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Numerical experiments have been performed to study the geometric collision rate of heavy particles
with finite inertia. The turbulent flow was generated by direct numerical integration of the full
Navier-Stokes equations. The collision kernel peaked at a particle response time between the
Kolmogorov and the large-eddy turnover times, implying that both the large-scale and small-scale
fluid motions contribute, although in very different manners, to the collision rate. Both numerical
results for frozen turbulent fields and a stochastic theory show that the collision kernel approaches
the kinetic theory of AbrahamsdiChem. Eng. Sci30, 1371(1979] only at very larger, /T,
wherer, is the particle response time aifid is the flow integral time scale. Our results agree with
those of Sundaram and Collidd. Fluid Mech.335 75 (1997] for an evolving flow. A rapid
increase of the collision kernel with the particle response time was observed forrgimall where

7 is the flow Kolmogorov time scale. A small inertia of,/7=0.5 can lead to an order of
magnitude increase in the collision kernel relative to the zero-inertia particles. A scaling law for the
collision kernel at smalt, / 7, was proposed and confirmed numerically by varying the particle size,
inertial response time, and flow Reynolds number. A leading-order theory for sgialf was
developed, showing that the enhanced collision is mainly a result of the nonuniform particle
concentration that results from the interaction of heavy particles with local flow microstructures.
© 1998 American Institute of Physids1070-663198)01305-1

I. INTRODUCTION effec) is negligible as long as only the geometric collision

Small solid particles and droplets are often dispersedrﬁfn 'f‘hgfflﬁ%ngifs'i{ hesget‘;]t:tlfhgenas‘r'tti)g'é Ii?\eﬂ?;hrgzr%irse
transported, and mixed by turbulent flow in many natural ani. ¥ P P

industrial processes. Turbulence can enhance the coagulati i
rate among particles in a concentrated suspension in at least 42
three ways. If the particles are sufficiently small in size and - _Pr Zp
their inertia relative to the fluid motion negligible, the local Pp 18y’
shear in turbulence determines completely the collision pro- i
cess(the shear mechanigrth For heavy particles in vigorous May be comparable to the flow Kolmogorov time scaje
turbulence, particle inertia becomes significant and collisions= (/ €) 2. For example, in cumulus cloutithe average dis-
then arise from the differing inertial response of polydisperseipation rate can be on the order of 200%sh 40 um drop-
particles to local fluid motiorithe accelerative mechanigm  lets would have a time scale ratig,/7~0.2 and a size
The turbulent shear may also increase the collision efficiend,/7~0.06. In many engineering applications, the dissipa-
cies of small particles by an order of magnitude throughtion rate is usually much larger than in clouds, so thatay
alteration of local relative motion between particfes. even be comparable to the large-eddy time scale and the
In this paper, we consider only the geometric collisionsparticle inertia becomes a key factor in the collision process.
of small, monodisperse patrticles in turbulence. We shall asThe terminertia effectshall be used to represent all aspects
sume that the particles are small, with diametgttypically of the particle motion in response to the changes of the local
on the order of or less than the Kolmogorov length segle fluid motion in a finite timerp due to particle inertia.
=(1% €)Y wherev and e are fluid kinematic viscosity and There is another reason to believe that the inertial effect,

the average rate of energy dissipation per unit mass respegven for smallr,, can enhance the collision rate to a level

tively. In such cases, the local shear rate around a particle f8uch larger than that described previously. It has been
assumed to be uniform and equal to the local velocity gradiShown recently that the intense vortex tube structures, which
ent, any deviation from this assumptignamely, the size characterize the d|SS|pat|on-rang§ dynamlps in fully devgl—
oped turbulence, lead to a nonuniform particle concentration
field. This so-called inertial bias or preferential concentration
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follow a Kolmogorov scaling, namely, being most effective cases, namely, very small particle inertial response time and
in producing a nonuniform concentration whep/7,~1.  very large inertia response time. Both the simulation results
Unlike the case of negligible particle inertia where the localand analyses in the present paper focused on these limiting
strain rate plays the dominant role, the inertial bias is causedases, and, therefore, are expected to be representative of the

by both the local vorticity and strain rate variations. evolving flow case as well.

Consider a monodisperse system consistingNpfpar- The paper is organized as follows. The next section pro-
ticles in a volume, the collision rate per unit volume/ vides the details of the flow simulation and particle tracking.
is given by The numerical collision kernels for arbitrary are presented

first in Sec. Ill. In Sec. IV we describe a scaling law and
. n3 compare it with numerical results. A leading order analysis
./f/czl“?, @ for small 7o/ 7y is developed in Sec. V and compared to the

simulation results. While most simulations utilized a frozen
provided thatN,>1, wheren,=N,/Q is the average par- turbulence field, the results in an evolving turbulence are
ticle number concentration in the volume afds the colli-  briefly discussed in Sec. VI. Finally main conclusions are
sion kernel. Saffman and Turfefirst considered simulta- drawn in Sec. VII.
neously the effects of the shear mechanism, the accelerative
mechanism, and the gravitational mechanism on the collision
kernell" under the assumptions thdg< », 7,<7,, and the Il. NUMERICAL SIMULATION
particle concentration field was uniform. Their results showA. Flow field
that the accelerative mechanism gives a nonzero contribution

to the collision kernel only if two colliding particles have ; . . .
: L ) ated by full numerical simulations using a pseudo-spectral
different inertias. This work was followed by a number of . . ; .
method. The incompressible Navier-Stokes equations

studies, all done in the context of stochastical theory of tur-
bulence, where the effect of local flow structures on the par- Jdu
ticle concentration was not explicitly considered. These in- E‘ux‘”_v

clude Panche¥ for the case ofr, spanning overr,

Williams and Cran¥ for intermediate-inertia particles with Were solved along with the continuity equatinu=0 in a
7«<1,<Te, and Abrahamsd for very large particles with periodic box of side zr. Herew=V xu is the vorticity,P is
7,>T,, whereT, is the time scale of energy-containing ed- the pressure. The time evolution was computed by appl_ylng
dies. Yuu!® Kruis and Kuster¥ considered the combined & second-order Adams-Bashforth scheme to the nonlinear

effect of local shear and unequal inertial response times oPr:_’rmS and a second-order Crank-l\_hcholson scheme for the
the collision rate for arbitrary,, . The key in the stochastical VISCOUS terms. The pressure was eliminated through the con-

theory is to identify the proper range of scales of motion intinUIy equation. _
the fluid turbulence which contribute most actively to the 1 ne flow was generated from rest by the random forcing

relative velocity between two colliding particles. In these €M f(x,t) which is nonzero only at low wave numbers,
efforts, closure assumption of one type or another was usk|< 8. Nonlinear interactions propagate energy from low

ally assumed in order to derive an expression for the averag@ Nigh wave numbers and eventually viscous dissipation be-
particle relative velocity. Also the particle concentration field ©0Mes active, leading to a quasi-steady balance of the forcing
was assumed to be uniform. energy and the viscous dissipation.

Our main objective here is to study the effect of the For most discussions in this paper, the flow was frozen

inertial bias on the collision rate, using numerical simula-2fter the statistically stationary stage was reached, and par-
tions and asymptotic analysis. In part 1 of this whrke ticles were then introduced into the flow. The start of particle

have clarified the formulation of Saffman and Tufhiar the  "€lease will be denoted as-0. This provides us an identical
zero-inertia case. We intend to extend this formulation toflOW microstructure for different runs with various particle
finite-inertia particles with a nonuniform concentration field. Parameters. The case of evolving flow will be considered in

Consistent with recent studiés'®we find that the collision S€¢: VI- _ _
kernel increases rapidly with, for 7,/7<1. This will be Since all the important flow scales are resolved in a full

shown to result mainly from the nonuniform particle concen-NUmerical simulation, the grid resolution determines the
tration field due to the inertial bias. A scaling law for the Scale separation, and thus the Reynolds number of the result-

collision kernel will be proposed and examined numerically"d flow. Various grid resolutions from 820 128 were
by varying particle size, inertial response time, and flowysed to provide a range of Taylor microscale Reynolds num-

Reynolds number. Of significance is the observation that L&r (Table ). _
small particle inertia ofr,/m,~0.5 can lead to an order of Table | lists the flow parameteffrom top to botton:

magnitude increase in the collision kernel. Most of the nu-N€ component rms fluctuating velocity, average dissipa-

merical experiments in this work were performed for frozention ratee, viscosity », Taylor microscale Reynolds number
flow fields. We note that more results for the evolving flow R\=U"Av (where\ is the transverse Taylor microscale
case were reported by Sundaram and Colffnk.is noted ~ =Uu'/\{(du1/dx;)<)), Kolmogorov lengthy, time scaler,
that there is no quantitative difference aollision kernel large-eddy turnover timeTeEulzle, the time scale ratio
between frozen and evolving flows under the two limiting T,/ 7., collision radiusR (which is equal to the particle di-

A homogeneous and isotropic turbulent flow was gener-

+vV2u+f(x,t), (3

P 1,
b2t
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TABLE |. Flow characteristics and parameters for the particle system. purpose of obtaining a small numerical uncertainty, we take
t=37, as the starting time for all statistical averages. A

: : 3 3
Grid resolution 32 o4 % 128 change of the starting time te= 2T, showed that the results
u’ 17.02 18.22 18.30 18.64 change less than 20% and are unchanged qualitatively.
5 3568.8 3421.0 3554.7 3374.4
v 0.6000 0.2381 0.1387 0.09450
R\ 24 45 59 75
n 0.0882 0.0450 0.0294 0.0224 C. Collision detection
Ti 0.0130 0.00830 0.00625 0.00529
Te 0.081 0.097 0.094 0.103 The collision detection algorithm was described in Part 1
Tel 7y 6.23 11.7 15.0 19.5 of this work! and will not be repeated here. It was shown that
Rin 178 1.0/0.5 1.0/0.5 1.0/0.5 three different collision counting schemes could be applied
z?xlo“) 5152/212/2048 f%g%?’?:z 12.2?)(/)520796 0‘07%/20/.511520 and each gave slightly different numerical collision kernels

for zero-inertia particles. These schemes differ in the choice
of particle system used for collision counting. They are sum-
marized here:

ameter for a monodisperse sysbemotal number of particles Scheme 1Particles were allowed to overlap in the sys-
N,, and particle volume fractios. Other details of the tem at the beginning of a time step and were not removed
simulated flows can be found in Wang and Maﬁey_ from the system after collision. This scheme was shown in
Part 1 to be the only scheme that is consistent with the Saff-
man and Turnérformulation.
Scheme 2At the beginning of each time step, the over-
We consider the motion of heavy spherical particles in dapping particles were marked and excluded from collision
nonuniform turbulent flow. The particle is assumed to bedetection. Therefore, the actual number of particles used for
small in comparison with the Kolmogorov microscale of the collision detection was less than the total number of particles
turbulence and the loading dilute enough that the presence ofed and varied in time.
the particles does not modify the base turbulence. Under the Scheme 3Particles were removed immediately from the
assumption that the density of the partipleis much larger ~ system when they collide. As a result, the total number of
than the density of the fluid, and that a quasi-steady Stokes particles decreased with time and particles remaining in the
drag can be used, the equation of motion for a heavy particleystem were nonoverlapping at the beginning of each time
becomes step. This scheme closely represents reality if both the colli-
av(t)  u(Y(t).0)—V(t) sion efficiency .and coagulatio.n.effici(.ancy are close. to one,
= ' (4) since two particles upon collision will form a particle of
dt Tp larger size and as such will disappear from the current size
whereV(t) andY (t) are the velocity and the center position group.
of a heavy particle, respectively. The body force is neglected ~ For each of the three schemes, one can define a local-in-
since we focus solely on inertia-induced collisions. The comtime collision kernel for any time stegt as
bined effects of inertia and gravitational settling will be con- 2N (1M t(n+1)
sidered separately. ri(tM)= c e
The location and velocity of each particle were advanced dt[Npi(t™)]
yvhille the flow field was either frozen or continued to evolve,,ere i=1, 2, and 3 denotes the individual schemes,
1 me. A outordr Adame Bastforty metiod s US4} it s th ol colison coutin e
ity at the location of a particle was interp;olated from thetlme. stept(”)_<_t<t_(”*1_), NP‘.(t.(n)) IS the_ total nl_Jmper of
X . i . : . particles participating in collision detection and is given for
values at neighboring grids using a 6-point Lagrange mter-each scheme as
polation. Typically 18~ 10* particles were introduced &t

B. Particle motion

®)

=0 into the computational domain at random initial posi- Np=const, fori=1;

tions with an initial velocity equal to the local fluid velocity. - N, — 2Ng(t™), fori=2:

After about 3,, any effects of the initial conditions on the Npi(t™)=43 P . 0 ' ’ (6)
particle motion became lost. The simulation was continued Np(t™"), fori=3;

for at least 13, or 4 to 5 large-eddy turnover times during

which collision counts and other statistical averages werevhereN,(t(™) is the number of overlapping pairs &f in
taken. It should be noted that the particle concentration fieldcheme 2Np(t(“)) is the number of particles left in the sys-
and the local-in-time collision kernelglefined in Sec. IIC tem in scheme 3. It is assumed that particle volume fraction
below) may not reach their asymptotic, statistically station-is very small so that binary collisions dominate. These local-
ary stage at=3r, since the local accumulation process isin-time collision kernels were quiteoisyif N, is not very
affected by large-scale fluid motidnOn the other hand, in large. They can be improved by averaging over different
practical applications one may be more interested in the parealizations of turbulence field and initial particle locations.
ticle collision statistics shortly after the particle release ratheA further average over time gives the final collision kernel
than the asymptotic value. With this in mind and for the(T';).
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FIG. 1. Numerical collision kernels, normalized By/ 7, , as a function of T,
e

the particle response time over the Kolmogorov time scale. For this set of

simulations, parameters were setdo:=0.001,R=0.8Ax, grid resolutionis £ 2 Numerical collision kernels over the particle fluctuation veloefty

32%. Np=1024 for schemes 1 and 2, whik, was increased to 2048 for 55 3 function of the particle response time over the large-eddy turnover time
scheme 3 to achieve comparable uncertainty intervals. The error bars indi The error bars indicate the 95% confidence intervals. The

cate the 95% confidence intervals. The horizontal line in the insert denOteﬁ\;rahamso?'F prediction isT'/(v/R?) =47 =7.09
the Saffman and Turner resiltr, /R®=1.294. P A

IIl. NUMERICAL RESULTS FOR ARBITRARY INERTIA Figure 2 replots the results in a manner that can be easily
_ _ o compared with the theory of Abrahamséifor large 7, /Te.

_ Figure 1 shows the numerical collision kernels, normal-p|so included in this figure are results at higher flow Rey-

ized byR®/ 7, as a function ofr, /7 in a frozen turbulence o1ds number (6%grid simulationy. Herev !, = (V,V,/3) is

at R, =24. The error bars denote the 95% numerical confiyne ms particle fluctuating veIocity.p We note that

dence intervals, which were estimated based on 21 runs wit{m/(erz) increases monotonically with, /T,. This can
independent realizations of particle initial locations. We ob-,, exprl)ained as follows L@tﬁl) andp @ bepthe longitudinal
' r

serve that qualitatively the three collision counting schemeg|ocities of the two particles at collision. Assuming the rela-

y|eld similar results. The collision kernels increase very rap+ive velocitywrzvﬁz)—vﬁl) between two colliding particles

idly for small 7/, reach a peak aty/m~4 or 7,/Te  fq)iows a Gaussian distribution with a standard deviatign

~0.6, and then drop slowly with increasing, /7. The 5 4 e particle concentration is uniform, thefw,|)

same (i‘lsualltanve behavior was found by Sunqlaram_ _and: (2l o, The collision kernel for scheme 1 is

Coallins, although they assumed a perfectly elastic collision

of nonoverlapping particle&heir post-collision treatment is (F1>=27TR2<|Wr|>=2\/§R20W- @)

close to, but not exactly the same as, our schemerlie

peak reflects both the effects of small and large scales dbefining the correlation coefficient of the particle velocities

fluid motion. The inertial bias produces a nonuniform par-asplzz<U§1)v§2)>/(vé)2, we can express,, as

ticle concentration. This small-scale effécan enhance the

collision kerne_:l significantlysee Sec. Yand is sc_aled on the Tw= ‘/<Wr2> = \/Evf)‘/l—Plz- (8

Kolmogorov time scale. On the other hand, @sincreases,

particle velocities fail to correlate at collision and the largerlt follows that

scale fluid motion becomes more relevant in determining the T

relative velocity between two particles. This causes an in- I'y e

crease in the relative velocity between two particles and a Ué?_‘l\/; 1=p12

concomitant increase in the collision kernel. This latter effect

is likely to scale with the integral time scale of the flow. The This reduces precisely to the Abraham$aesult if p;,=0.

guestion of how the location of this peak changes with thedn general, we can argue that the correlation coefficigat

flow Reynolds number remains to be examined with simuladecreases monotonically with,, since particle velocities

tions at higher flow Reynolds numbers. depend more and more on their history of travel and thus
Schemes 1 and 2 result in almost the same collision kemonlocal fluid motion as 7, increases. Consequently,

nel values, as expected for this low volume fraction sys‘iem.(I‘Q/(vl’)Rz) increases monotonically. Of significance is that

For zero-inertia particles,=0), scheme 1 gives the same the numerical collision kernels at,/T.=2.5 are about 22%

value as the Saffman and Turfeesult. A close examination and 14% less than Abrahamson’s predictionRye=24 and

seems to suggest that scheme 1 gives a slightly larger kernBl, =45, respectively, implying that there is still a significant

for 7,/7.<7 while scheme 2 gives a larger kernel for velocity correlation.

7o/ 7 >7, but the difference is not significant statistically. An estimate ofp,, as a function ofr, /T, can be made

Scheme 3, on the other hand, yields a collision kernel 10% tby treating the fluid velocity around a particle as a simple

15% less than the other two schemes, due to a preferentidonte-Carlo procesgsee the Appendjx Substituting Eqn.

removal as discussed in Part 1. (A8) into (9), we have

€)
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FIG. 3. The ratio of fluid to particle kinetic energy as a functionrpf T, .

FIG. 4. Numerical collision kernels, normalized by/ﬂu’Rz, as a func-
1 tion of the particle response time over the integral time scale. For this set of
1— exr{ _ _) } simulations, parameters were setdo=0.001,R=0.458\x, grid resolution
is 64°. N,=2048. The error bars indicate the 95% confidence intervals. The
horizontal line in the insert denotes the Saffman and Turner result
I'/(2\27u’R?) =0.0767.

(T'y)
WTRZ - 2N2T

p

0
x \/1— o[1—exp— 1/6)]' (10

where #=0.57,/T.. This result may be viewed as an im- particles in a stationary system. In our simulations using
provement over that of Abrahams&hand is plotted in Fig. scheme 4, we introduced more particles at the beginning of
2. Interestingly, Eqn(10) shows a reasonable comparisonthe simulations and only used a portion of the particles for
with the numerical results for,/T,>1.5. Furthermore Eqn. the collision calculation. Particles involved in a collision
(10) indicates thatp;, diminishes slowly(in an algebraic were replaced by those particles not previously used in the
manner, se&¢A9)) for large 7,/T.. For example,y1—p;,  collision calculation, so as to keep the system stationary and
=0.937 atr,/T.=10, thus the difference between Eqh0)  to maintain the preferential concentration at the same time.
and Abrahamson'’s result is still noticeablergf T,=10. For ~ Scheme 4 gives almost the same results at very small and
7,/ Te<1.5, EQn.(10) predicts a smaller value than the nu- large 7,/T., but can possibly result in collision kernels 5%
merical results, particularly for thR, =45 case. The differ- to 10% smaller than those of scheme 1 for intermediate par-
ence can be viewed as the effect of the nonuniform particldicle inertia. Also shown are results based on the hard-sphere
concentratior{see Sec. Y. Also shown are the predictions of model used previously by Sundaram and Coffiris which a
Kruis and Kusters? Williams and Crant (see the Appen- perfectly elastic collision model without friction is used to
dix). Interestingly, all the theoretical results are similar in calculate the particle velocities after a collision. We note that
shape. The present theory seems to be slightly better thamhile there is essentially no difference between the hard-
other theories. However, one should keep in mind that in thephere model results and those of scheme Irfdi>0.1,
development of the other theories, the flow Reynolds numbethe hard-sphere model can lead to a collision kernel much
was assumed to be large. Furthermore, empirical constantarger than the Saffman and TurRgrediction in the limit of
such as the one used to relate the Lagrangian time $¢ate ~ 7,/T.—0. This latter difference is due to artificial repeated
T. may be adjusted in the works of Kruis and Kustéts, collisions in the hard-sphere model as noted by Sundaram
Williams and Crant to better match the numerical results. and Collins'®

The ratio of fluid to particle kinetic energy is shown in
Fig. 3 as a function ofr,/T,. A simple stochastic analysis |y THE SCALING LAW FOR I' AT SMALL ™
would predict a linear curvéfor example, Abrahamsof,
Williams and Cran#). Figure 3 shows that the curves are N the following, we shall focus on particles with small
not exactly linear, but rather the slope drops slowly-g&T, inertia, 7,/7,<1. In this case, .particlles will respo'nd to the
increases. The average slope is very close to one at |ar§é1ange of local large-scale fluid motion rather quickly. As a
7,/Te, in agreement with the previous theorféd? Also ~ consequence, we expect that the dissipation-range fluid dy-
shown in the figure are our result, EqA4), using a simple  Namics dominates the collision process. If, in addition, par-
stochastic analysis, and the results of Abrahani&dtruis ticle size or the collision radiuR is much smaller than the
and Kusterd? They all give a reasonable although not Veryintegral length scale of the turbulence and the flow Reynolds
accurate prediction. number is sufficiently large, we can argue that the collision

To further examine the effect of collision detection kKernell’ depengs only on the collision radius R, the average
schemes on the numerical collision kernel, we compare iglissipation ratee, the kinematic viscosity, and the particle
Fig. 4 results based on scheme 1 and two other scheme&sponse time-,. Then we can write
Scheme 4is a more realistic scheme in which particles are —
relocated after collisions to represent generation of particles I=f(R.ev.7). (1D
in the current size group due to the coagulation of smalleA dimensional analysis would lead to
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30 | —oRMLO,R=T5 ' ‘ ‘ ] ity gradient is a reasonable approximation for low Reynolds
S *RM=05,R;=75 number flows and the finite size effect fd¥/n<1 is
25 &8 RM=1.0, R,=59 .. 4
wo@ RA=0.5, R,=59 Ean negligible:
“ 20 | o eRmon R ET R Third, for non-zeror, /7, the nondimensional collision
%& E¥ 3 kernel decreases & » increases. This is expected since the
&15 ] € O ] history effect, namely the relative particle motion before the
Viof F= A e - two particles are brought to a distanReapart, increasingly
st & influences the relative velocity at collision. Particles respond
' to scales of motion larger thaR. For smallR in the far
0= : : : : : dissipation range, the relative fluid velocity scales Ris
0.0 02 04 0.6 0.8 Lo

while in the inertial subrange it is scaled & (see
Kolmogorov’). The mean shear rate between two particles
FIG. 5. Numerical collision kernels, normalized By/ 7, , as a function of then decreases wifR for a givenTP' Therefore, the normal-
o/ 7. The error bars indicate: standard deviation. The important param- ized collision kernel drops as the collision radius increases.
eters for these runs are shown in Table I. The most significant observation is that the numerically-
derived collision kernels increase very rapidly with the par-
ticle response time. Even for a smajl/7,=0.5 for which
r 7 R the scaling law is applicable, the collision kernel is about 1
R ( ) , (120 order of magnitude larger than the value for zero-inertia par-
o ticles whenR/#%=0.5. This rapid increase cannot be ex-
where 7,=(v/€)'? is the Kolmogorov time scale,;  plained by any of the previous theories. We shall study this
= (v3/ €)Y is the Kolmogorov length scale. rapid increase analytically in the next section.
Therefore, when we consider small inertia and small size
effects, the dimensionless collision kernel is a function of they, A LEADING-ORDER ANALYSIS FOR SMALL T
dimensionless particle response tifoe Stokes numbgrnd
the dimensionless collision radius. In the limit gf/7,—0

and R/»n—0, Eqgn.(12) is consistent with the Saffman and ) . 3
Turner result for zero-inertia particles, with(0,0)=1.294. results of an asymptotic analysis developed by Maxey

Eqn. (12) is essentially a Kolmogorov scaling in high- small 7,, that accounts for the nonuniform concentration

Reynolds number turbulence effect due to the inertial bias.
To confirm the above scaling law, we performed a series, If wel a;surrr]we ftlhaﬁ'P/Tk<hl’ Tk rgplresents the smallest
of numerical simulations by varying the following three pa- time scale in the flow and the particles must respond very

rameters one at a time: the Stokes numhghr, , the dimen- quickly to any local change of fluid motion. Consequently,

sionless collision radiuB/ 7, and the flow Reynolds number. the particle velocity is completely specified by its instanta-

The results are summarized in Fig. 5. Since in the last sectiof€0US POsition, to leading order in /. This allows us to

we showed that the results were similar for different collisiond€fine @ particle velocity fiels(x,t) which is given bj

counting schemes, we shall use scheme 1 only for the rest of

discussions in this paper. Several interesting observations V(X,t)=u(x,t)—,

can be made for Fig. 5.

First, the nondimensional collision kernels do not show an the absence of body forces.

dependence on the flow Reynolds numiRy for 7,/ _ Maxey_S pointed out that this particle velocity field, un-

<0.6, even though the Reynolds numbers are not high in odike the fluid velocity field, is not incompressible. The diver-

simulations. For the two higher Reynolds number cases, thgence field of the particle velocity is

range of validity of the scaling law extends tq/7,<0.8. au; au;

For largerr,/7,, particles start to interact with a range of V.v= —

flow time scales, including the large-scale motions which

depend on the flow Reynolds number. Since the fluid motiotwherew="V X u ands;; = (du; /dx;+ du;/ 9x;)/2 are the local

at larger scales is more fully represented in higher Reynoldfuid vorticity and rate of strain field, respectively. It follows

number flow, the contribution of larger scale fluid motion to that particles will accumulate in regions of low vorticity and

the collision kernel is increased. As a result, the collisionhigh strain rate. Maxéyshowed that the local particle num-

kernel increases witR, (or equivalentlyr,/T,) for larger ~ ber concentrationn(x,t), after a uniform release at=0,

7p/ 7. We speculate that the range of validity of the scalingwould evolve as

law would be extended further, should these simulations be ¢
1),

T, T,

' n

Our objective here is to shed some light on the observed
rapid increase of with 7, for small 7,. We will apply the

o v 13
E+u~ ul, (13

2
=_Tp(sijsij_%), (14)

2
done at even higher Reynolds numbers. These observations n(x,t)=ngex SijSij — %}(Y(t’;x,t),t’)dt’ ,
support the proposed scaling law.

Second, as,/7—0, the numerically-derived collision (15)
kernels all approach the Saffman and TuPr@mediction,I'’  where the integrandls;;s;; — (w?/2)] in the above expres-
=1.29R% 7., independent of the flow Reynolds number. sion should be evaluated following the trajectory of a particle
Note that the Gaussian probability distribution for the veloc-whose position would be at at timet. We note that the
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integrand can take both positive and negative values and as
such may cancel in the integration over the history of the; | | \w|dQ~27R I
particle trajectory. Therefore, we argue that the main contri- ~ R

bution to the integral comes from the part of trajectory with

t'~t, or local in space relative tg. We thus propose the =27R
following approximation to(15):

(23

U1 9 [duy
Xy paxl at

—+u- Vul)

using Egn.(13). The second term may be rewritten as

w2 S

n(x,t)~noexp|' Tpr(SijSij—7>], (16) 1f v wdv 1V s 1V 5 d g w?
o | 2y WV ZRVRY WE T VRmR sisi— 5 )
where 7; is a history time scale to be determined, and to (24)

leading order is only a property of the flow. Singgis very

small, the leading order expansion fofx,t) is where the overbar denotes a local average over the spherical

volume V. Therefore the local collision kernel can be ex-

2
® ressed as
n(X,t)mno 1+ Tpr Sijsij_7>] (17) p
t)=2mR%_ = M My

In the context of the scaling law discussed in the last section, Toxy=2m paxl at UV
we expect that be directly related ta,. We will use Eqn. 5
(17) as it is more consistent with the leading order approxi- E i .Y

. ) 3 + 5 Vr7pR SijSij (25
mation, however, Eqn(17) cannot be applied to very high 2 dXq 2

vorticity regions as it may lead to negative local concentra-
tion for a givenr;. To circumvent this, we simply set the
local concentration to zero if Eqr{l7) becomes negative.
Equations(16) and (17) do reflect correctly the qualitative
connection between the local particle concentration and the <// x0) (T(x,t)n4(x,1))
local vorticity or strain rate. ( . 2 ,
We shall now combine the above results to derive a lead- 0
ing order approximation for the average collision kernel. Wewhere the angle brackets denote a spatial average over the
start by introducing a local-in-space collision kert#lx,t) entire computational domain, amgy=(n(x,t)) is the aver-
as age concentration. Substituting7) and (25) into (26) and
dropping the local averaging as a first approximation for

The average collision kernel is related to both the local
collision kernel and the local particle number concentration

(26)

/Z Xt) 1
I(x.t)= J (—w)dO. (18 small R, we obtain
n<(x, t)/2
IN=2#R3 I i &ul +u-Vu
The relative velocityw, has been partitioned into two parts, (T)=2m (?x TP, X4 ot 1
a positive part and a negative part, according to
p p g p g w212 2R3 3
0, ifw,=0, w,, if w,=0, X meme Sisi— )| )t T\ Ry
We=\w,, ifw,<0; Wr=10, ifw<0. (19 2 L2172
X Sijsij_7 1+Tp7-f(sijsij_7) > (27)

Since
Several remarks regarding Eqi27) can be made here.
f |Wr|dQ:f w; dQ - w; dQ (20) In a direct numerical simulation, the full nonuniform flow
Qg field is simulated, so all the terms in Eqf27) can be com-
puted directly. The first part inside the absolute signs of the
f V'dezf W~dﬁ=f Wr+d9+f wdQ, first term inCIL_Jdes the leading order correction to the relative
VR g QR 0g velocity gradient. The second part enclosed by the square
(21 brackets represents the effect of nonuniform particle concen-
tration due to the inertial bias. If we neglect the effect of
nonuniform particle concentration or equivalently set the
1 1 second part to one, the collision kernel will increase but very
F(X,t)zf (—w, )dQ= Ef |w,[dQ— Ef V-wav, slowly with 7, due to the first part or the effect of particle
R R VR 22) inertia on the particle relative velocity. The important point
to note is that the two parts in the first term (&7) are
whereVy, is the volume of the sphere with radiRscentered  positively correlated, namely, both high local concentration
on Xx. and high local relative velocity are found in regions of high
If the collision radiusRk is small compared tg; and the strain rate. The combined effect is then a much higher aver-
flow is locally isotropic, the first integral i(R2) can be writ-  age collision kernel than what one would have if the particle
ten as concentration were uniform. Similar observations can be

it follows that

Downloaded 01 Jul 2005 to 128.117.47.188. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 10, No. 5, May 1998 Zhou, Wexler, and Wang 1213
12 " 12 ‘
« DNS,RMm=1.0 | * DNS,RMm=1.0 j’
10t - Analysis, T,=5.767, /3- 10 ~ Analysis, T=4.957, T
© DNS, Rm=0.5 7 © DNS, Rm=0.5 e
. 8 t ——— Analysis, t=7.95t, P . 8 F ——— Analysis, 176811, ///E
%& —-—-- Uniform particle concentration /}; % —-—- Uniform particle concentration /1” ¥
L /// o ] .
X ° = X
Pl = -
Vo4 TR = v
e
3 /,//’_/_/35/”1
zﬁ_@,’;:fz—¥r:; ____________________________________
0 1 1 L L 0 L L 1 1
0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 0.2 03 04 0.5
T /T, T, T,

FIG. 6. Comparison of the asymptotic analysis, E@Y), with numerical
results for small particle response tinag/ 7,<0.5. The error bars indicate
+ standard deviation. Grid resolution is%®R, = 45.

FIG. 8. Comparison of the asymptotic analysis, E@Y), with numerical
results for small particle response timg/ 7,<0.5. The error bars indicate
+ standard deviation. Grid resolution is £2&, =75.

made for the second term {@7). We note, however, that the results. Therefore, the nonuniform concentration resulting
second term would not make any net contribution(ft from finite particle inertia is the dominant factor rapidly in-
under the uniform concentration approximation since thecreasing the collision kernel at smaj}/ 7.
volume average ofg{;s;; — (0%2)) is zero, but it does make Figure 9 shows the value of, normalized byr, as a
a positive contribution when the nonuniform concentrationfunction of the flow Reynolds numbeR, andR/7. For a
effect is considered. Finally, Eqf27) is essentially consis- givenR/#, 7¢/7 is only weakly dependent d®, . For the
tent with the scaling law(12) if the history characteristic range ofR, covered in the simulationsy /7 is changed by
time 7, scales withr,. If the particle concentration were about 16%), which is much less than thg/ 7, variation(see
uniform, Eqn.(27) would become Table ). Therefore, we may conclude that scales withr, .
The difference inr; / 7, between the tw&/ » values is some-
U J (% +u-Vu ) what larger, but part of this difference is due to the finite size
at ! effect which is not included in Eqri27).

ey
Xy Paxq

(Fu>=27rR3<

> . (28

We can now fit the approximatiof27) to the numerical
results in Fig. 5 for the regiom,/7,<0.5 for which the
scaling law is justified. A least square proced(renimizing ) _ )
the square error between the analysis and the simulation re- . The numenc_al results cpn5|dered SO _far were obtained
sults in the regiorr, /7,<0.5) was used to deduce the best Using turbulent fields that did not evolve in time. Here we
value of r;. The Cgmparisons of the numerical results andpresent some preliminary re;ults for an evolving turbulence
the approximatior(27) are shown in Figs. 6, 7 and 8 for the field atR\~45 for smallr,. Figure 10 compares the results
three flow Reynolds numbers. We conclude that E@T) with those obtained in a frozen turbulence at the same flow
predicts the shape ¢1";) versusr, observed in the numeri- Reynolds pumber.l Note t_hat for .the evolving flow the KIOI'
cal simulations despite all the approximations involved inmogorov time sca gk. v?:r'lesllg t::me S% anh a\;erage Vaollje
deriving (27). Also shown in these figures are the predic:tionsOver fume was used in =g. 1. Fop—d, the rozen an
under the uniform concentration approximation, E8), evolving flow fields yield the same collision kernel, implying

which yield a much smalle¢I’;) value than the numerical that_ the formu_latlon of Saffman and _Turﬁes valid for the
collision of fluid elements in an evolving floiHowever, as

7o/ 7 increases, the collision kernel in the evolving flow

VI. RESULTS IN EVOLVING FLOW

12 T T . !
+ DNS, RM=1.0 g
10 £ o Analysis, Tf=5.38‘|:k e 10.0
© DNS, RM=0.5 7 9.0 |
. 8 E ——— Analysis, 1,=7.491, I/ 8.0 |
<] —-—-+ Uniform particle concentration i 4 70 b \\
] .
o =
A, 4 60 S "
v L osofp T ey
\4 ©
4.0 |
30 } *-——* RM=1.0
20t +—+RM=0.5
0 1 1 I I 1.0 P
0.0 0.1 0.2 0.3 0.4 0.5 0.0
T, /T, 40,0 50.0 60.0 70.0 80.0
R,

FIG. 7. Comparison of the asymptotic analysis, E@Y), with numerical
results for small particle response ting/ 7,<0.5. The error bars indicate
+ standard deviation. Grid resolution is*9&, = 59.

FIG. 9. The history time scale;, normalized by the Kolmogorov time
scaler,, as a function of the Taylor microscale Reynolds nuniRer
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the other hand, increases monotonically with, implying
] that the large scale effect dominates the change of the colli-
s sion kernel for most,, . Simulations at higher flow Reynolds

: numbers are necessary to further clarify the proper scaling of
the maximum collision rate.

In the limit of zero inertia ¢,/7—0), the analytical
result of Saffman and Turneprovides a useful estimate for
the collision kernel but a finite correction to their result must
be made if a realistic collision counting scheme s
00.0 02 04 06 08 Lo employed® On the other hand, for very large particles

/T, (7p/Te>1), the kinetic theory of Abrahamstfis expected
to apply. Our simulations show that the numerically-derived

FIG. 10. The numerical collision kernels in an evolving flow and a frozen collision kernel is still significantly less than Abrahamson’s
turbulence as a function cﬁp/'rk. Grid resolutign is 62, R, =45. The error prediction atr,/T,=2.5, and that his prediction is only ap-
bars denote the 95% numerical confidence intervals. p’ e .

proached at extremely largg /T.. This was also shown by

a simple stochastic theory in which the fluid velocity on a
deviates from that in the frozen flow, and is always less tharparticle was treated as a Monte-Carlo process.
the latter. At7,/7,=1, the reduction is about 20%. The For small7, /7, which is most relevant to atmospheric
physical explanation is that heavy particles respond to &ontexts, the collision kernel increases very quickly with
range of eddies that evolve both in time and space, the tenw,/ 7. A scaling law for the collision kernel for this limit
poral evolution of the flow tends to reduce the fluid velocity was proposed and confirmed by numerical simulations. The
correlation or persistence of a given local flow structurerapid increase of the collision kernel was shown, by an
around a particle. For smat,/ 7, this effect can lower the asymptotic analysis, to result mainly from the nonuniform
level of local particle accumulation and thus the average colparticle concentration field due to the inertial bias. Of sig-
lision kernel. The observed reduction, however, does not alnificance is the observation that a small inertia wifhf 7
ter the qualitative behavior of the collision kernel at small=0.5 may lead to an order of magnitude increase in the
7ol Tk - collision rate.

We are in the process of collecting more data for the  Most of the results were obtained in a frozen turbulent
evolving flow, covering a wider range af, and the flow flow. Preliminary results for an evolving flow indicate that
Reynolds number. It should be noted that more results for théhe non-persistence of flow structure may reduce the colli-
evolving flow case are reported recently by Sundaram andion rate. This is expected, at least for smgli7,, since the
Collins® Our preliminary results agree with those of |evel of local particle accumulation is somewhat reduced in
Sundaram and Collii$ qualitatively in general. It is noted an evolving turbulence. Further work is necessary to system-
that there is no quantitative difference aollision kernel atically study this effect.
between frozen and evolving flows under the two limiting It should be noted that most previous studies show a
cases, namely, very small particle inertial response time andon-zero contribution of the particle inertia to the collision
very large inertia response time. Both the simulation resultgernel only through unequal or differential inertia in a poly-
and analyses in the present paper focused on these limitingsperse system. Here we have demonstrated that even in a
cases, and, therefore, are expected to be representative of i@ nsdisperse system, the particle inertia must be considered
evolving flow case as well. There are significant quantitative,, accurately describe the collision kernel. For equal-size

differences for the intermediate inertia case, which will be g5 ticles; the inertial effect alters the collision rate in at least
topic of future study. It may be useful to note that a passivg, ways in addition to the shear mechanisi: by a re-

sca}lar .f|eld advecteq by Gaussian, frozen, and' evolving Ves'ponse to the local fluid acceleration in addition to the local
locity fields shows different spectra and dynamts? _ fluid velocity, through which the locaspatial variationin
i Therefore, the o_lynam|cal features of the _ﬂl_“d velocity yne fiuid acceleration can modify the relative velodigg.,
field should be considered carefully for the collision processEqn_(13)); (b) by the lack of correlation of fluid velocity and
fluid acceleration on the particle trajectories which can affect
VIl. SUMMARY the relative velocity due to the combined effect of particle
Numerical experiments were conducted to study the gednertia and both thespatial and temporal variationsf the
metric collision rate of heavy particles with finite inertia. It flow field; (c) by the local particle accumulation as a result of
was found that the collision kernel reached a peak at a pathe inertial bias, andd) by different initial conditions with
ticle response time larger than the Kolmogorov time but lessvhich the particles are released into the flow. For finite par-
than the large-eddy turnover time. This indicates that botHicle inertia, all these are no longer a local phenomena, but
the large-scale and small-scale fluid motion can contributesather depend on both the spatial and temporal variations of
although in very different manners, to the collision rate. Thisthe turbulence. The present numerical and analytical results
is consistent with the observation of Sundaram and Cdflins will help us to develop a better and more complete theory
on particle collision in an evolving flow. The ratio of the which can combine all the above aspects and be applied to
collision kernel to particle fluctuating velocityI')/v,, on  arbitrary particle inertia.

12 f oo Frozen flow
""" < Evolving flow
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Substituting(A5) into (A6), we have

<U(1)v(2)> L 1 L 2
—eX _5 —eX —5 .

APPENDIX: A SIMPLE STOCHASTIC ANALYSIS OF u'? =1-26

TWO-PARTICLE VELOCITY CORRELATION (A7)
Here we present a simple stochastic analysis to gain ane essential physics is that the particle velocities must be

qualitative understanding of the two-particle velocity corre-Partially correlated due to interactions with a same eddy right

lation coefficientp,, introduced in Sec. I1l. We shall treat the before collision, and that the level of correlation depends on

particle motion as a succession of interactions with turbulenf@W quickly the particles can respond to the new fluid ve-

eddies, where each eddy has constant flow properties. Mot@City in the eddy. Finally, combinindA4) and (A7), we
specifically, we consider a one-dimensional version of the?btain

Ll
2

particle equation of motion 1\12
l-exp — -
dv(t) u-v 0 { l{ ”
T (A1) pr=1-75 T (A8)
P [1—0 1—ex;{—5) }

where the fluid velocityu is treated as a Monte-Carlo pro-
cess with a fixed eddy life tim&.?° The fluid velocity will Equation(A8) shows thatp,, decreases monotonically with
take a Gaussian random value in each eddy with a standa@ In particular, the following asymptotic behaviors are ob-
deviation equal to the rms fluid fluctuation velocity. It can  tained

be shown that the particle velocity varianmz;’JI2 is related

to the fluid velocity correlatiomR;(7)={(u(t)u(t+ 7)) by** 1— g, for 6<1;
1 (= T
o a1 T p=1 2 (A9)
(vp) =) Tpfo Rf(r)ex;{ 7_p)dr. (A2) 3g0 for 6=1.

For a Monte-Carlo procedR; is a triangle functioff
In Sec. lll, the results for arbitrary inertia were presented

u'?l1— I)' for |7|<T; in terms of r,/T,, whereT, is the eddy turnover timeT,
R(7)= T (A3)  may also be viewed as the integral time scale of the turbu-
0, for|7[=T. lence. The form of the velocity correlatidA3) implies that

T/2=T,, therefore, we set

Substituting(A3) into (A2), we obtain a relationship between r
the particle and fluid kinetic energy 6720.51_—p (A10)
e

(vp)? 1
uE)Z =1- 6{1—ex;{ - 5)

where 0=1,/T.

(A4) when the above analysis was compared to the numerical re-
sults in Sec. lII.
It should be noted that the above analysis does not in-

Now we would like to estimate the velocity correlation clude the eddy size effect, which can modify the particle-
between two colliding particlesgv(l)v(z)>. If the particle gddy interaction time as the particles may traverse the eddy

size is very small, the two particles must be found in a samd! & time less tharT. Also the shear mechanism is not con-
eddy upon collision. We further assume that the two particleS'dered: _ ,
enter the eddy at a same tiffesay,t=0. Then by integrat- Finally we cite here the recent results by Kruis and

4 . . . . s
ing Eqn. (A1) the particle velocities can be written as Kusters* when applied to equal size particles wiph>p.
They gave the following expression for the ratio of the par-

b (t)=uy 1—exp( _t +v(i>(0)exp( B L) ticle and fluid kinetic energy
e e Wp?  1+(y+1)¢
for 0<t<T, =12 (A5) W2 1+t 7)) (Al11)

wherev()(0) denotes the particle velocity &0, andu, is  where

the eddy velocity. Before entering the eddy<(), the two U2

particles interact independently with different eddies so that  ,—5 £7P EO.lS% _) _ A12
(D) @(0))=(v®(0)uey={(v@(0)ug)=0. If the ¢ 5T_e Y Uk (812
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