 2048 fo
scheme 3 to achieve comparable uncertainty intervals. The error bars
cate the 95% confidence intervals. The horizontal line in the insert den
the Saffman and Turner resultGtk /R351.294.
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Figure 2 replots the results in a manner that can be ea
compared with the theory of Abrahamson12 for largetp /Te .
Also included in this figure are results at higher flow Re
nolds number (643 grid simulations!. Herevp8[A^ViVi /3& is
the rms particle fluctuating velocity. We note th
^G&/(vp8R

2) increases monotonically withtp /Te . This can
be explained as follows. Letv r

(1) andv r
(2) be the longitudinal

velocities of the two particles at collision. Assuming the re
tive velocity wr[v r

(2)2v r
(1) between two colliding particles

follows a Gaussian distribution with a standard deviationsw

and the particle concentration is uniform, then^uwr u&
5A2/psw . The collision kernel for scheme 1 is

^G1&52pR2^uwr u&52A2pR2sw . ~7!

Defining the correlation coefficient of the particle velociti
asr12[^v r

(1)v r
(2)&/(vp8)

2, we can expresssw as

sw5A^wr
2&5A2vp8A12r12. ~8!

It follows that

^G1&

vp8R
2 54ApA12r12. ~9!

This reduces precisely to the Abrahamson12 result if r1250.
In general, we can argue that the correlation coefficientr12

decreases monotonically withtp , since particle velocities
depend more and more on their history of travel and th
nonlocal fluid motion as tp increases. Consequently
^G1&/(vp8R

2) increases monotonically. Of significance is th
the numerical collision kernels attp /Te52.5 are about 22%
and 14% less than Abrahamson’s prediction forRl524 and
Rl545, respectively, implying that there is still a significa
velocity correlation.

An estimate ofr12 as a function oftp /Te can be made
by treating the fluid velocity around a particle as a simp
Monte-Carlo process~see the Appendix!. Substituting Eqn.
~A8! into ~9!, we have

of

di-
es

FIG. 2. Numerical collision kernels over the particle fluctuation velocityvp8 ,
as a function of the particle response time over the large-eddy turnover
Te . The error bars indicate the 95% confidence intervals. T
Abrahamson12 prediction isG/(vp8R

2)54Ap57.09.
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^G1&

vp8R
2 52A2pF12expS 2

1

u D G
3A u

12u@12exp~2 1/u!#
, ~10!

whereu50.5tp /Te . This result may be viewed as an im
provement over that of Abrahamson,12 and is plotted in Fig.
2. Interestingly, Eqn.~10! shows a reasonable comparis
with the numerical results fortp /Te.1.5. Furthermore Eqn
~10! indicates thatr12 diminishes slowly~in an algebraic
manner, see~A9!! for large tp /Te . For example,A12r12

50.937 attp /Te510, thus the difference between Eqn.~10!
and Abrahamson’s result is still noticeable attp /Te510. For
tp /Te,1.5, Eqn.~10! predicts a smaller value than the n
merical results, particularly for theRl545 case. The differ-
ence can be viewed as the effect of the nonuniform part
concentration~see Sec. V!. Also shown are the predictions o
Kruis and Kusters,14 Williams and Crane11 ~see the Appen-
dix!. Interestingly, all the theoretical results are similar
shape. The present theory seems to be slightly better
other theories. However, one should keep in mind that in
development of the other theories, the flow Reynolds num
was assumed to be large. Furthermore, empirical const
such as the one used to relate the Lagrangian time scaleTL to
Te may be adjusted in the works of Kruis and Kusters14

Williams and Crane11 to better match the numerical result
The ratio of fluid to particle kinetic energy is shown

Fig. 3 as a function oftp /Te . A simple stochastic analysi
would predict a linear curve~for example, Abrahamson,12

Williams and Crane11!. Figure 3 shows that the curves a
not exactly linear, but rather the slope drops slowly astp /Te

increases. The average slope is very close to one at l
tp /Te , in agreement with the previous theories.11,12 Also
shown in the figure are our result, Eqn.~A4!, using a simple
stochastic analysis, and the results of Abrahamson,12 Kruis
and Kusters.14 They all give a reasonable although not ve
accurate prediction.

To further examine the effect of collision detectio
schemes on the numerical collision kernel, we compare
Fig. 4 results based on scheme 1 and two other sche
Scheme 44 is a more realistic scheme in which particles a
relocated after collisions to represent generation of parti
in the current size group due to the coagulation of sma

FIG. 3. The ratio of fluid to particle kinetic energy as a function oftp /Te .
Downloaded 01 Jul 2005 to 128.117.47.188. Redistribution subject to AIP
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particles in a stationary system. In our simulations us
scheme 4, we introduced more particles at the beginning
the simulations and only used a portion of the particles
the collision calculation. Particles involved in a collisio
were replaced by those particles not previously used in
collision calculation, so as to keep the system stationary
to maintain the preferential concentration at the same ti
Scheme 4 gives almost the same results at very small
largetp /Te , but can possibly result in collision kernels 5%
to 10% smaller than those of scheme 1 for intermediate p
ticle inertia. Also shown are results based on the hard-sph
model used previously by Sundaram and Collins15 in which a
perfectly elastic collision model without friction is used
calculate the particle velocities after a collision. We note t
while there is essentially no difference between the ha
sphere model results and those of scheme 1 fortp /Te.0.1,
the hard-sphere model can lead to a collision kernel m
larger than the Saffman and Turner9 prediction in the limit of
tp /Te→0. This latter difference is due to artificial repeate
collisions in the hard-sphere model as noted by Sunda
and Collins.15

IV. THE SCALING LAW FOR G AT SMALL tp

In the following, we shall focus on particles with sma
inertia, tp /tk,1. In this case, particles will respond to th
change of local large-scale fluid motion rather quickly. As
consequence, we expect that the dissipation-range fluid
namics dominates the collision process. If, in addition, p
ticle size or the collision radiusR is much smaller than the
integral length scale of the turbulence and the flow Reyno
number is sufficiently large, we can argue that the collis
kernelG depends only on the collision radius R, the avera
dissipation rateē , the kinematic viscosityn, and the particle
response timetp . Then we can write

G5 f ~R, ē ,n,tp!. ~11!

A dimensional analysis would lead to

FIG. 4. Numerical collision kernels, normalized by 2A2pu8R2, as a func-
tion of the particle response time over the integral time scale. For this s
simulations, parameters were set to:dt50.001,R50.458Dx, grid resolution
is 643. Np52048. The error bars indicate the 95% confidence intervals.
horizontal line in the insert denotes the Saffman and Turner re
G/(2A2pu8R2) 50.0767.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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G

R3/tk
5 f S tp

tk
,
R

h D , ~12!

where tk5(n/ ē )1/2 is the Kolmogorov time scale,h
5(n3/ ē )1/4 is the Kolmogorov length scale.

Therefore, when we consider small inertia and small s
effects, the dimensionless collision kernel is a function of
dimensionless particle response time~or Stokes number! and
the dimensionless collision radius. In the limit oftp /tk→0
and R/h→0, Eqn. ~12! is consistent with the Saffman an
Turner9 result for zero-inertia particles, withf (0,0)51.294.
Eqn. ~12! is essentially a Kolmogorov scaling in high
Reynolds number turbulence.

To confirm the above scaling law, we performed a ser
of numerical simulations by varying the following three p
rameters one at a time: the Stokes numbertp /tk , the dimen-
sionless collision radiusR/h, and the flow Reynolds numbe
The results are summarized in Fig. 5. Since in the last sec
we showed that the results were similar for different collisi
counting schemes, we shall use scheme 1 only for the re
discussions in this paper. Several interesting observat
can be made for Fig. 5.

First, the nondimensional collision kernels do not show
dependence on the flow Reynolds numberRl for tp /tk

,0.6, even though the Reynolds numbers are not high in
simulations. For the two higher Reynolds number cases,
range of validity of the scaling law extends totp /tk,0.8.
For largertp /tk , particles start to interact with a range
flow time scales, including the large-scale motions wh
depend on the flow Reynolds number. Since the fluid mot
at larger scales is more fully represented in higher Reyno
number flow, the contribution of larger scale fluid motion
the collision kernel is increased. As a result, the collis
kernel increases withRl ~or equivalentlytp /Te) for larger
tp /tk . We speculate that the range of validity of the scali
law would be extended further, should these simulations
done at even higher Reynolds numbers. These observa
support the proposed scaling law.

Second, astp /tk→0, the numerically-derived collision
kernels all approach the Saffman and Turner9 prediction,G
51.294R3/tk , independent of the flow Reynolds numbe
Note that the Gaussian probability distribution for the velo

FIG. 5. Numerical collision kernels, normalized byR3/tk , as a function of
tp /tk . The error bars indicate6 standard deviation. The important param
eters for these runs are shown in Table I.
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ity gradient is a reasonable approximation for low Reyno
number flows and the finite size effect forR/h<1 is
negligible.4

Third, for non-zerotp /tk , the nondimensional collision
kernel decreases asR/h increases. This is expected since t
history effect, namely the relative particle motion before t
two particles are brought to a distanceR apart, increasingly
influences the relative velocity at collision. Particles respo
to scales of motion larger thanR. For small R in the far
dissipation range, the relative fluid velocity scales asR,
while in the inertial subrange it is scaled asR1/3 ~see
Kolmogorov17!. The mean shear rate between two partic
then decreases withR for a giventp . Therefore, the normal-
ized collision kernel drops as the collision radius increas

The most significant observation is that the numerica
derived collision kernels increase very rapidly with the p
ticle response time. Even for a smalltp /tk50.5 for which
the scaling law is applicable, the collision kernel is abou
order of magnitude larger than the value for zero-inertia p
ticles whenR/h50.5. This rapid increase cannot be e
plained by any of the previous theories. We shall study t
rapid increase analytically in the next section.

V. A LEADING-ORDER ANALYSIS FOR SMALL tp

Our objective here is to shed some light on the obser
rapid increase ofG with tp for small tp . We will apply the
results of an asymptotic analysis developed by Maxey6 for
small tp , that accounts for the nonuniform concentrati
effect due to the inertial bias.

If we assume thattp /tk,1, tk represents the smalles
time scale in the flow and the particles must respond v
quickly to any local change of fluid motion. Consequent
the particle velocity is completely specified by its instan
neous position, to leading order intp /tk . This allows us to
define a particle velocity fieldv(x,t) which is given by6

v~x,t !5u~x,t !2tpS ]u

]t
1u•¹uD , ~13!

in the absence of body forces.
Maxey6 pointed out that this particle velocity field, un

like the fluid velocity field, is not incompressible. The dive
gence field of the particle velocity is

¹•v52tp

]uj

]xi

]ui

]xj
52tpS si j si j 2

v2

2 D , ~14!

wherev5¹3u andsi j 5(]ui /]xj1]uj /]xi)/2 are the local
fluid vorticity and rate of strain field, respectively. It follow
that particles will accumulate in regions of low vorticity an
high strain rate. Maxey6 showed that the local particle num
ber concentration,n(x,t), after a uniform release att50,
would evolve as

n~x,t !5n0expH tpE
0

tFsi j si j 2
v2

2 G~Y~ t8;x,t !,t8!dt8J ,

~15!

where the integrand@si j si j 2 (v2/2)# in the above expres
sion should be evaluated following the trajectory of a parti
whose position would be atx at time t. We note that the
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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integrand can take both positive and negative values an
such may cancel in the integration over the history of
particle trajectory. Therefore, we argue that the main con
bution to the integral comes from the part of trajectory w
t8't, or local in space relative tox. We thus propose the
following approximation to~15!:

n~x,t !'n0expH tpt f S si j si j 2
v2

2 D J , ~16!

where t f is a history time scale to be determined, and
leading order is only a property of the flow. Sincetp is very
small, the leading order expansion forn(x,t) is

n~x,t !'n0H 11tpt f S si j si j 2
v2

2 D J . ~17!

In the context of the scaling law discussed in the last sect
we expect thatt f be directly related totk . We will use Eqn.
~17! as it is more consistent with the leading order appro
mation, however, Eqn.~17! cannot be applied to very hig
vorticity regions as it may lead to negative local concent
tion for a givent f . To circumvent this, we simply set th
local concentration to zero if Eqn.~17! becomes negative
Equations~16! and ~17! do reflect correctly the qualitative
connection between the local particle concentration and
local vorticity or strain rate.

We shall now combine the above results to derive a le
ing order approximation for the average collision kernel. W
start by introducing a local-in-space collision kernelG(x,t)
as

G~x,t !5
Ṅ ~x,t !

n2~x,t !/2
5E

VR

~2wr
2!dV. ~18!

The relative velocitywr has been partitioned into two part
a positive part and a negative part, according to

wr
25H 0, if wr>0,

wr , if wr,0; wr
15H wr , if wr>0,

0, if wr,0. ~19!

Since

E
VR

uwr udV5E
VR

wr
1dV2E

VR

wr
2dV, ~20!

E
VR

¹•wdV5E
VR

w•dVW 5E
VR

wr
1dV1E

VR

wr
2dV,

~21!

it follows that

G~x,t !5E
VR

~2wr
2!dV5

1

2EVR

uwr udV2
1

2EVR

¹•wdV,

~22!

whereVR is the volume of the sphere with radiusR centered
on x.

If the collision radiusR is small compared toh and the
flow is locally isotropic, the first integral in~22! can be writ-
ten as
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2EVR

uwr udV'2pR3U]v1

]x1
U

52pR3U]u1

]x1
2tp

]

]x1
S ]u1

]t
1u•¹u1D U, ~23!

using Eqn.~13!. The second term may be rewritten as

1

2EVR

¹•wdV5
1

2
VR¹•w̄52

1

2
VRtpR

]

]x1
Fsi j si j 2

v2

2 G ,
~24!

where the overbar denotes a local average over the sphe
volume VR . Therefore the local collision kernel can be e
pressed as

G~x,t !52pR3U]u1

]x1
2tp

]

]x1
S ]u1

]t
1u•¹u1D U

1
1

2
VRtpR

]

]x1
Fsi j si j 2

v2

2 G . ~25!

The average collision kernel is related to both the lo
collision kernel and the local particle number concentrat
as

^G&5
^Ṅ ~x,t !&

n0
2/2

5
^G~x,t !n2~x,t !&

n0
2 , ~26!

where the angle brackets denote a spatial average ove
entire computational domain, andn05^n(x,t)& is the aver-
age concentration. Substituting~17! and ~25! into ~26! and
dropping the local averaging as a first approximation
small R, we obtain

^G&52pR3K U ]u1

]x1
2tp

]

]x1
S ]u1

]t
1u•¹u1D U

3F11tpt f S si j si j 2
v2

2 D G2L 1
2pR3

3
tpK R

]

]x1

3S si j si j 2
v2

2 D F11tpt f S si j si j 2
v2

2 D G2L . ~27!

Several remarks regarding Eqn.~27! can be made here
In a direct numerical simulation, the full nonuniform flow
field is simulated, so all the terms in Eqn.~27! can be com-
puted directly. The first part inside the absolute signs of
first term includes the leading order correction to the relat
velocity gradient. The second part enclosed by the squ
brackets represents the effect of nonuniform particle conc
tration due to the inertial bias. If we neglect the effect
nonuniform particle concentration or equivalently set t
second part to one, the collision kernel will increase but v
slowly with tp due to the first part or the effect of particl
inertia on the particle relative velocity. The important poi
to note is that the two parts in the first term of~27! are
positivelycorrelated, namely, both high local concentrati
and high local relative velocity are found in regions of hig
strain rate. The combined effect is then a much higher av
age collision kernel than what one would have if the parti
concentration were uniform. Similar observations can
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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made for the second term in~27!. We note, however, that th
second term would not make any net contribution to^G&
under the uniform concentration approximation since
volume average of (si j si j 2 (v2/2)) is zero, but it does make
a positive contribution when the nonuniform concentrat
effect is considered. Finally, Eqn.~27! is essentially consis
tent with the scaling law~12! if the history characteristic
time t f scales withtk . If the particle concentration wer
uniform, Eqn.~27! would become

^Gu&52pR3K U ]u1

]x1
2tp

]

]x1
S ]u1

]t
1u•¹u1D U L . ~28!

We can now fit the approximation~27! to the numerical
results in Fig. 5 for the regiontk /tp,0.5 for which the
scaling law is justified. A least square procedure~minimizing
the square error between the analysis and the simulation
sults in the regiontp /tk,0.5) was used to deduce the be
value of t f . The comparisons of the numerical results a
the approximation~27! are shown in Figs. 6, 7 and 8 for th
three flow Reynolds numbers. We conclude that Eqn.~27!
predicts the shape of^G1& versustp observed in the numeri
cal simulations despite all the approximations involved
deriving~27!. Also shown in these figures are the predictio
under the uniform concentration approximation, Eqn.~28!,
which yield a much smaller̂G1& value than the numerica

FIG. 6. Comparison of the asymptotic analysis, Eqn.~27!, with numerical
results for small particle response timetp /tk,0.5. The error bars indicate
6 standard deviation. Grid resolution is 643, Rl545.

FIG. 7. Comparison of the asymptotic analysis, Eqn.~27!, with numerical
results for small particle response timetp /tk,0.5. The error bars indicate
6 standard deviation. Grid resolution is 963, Rl559.
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results. Therefore, the nonuniform concentration result
from finite particle inertia is the dominant factor rapidly in
creasing the collision kernel at smalltp /tk .

Figure 9 shows the value oft f , normalized bytk , as a
function of the flow Reynolds numberRl and R/h. For a
given R/h, t f /tk is only weakly dependent ofRl . For the
range ofRl covered in the simulations,t f /tk is changed by
about 16%, which is much less than theTe /tk variation~see
Table I!. Therefore, we may conclude thatt f scales withtk .
The difference int f /tk between the twoR/h values is some-
what larger, but part of this difference is due to the finite s
effect which is not included in Eqn.~27!.

VI. RESULTS IN EVOLVING FLOW

The numerical results considered so far were obtai
using turbulent fields that did not evolve in time. Here w
present some preliminary results for an evolving turbulen
field at Rl'45 for smalltk . Figure 10 compares the resul
with those obtained in a frozen turbulence at the same fl
Reynolds number. Note that for the evolving flow the Ko
mogorov time scaletk varies in time so an average valu
over time was used in Fig. 10. Fortp→0, the frozen and
evolving flow fields yield the same collision kernel, implyin
that the formulation of Saffman and Turner9 is valid for the
collision of fluid elements in an evolving flow.4 However, as
tp /tk increases, the collision kernel in the evolving flo

FIG. 8. Comparison of the asymptotic analysis, Eqn.~27!, with numerical
results for small particle response timetp /tk,0.5. The error bars indicate
6 standard deviation. Grid resolution is 1283, Rl575.

FIG. 9. The history time scalet f , normalized by the Kolmogorov time
scaletk , as a function of the Taylor microscale Reynolds numberRl .
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deviates from that in the frozen flow, and is always less th
the latter. At tp /tk51, the reduction is about 20%. Th
physical explanation is that heavy particles respond t
range of eddies that evolve both in time and space, the t
poral evolution of the flow tends to reduce the fluid veloc
correlation or persistence of a given local flow structu
around a particle. For smalltp /tk , this effect can lower the
level of local particle accumulation and thus the average
lision kernel. The observed reduction, however, does no
ter the qualitative behavior of the collision kernel at sm
tp /tk .

We are in the process of collecting more data for
evolving flow, covering a wider range oftp and the flow
Reynolds number. It should be noted that more results for
evolving flow case are reported recently by Sundaram
Collins.15 Our preliminary results agree with those
Sundaram and Collins15 qualitatively in general. It is noted
that there is no quantitative difference incollision kernel
between frozen and evolving flows under the two limiti
cases, namely, very small particle inertial response time
very large inertia response time. Both the simulation res
and analyses in the present paper focused on these lim
cases, and, therefore, are expected to be representative
evolving flow case as well. There are significant quantitat
differences for the intermediate inertia case, which will b
topic of future study. It may be useful to note that a pass
scalar field advected by Gaussian, frozen, and evolving
locity fields shows different spectra and dynamics.18,19

Therefore, the dynamical features of the fluid veloc
field should be considered carefully for the collision proce

VII. SUMMARY

Numerical experiments were conducted to study the g
metric collision rate of heavy particles with finite inertia.
was found that the collision kernel reached a peak at a
ticle response time larger than the Kolmogorov time but l
than the large-eddy turnover time. This indicates that b
the large-scale and small-scale fluid motion can contrib
although in very different manners, to the collision rate. T
is consistent with the observation of Sundaram and Collin15

on particle collision in an evolving flow. The ratio of th
collision kernel to particle fluctuating velocity,^G&/vp8 , on

FIG. 10. The numerical collision kernels in an evolving flow and a froz
turbulence as a function oftp /tk . Grid resolution is 643, Rl545. The error
bars denote the 95% numerical confidence intervals.
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the other hand, increases monotonically withtp , implying
that the large scale effect dominates the change of the c
sion kernel for mosttp . Simulations at higher flow Reynold
numbers are necessary to further clarify the proper scalin
the maximum collision rate.

In the limit of zero inertia (tp /tk→0), the analytical
result of Saffman and Turner9 provides a useful estimate fo
the collision kernel but a finite correction to their result mu
be made if a realistic collision counting scheme
employed.4 On the other hand, for very large particle
(tp /Te@1), the kinetic theory of Abrahamson12 is expected
to apply. Our simulations show that the numerically-deriv
collision kernel is still significantly less than Abrahamson
prediction attp /Te52.5, and that his prediction is only ap
proached at extremely largetp /Te . This was also shown by
a simple stochastic theory in which the fluid velocity on
particle was treated as a Monte-Carlo process.

For smalltp /tk , which is most relevant to atmospher
contexts, the collision kernel increases very quickly w
tp /tk . A scaling law for the collision kernel for this limit
was proposed and confirmed by numerical simulations. T
rapid increase of the collision kernel was shown, by
asymptotic analysis, to result mainly from the nonunifor
particle concentration field due to the inertial bias. Of s
nificance is the observation that a small inertia withtp /tk

50.5 may lead to an order of magnitude increase in
collision rate.

Most of the results were obtained in a frozen turbule
flow. Preliminary results for an evolving flow indicate th
the non-persistence of flow structure may reduce the co
sion rate. This is expected, at least for smalltp /tk , since the
level of local particle accumulation is somewhat reduced
an evolving turbulence. Further work is necessary to syst
atically study this effect.

It should be noted that most previous studies show
non-zero contribution of the particle inertia to the collisio
kernel only through unequal or differential inertia in a pol
disperse system. Here we have demonstrated that even
monodisperse system, the particle inertia must be consid
to accurately describe the collision kernel. For equal-s
particles, the inertial effect alters the collision rate in at le
four ways in addition to the shear mechanism:~a! by a re-
sponse to the local fluid acceleration in addition to the lo
fluid velocity, through which the localspatial variation in
the fluid acceleration can modify the relative velocity~e.g.,
Eqn.~13!!; ~b! by the lack of correlation of fluid velocity and
fluid acceleration on the particle trajectories which can aff
the relative velocity due to the combined effect of partic
inertia and both thespatial and temporal variationsof the
flow field; ~c! by the local particle accumulation as a result
the inertial bias, and~d! by different initial conditions with
which the particles are released into the flow. For finite p
ticle inertia, all these are no longer a local phenomena,
rather depend on both the spatial and temporal variation
the turbulence. The present numerical and analytical res
will help us to develop a better and more complete the
which can combine all the above aspects and be applie
arbitrary particle inertia.
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APPENDIX: A SIMPLE STOCHASTIC ANALYSIS OF
TWO-PARTICLE VELOCITY CORRELATION

Here we present a simple stochastic analysis to ga
qualitative understanding of the two-particle velocity cor
lation coefficientr12 introduced in Sec. III. We shall treat th
particle motion as a succession of interactions with turbu
eddies, where each eddy has constant flow properties. M
specifically, we consider a one-dimensional version of
particle equation of motion

dv~ t !

dt
5

u2v
tp

, ~A1!

where the fluid velocityu is treated as a Monte-Carlo pro
cess with a fixed eddy life timeT.20 The fluid velocity will
take a Gaussian random value in each eddy with a stan
deviation equal to the rms fluid fluctuation velocityu8. It can
be shown that the particle velocity variance (vp8)

2 is related
to the fluid velocity correlationRf(t)[^u(t)u(t1t)& by21

~vp8!2[^v2~ t !&5
1

tp
E

0

`

Rf~t!expS 2
t

tp
Ddt. ~A2!

For a Monte-Carlo processRf is a triangle function20

Rf~t!5H u82S 12
t

TD , for utu,T;

0, for utu>T.
~A3!

Substituting~A3! into ~A2!, we obtain a relationship betwee
the particle and fluid kinetic energy

~vp8!2

u82 512uF12expS 2
1

u D G , ~A4!

whereu[tp /T.
Now we would like to estimate the velocity correlatio

between two colliding particles,̂v (1)v (2)&. If the particle
size is very small, the two particles must be found in a sa
eddy upon collision. We further assume that the two partic
enter the eddy at a same time,22 say,t50. Then by integrat-
ing Eqn.~A1! the particle velocities can be written as

v ~ i !~ t !5ueF12expS 2
t

tp
D G1v ~ i !~0!expS 2

t

tp
D ,

for 0,t,T, i 51,2; ~A5!

wherev ( i )(0) denotes the particle velocity att50, andue is
the eddy velocity. Before entering the eddy (t,0), the two
particles interact independently with different eddies so t
^v (1)(0)v (2)(0)&5^v (1)(0)ue&5^v (2)(0)ue&50. If the
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probability distribution for the two particles to collide in th
time interval 0,t,T is uniform, then the velocity correla
tion is

^v ~1!v ~2!&5
1

TE0

T

^v ~1!~ t !v ~2!~ t !&dt. ~A6!

Substituting~A5! into ~A6!, we have

^v ~1!v ~2!&
u82 5122uF12expS 2

1

u D G1
u

2F12expS 2
2

u D G .
~A7!

The essential physics is that the particle velocities must
partially correlated due to interactions with a same eddy ri
before collision, and that the level of correlation depends
how quickly the particles can respond to the new fluid v
locity in the eddy. Finally, combining~A4! and ~A7!, we
obtain

r12512
u

2

F12expS 2
1

u D G2

H 12uF12expS 2
1

u D G J . ~A8!

Equation~A8! shows thatr12 decreases monotonically wit
u. In particular, the following asymptotic behaviors are o
tained

r1255 12
u

2
, for u!1;

2

3u
, for u@1.

~A9!

In Sec. III, the results for arbitrary inertia were present
in terms oftp /Te , whereTe is the eddy turnover time.Te

may also be viewed as the integral time scale of the tur
lence. The form of the velocity correlation~A3! implies that
T/25Te , therefore, we set

u50.5
tp

Te
~A10!

when the above analysis was compared to the numerica
sults in Sec. III.

It should be noted that the above analysis does not
clude the eddy size effect, which can modify the partic
eddy interaction time as the particles may traverse the e
in a time less thanT. Also the shear mechanism is not co
sidered.

Finally we cite here the recent results by Kruis a
Kusters14 when applied to equal size particles withrp@r.
They gave the following expression for the ratio of the p
ticle and fluid kinetic energy

~vp8!2

u82 5
11~g11!z

~11z!~11gz!
, ~A11!

where

z[2.5
tp

Te
, g[0.183S u8

vk
D 2

. ~A12!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



iz
e

d

-

a-
ne
s

id

r i

op

ll
id

ded

e-

by

is-
uid

nt

nt

u-

pic

nt

ic,

n
e
ce

le
on,

of
Flu-

,’’

ent
n.

nt

s the

ical
ions

that
e.

1216 Phys. Fluids, Vol. 10, No. 5, May 1998 Zhou, Wexler, and Wang
Equation~A11! differs from ~A4! as it is a function of two
independent dimensionless parameters. Note that~A11! was
first derived by Williams and Crane11 but with a different
definition for g. Williams and Crane11 assumed thatg@1
and used a simpler form under that limit. For equal s
particles, Kruis and Kusters’ result for the collision kern
becomes

G

vp8
54ApR2A gz2

~11z!~11gz!

3AS 12
A112z

11z
D S 21~g11!z

11~g11!z
D . ~A13!

Note that ~A13! reduces to the result of Williams an
Crane11 if g@1, which is

G

vp8
54ApR2A z

11z
A12

A112z

11z
. ~A14!

If, in addition, we assumez@1, then the Abrahamson’s re
sult is recovered.

Finally, we note that for largetp /Te our theory ap-
proaches Abrahamson’s resultGA in the following manner:

G5GAF12
2Te

3tp
G , ~A15!

while both ~A13! and ~A14! yield

G5GAF12A Te

5tp
G ~A16!

for largetp /Te . Therefore, all the theories predict that Abr
hamson’s result will be approached in an algebraic man
although our theory seems to approach Abrahamson’s re
more quickly.
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